Research article Special Issues

Anisotropic peridynamic model—Formulation and implementation

  • Received: 24 April 2018 Accepted: 20 June 2018 Published: 24 August 2018
  • In this work, anisotropy is introduced in a peridynamic model. The spherical influence function is replaced by an ellipsoidal influence function. The model is mathematically formulated and implemented into the source files of LAMMPS, extending the program in a straight-forward manner. The extension ca be applied to other peridynamic model and here it is introduced into elastoplastic peridynamic model in LAMMPS. The implemented model is tested through simulating beams loaded in compression. The model is found to alter the material behavior in the simulations compared to the original isotropic mode. A clear qualitative and quantitative difference in behavior is shown independently of pre-existing simulation parameters. The model is shown to be internally consistent. Finally we also demonstrated that the model can easily be extended to include several preferable direction opening for application as modeling elasticplastic deformation of anisotropic heterogeneous crystalline matter.

    Citation: Aylin Ahadi, Jakob Krochmal. Anisotropic peridynamic model—Formulation and implementation[J]. AIMS Materials Science, 2018, 5(4): 742-755. doi: 10.3934/matersci.2018.4.742

    Related Papers:

    [1] Nurtiti Sunusi, Giarno . Bias of automatic weather parameter measurement in monsoon area, a case study in Makassar Coast. AIMS Environmental Science, 2023, 10(1): 1-15. doi: 10.3934/environsci.2023001
    [2] RAHMOUN Ibrahim, BENMAMAR Saâdia, RABEHI Mohamed . Comparison between different Intensities of Rainfall to identify overflow points in a combined sewer system using Storm Water Management Model. AIMS Environmental Science, 2022, 9(5): 573-592. doi: 10.3934/environsci.2022034
    [3] Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Dan Wei, Liang Jin, Jianli Ding, Jianzhi Xie, Zhizhuang An . Characteristics of soil erosion in different land-use patterns under natural rainfall. AIMS Environmental Science, 2022, 9(3): 309-324. doi: 10.3934/environsci.2022021
    [4] Ronak P. Chaudhari, Shantanu R. Thorat, Darshan J. Mehta, Sahita I. Waikhom, Vipinkumar G. Yadav, Vijendra Kumar . Comparison of soft-computing techniques: Data-driven models for flood forecasting. AIMS Environmental Science, 2024, 11(5): 741-758. doi: 10.3934/environsci.2024037
    [5] Muhammad Rendana, Wan Mohd Razi Idris, Sahibin Abdul Rahim . Clustering analysis of PM2.5 concentrations in the South Sumatra Province, Indonesia, using the Merra-2 Satellite Application and Hierarchical Cluster Method. AIMS Environmental Science, 2022, 9(6): 754-770. doi: 10.3934/environsci.2022043
    [6] Swatantra R. Kethireddy, Grace A. Adegoye, Paul B. Tchounwou, Francis Tuluri, H. Anwar Ahmad, John H. Young, Lei Zhang . The status of geo-environmental health in Mississippi: Application of spatiotemporal statistics to improve health and air quality. AIMS Environmental Science, 2018, 5(4): 273-293. doi: 10.3934/environsci.2018.4.273
    [7] Dong Chen, Marcus Thatcher, Xiaoming Wang, Guy Barnett, Anthony Kachenko, Robert Prince . Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia. AIMS Environmental Science, 2015, 2(3): 648-667. doi: 10.3934/environsci.2015.3.648
    [8] Zinabu A. Alemu, Emmanuel C. Dioha, Michael O. Dioha . Hydro-meteorological drought in Addis Ababa: A characterization study. AIMS Environmental Science, 2021, 8(2): 148-168. doi: 10.3934/environsci.2021011
    [9] Robert Russell Monteith Paterson . Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 2020, 7(5): 366-379. doi: 10.3934/environsci.2020024
    [10] Meriatna, Zulmiardi, Lukman Hakim, Faisal, Suryati, Mizwa Widiarman . Adsorbent performance of nipa (nypafruticans) frond in methylene blue dye degradation: Response surface methodology optimization. AIMS Environmental Science, 2024, 11(1): 38-56. doi: 10.3934/environsci.2024003
  • In this work, anisotropy is introduced in a peridynamic model. The spherical influence function is replaced by an ellipsoidal influence function. The model is mathematically formulated and implemented into the source files of LAMMPS, extending the program in a straight-forward manner. The extension ca be applied to other peridynamic model and here it is introduced into elastoplastic peridynamic model in LAMMPS. The implemented model is tested through simulating beams loaded in compression. The model is found to alter the material behavior in the simulations compared to the original isotropic mode. A clear qualitative and quantitative difference in behavior is shown independently of pre-existing simulation parameters. The model is shown to be internally consistent. Finally we also demonstrated that the model can easily be extended to include several preferable direction opening for application as modeling elasticplastic deformation of anisotropic heterogeneous crystalline matter.


    [1] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range. J Mech Phys Solids 48: 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [2] Askari E, Bobaru F, Lehoucq RB, et al. (2008) Peridynamics for multiscale materials modeling. J Phys Conf Ser 125: 012078. doi: 10.1088/1742-6596/125/1/012078
    [3] Silling SA, Askari E (2005) Meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83: 1526–1535. doi: 10.1016/j.compstruc.2004.11.026
    [4] Silling SA, Epton M, Weckner O, et al. (2007) Peridynamics States and Constitutive Modeling. J Elasticity 88: 151–184. doi: 10.1007/s10659-007-9125-1
    [5] Parks ML, Lehoucq RB, Plimpton SJ, et al. (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179: 777–783. doi: 10.1016/j.cpc.2008.06.011
    [6] Seleson P, Parks ML, Gunzburger M, et al. (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model Sim 8: 204–227. doi: 10.1137/09074807X
    [7] LAMMPS, Available from: http://lammps.sandia.gov.
    [8] Parks ML, Seleson P, Plimpton SJ, et al. (2011) Peridynamics with LAMMPS: A User Guide v0.3 Beta. Sandia National Laboratories.
    [9] Mitchell J (2011) A nonlocal ordinary state-based plasticity model for peridynamics. Sandia National Lab Report.
    [10] Mitchell J (2011) A non-local, ordinary-state-based viscoelasticity model for peridynamics. Sandia National Lab Report.
    [11] Rahman R, Foster JT (2014) Implementation of elastic–plastic model in LAMMPS. University of Texas at San Antonio, Sandia National Laboratory.
    [12] Rahman R, Foster JT (2014) Implementation of linear viscoelasticity model in pdlammps. University of Texas at San Antonio, Sandia National Laboratory.
    [13] Rahman R, Foster JT, Plimpton SJ (2014) PDLAMMPS-made easy. University of Texas at San Antonio, Sandia National Laboratory.
    [14] Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56: 1566–1577. doi: 10.1016/j.jmps.2007.08.004
    [15] Seleson P, Parks ML (2012) On the role of the influence function in the peridynamic theory. University of Texas at San Antonio, Sandia National Laboratory.
    [16] Trefethen LN, Bau III D (1997) Numerical Linear Algebra.
  • This article has been cited by:

    1. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025
    2. Lauren A. White, James D. Forester, Meggan E. Craft, Thierry Boulinier, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, 2018, 87, 00218790, 559, 10.1111/1365-2656.12761
    3. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337
    4. Vanessa Steindorf, Norberto Aníbal Maidana, Modeling the Spatial Spread of Chagas Disease, 2019, 81, 0092-8240, 1687, 10.1007/s11538-019-00581-5
    5. Britnee A. Crawford, Christopher M. Kribs-Zaleta, Gaik Ambartsoumian, Invasion Speed in Cellular Automaton Models for T. cruzi Vector Migration, 2013, 75, 0092-8240, 1051, 10.1007/s11538-013-9840-7
    6. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611
    7. N. El Saadi, A. Bah, T. Mahdjoub, C. Kribs, On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model, 2020, 423, 03043800, 109001, 10.1016/j.ecolmodel.2020.109001
    8. Cheol Yong Han, Habeeb Issa, Jan Rychtář, Dewey Taylor, Nancy Umana, Marc Choisy, A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, 2020, 14, 1935-2735, e0008833, 10.1371/journal.pntd.0008833
    9. Daniel Olmos, Ignacio Barradas, David Baca-Carrasco, On the Calculation of
    R 0 Using Submodels, 2017, 25, 0971-3514, 481, 10.1007/s12591-015-0257-7
    10. Md. Abdul Hye, M. A. Haider Ali Biswas, Mohammed Forhad Uddin, Mohammad Saifuddin, Mathematical Modeling of Covid-19 and Dengue Co-Infection Dynamics in Bangladesh: Optimal Control and Data-Driven Analysis, 2022, 33, 1046-283X, 173, 10.1007/s10598-023-09564-7
    11. A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6
    12. Edem Fiatsonu, Rachel E. Busselman, Gabriel L. Hamer, Sarah A. Hamer, Martial L. Ndeffo-Mbah, Luisa Magalhães, Effectiveness of fluralaner treatment regimens for the control of canine Chagas disease: A mathematical modeling study, 2023, 17, 1935-2735, e0011084, 10.1371/journal.pntd.0011084
    13. H. Rwezaura, S.Y. Tchoumi, J.M. Tchuenche, Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study, 2021, 27, 23529148, 100807, 10.1016/j.imu.2021.100807
    14. Malicki Zorom, Babacar Leye, Mamadou Diop, Serigne M’backé Coly, Metapopulation Modeling of Socioeconomic Vulnerability of Sahelian Populations to Climate Variability: Case of Tougou, Village in Northern Burkina Faso, 2023, 11, 2227-7390, 4507, 10.3390/math11214507
    15. Xuan Dai, Xiaotian Wu, Jiao Jiang, Libin Rong, Modeling the impact of non-human host predation on the transmission of Chagas disease, 2024, 00255564, 109230, 10.1016/j.mbs.2024.109230
    16. M. Adrian Acuña-Zegarra, Mayra R. Tocto-Erazo, Claudio C. García-Mendoza, Daniel Olmos-Liceaga, Presence and infestation waves of hematophagous arthropod species, 2024, 376, 00255564, 109282, 10.1016/j.mbs.2024.109282
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5646) PDF downloads(1082) Cited by(5)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog