
Citation: Ryan Pearce, Timothy McKnight, Kate L. Klein, Ilia N. Ivanov, Dale Hensley, Harry Meyer III, Anatoli Melechko. Synthesis and properties of SiNx coatings as stable fluorescent markers on vertically aligned carbon nanofibers[J]. AIMS Materials Science, 2014, 1(2): 87-102. doi: 10.3934/matersci.2014.2.87
[1] | Boyu Wang . A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation. AIMS Mathematics, 2023, 8(11): 28071-28089. doi: 10.3934/math.20231436 |
[2] | Amna Mumtaz, Muhammad Shakeel, Abdul Manan, Marouan Kouki, Nehad Ali Shah . Bifurcation and chaos analysis of the Kadomtsev Petviashvili-modified equal width equation using a novel analytical method: describing ocean waves. AIMS Mathematics, 2025, 10(4): 9516-9538. doi: 10.3934/math.2025439 |
[3] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[4] | Cheng Chen . Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578 |
[5] | Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345 |
[6] | Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532 |
[7] | Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259 |
[8] | Jamilu Sabi'u, Sekson Sirisubtawee, Surattana Sungnul, Mustafa Inc . Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 2024, 9(11): 32366-32398. doi: 10.3934/math.20241552 |
[9] | Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426 |
[10] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
Nonlinear evolution equations (NLEEs) play an important part in the study of nonlinear science, particular in plasma physics, quantum field theory, nonlinear wave propagation and nonlinear optical fibers so that it attracted the attention of a large number of scholars. The extended auxiliary equation technique [1], the Bernoulli's equation approach [2], the Exp-function technique [3], the homotopy analysis technique [4], the homotopy perturbation technique [5], the improved $ tan(\phi/2) $-expansion technique ([6,7]), the Hirota's bilinear technique [8,9,10,11,12,13,14,15], the He's variational principle [16,17], the binary Darboux transformation [18], the Lie group analysis [19,20], the Bäcklund transformation method [21], optimal galerkin-homotopy asymptotic method applied [22], and the multiple rogue waves method ([23,24]) have been proposed to solve NLEEs. By using these approaches, various exact solutions including soliton solution, lump solution, rogue wave solution, periodic solution, interaction solution, rational solution and high-order rational solution were obtained ([25,26]).
In this paper, we mainly consider the following dynamical model, which can be used to describe some interesting (3+1)-dimensional waves of physics, namely, the generalized Kadomtsev-Petviashvili (gKP) equation [27]. That is
$ (Ψt+6ΨΨx+Ψxxx)x+aΦyy=0, $
|
(1.1) |
and also above equation is integrable. Author of [28] introduced the modification of KP (mKP) equation [29] given
$ 4Ψt−6Ψ2Ψx+Ψxxx+6Ψx∂−1xΨy+Ψ−1xΦyy=0. $
|
(1.2) |
The generalized KP (gKP) equation has been researched by some scholars [30,31,32] in which is given as
$ (Ψt+αΨx+βΨΨx+γΨΨxxt)x+Ψyy=0. $
|
(1.3) |
The another type of gKP equation is given in [33] as below
$ Ψxxxy+3(ΨxΨy)x+Ψtx+Ψty+Ψtz−Ψzz=0. $
|
(1.4) |
We first present the bilinear form for Eq (1.4), by taking the following first-order logarithmic transformation
$ Ψ=2(lnf)x, $
|
(1.5) |
then, Eq (1.4) is turned into the bilinear form
$ (D3xDy+DxDt+DyDt+DzDt−D2z)f.f=0, $
|
(1.6) |
in which $ D_t, D_x, D_y $ and $ D_z $ are Hirota's bilinear frames. Cao [34] investigated the generalized B-type KP equation as follows
$ Ψxxxy+3(ΨxΨy)x−3Ψxz−Ψty=0. $
|
(1.7) |
Guan et al. [35] derived a (3+1)-dimensional gKP equation in below form
$ Ψxxxy+3(ΨxΨy)x+αΨxxxz+3α(ΨxΨz)x+λ1Ψxt+λ2Φyt+λ3Φzt+ω1Φxz+ω2Φyz+ω3Φzz=0, $
|
(1.8) |
and some lump soliton solutions have been constructed using the Hirota bilinear method in [36]. Via transformation $ \Psi = 2(\ln f)_{x}, $ the bilinear form of equation (1.8) reads:
$ (D3xDy+αD3xDz+λ1DxDt+λ2DyDt+λ3DzDt+ω1DxDz+ω2DyDz+ω3D2z)f.f=0. $
|
(1.9) |
Most classical test functions for solving NLPDEs by using the several particular functions can be constructed via Hirota bilinear technique. In other words, Hirota operator covers most of the classical hypothesis function method. For example, the fractional generalized CBS-BK equation [37], the generalized Bogoyavlensky-Konopelchenko equation [38], the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation [39], and the (2+1)-dimensional generalized variable-coefficient KP-Burgers-type equation [40]. Diverse kinds of studies on solve NLPDEs were perused via mighty authors in which some of them can be stated, for instance, multivariate rogue wave to some PDEs [41], interaction lump solutions the gKP equation [42], the (1+1)-dimensional coupled integrable dispersionless equations [43]. Therefore, we embark on the new research topic of constructing the analytic solutions of nonlinear PDEs by exploring the bilinear method. According to recent studies, we can obtain some of the new exact analytic solutions of nonlinear PDEs by way of constructing their corresponding bilinear differential equations in [44,45,46,47]. Here, we will study the multiple Exp-function method (MEFM) for determining the multiple soliton solutions (MSSs). The MEFM employed by some of powerful authors for various nonlinear equations have been surveyed in more studies in [31,48,49,50]. Authors of [51] utilized the reduced differential transform method for solving partial differential equations. Also, Yu and Sun [52] studied the dimensionally reduced generalized KP equations by help of Hirita bilinear method and obtained of lump solutions.
The outline of our paper is as follows: the multiple Exp-function scheme has been summarized in section 2. In sections 3, the KP equation, will investigate to finding 1-wave, 2-wave, and three-wave solutions. The Sections 4-6 devote to determined the periodic, cross-kink, and solitary wave solutions. Moreover, in Section 7, the modulation instability analysis is investigated. Finally in Section 8, the SIVP technique is considered with four cases for finding the solitary, bright, dark and singular wave solutions. A few of conclusions and outlook will be given in the final section.
This method was summarized and improved for achieving the analytic solutions of NLPDEs:
Step 1. Assume a nonlinear PDE is given in general frame as follows
$ N(x,y,t,Ψ,Ψx,Ψy,Ψz,Ψt,Ψxx,Ψtt,...)=0. $
|
(2.1) |
Take the novel variables $ \xi _{i} = \xi _{i}(x, y, z, t), 1\leq i\leq n $, by differentiable frames:
$ ξi,x=αiξi, ξi,y=βiξi, ξi,z=γiξi, ξi,t=−δiξi, 1≤i≤n, $
|
(2.2) |
where $ \alpha _{i}, \beta _{i}, \gamma _{i}, 1\leq i\leq n $, are unfound amounts. It noted that one can get as the following function
$ ξi=ϖieθi, θi=αix+βiy+γiz−δit, 1≤i≤n, $
|
(2.3) |
where $ \varpi _{i}, 1\leq i\leq n $, unspecified amounts.
Step 2. Assuming the solution of the Eq (2.1) is function of variables $ \xi _{i}, 1\leq i\leq n $:
$ Ψ=Δ(ξ1,ξ2,...,ξn)Ω(ξ1,ξ2,...,ξn), Δ=n∑r,s=1M∑i,j=0Δrs,ijξirξjs, Ω=n∑r,s=1N∑i,j=0Ωrs,ijξirξjs, $
|
(2.4) |
in which $ \Delta _{rs, ij} $ and $ \Omega _{rs, ij} $ are amounts to be remained. Replacing Eq (2.4) into Eq (2.1) can be achieved the below form as:
$ Ψ=Δ(ϖ1eα1x+β1y+γ1z−δ1t,...,ϖneαnx+βny+γnz−δnt)Ω(ϖ1eα1x+β1y+γ1z−δ1t,...,ϖneαnx+βny+γnz−δnt), $
|
(2.5) |
and also we have
$ Δt=n∑i=1Δξiξi,t, Ωt=n∑i=1Ωξiξi,t, Δx=n∑i=1Δξiξi,x, Ωx=n∑i=1Ωξiξi,x, Δy=n∑i=1Δξiξi,y, Δz=n∑i=1Δξiξi,z, Ωy=n∑i=1Ωξiξi,y, Ωz=n∑i=1Ωξiξi,z, $
|
(2.6) |
$ \ \ \ \Psi _{t} = \frac{\Omega \sum\limits_{i = 1}^{n}\Delta _{\xi _{i}}\xi _{i, t}-\Delta \sum\limits_{i = 1}^{n}\Omega _{\xi _{i}}\xi _{i, t}}{\Omega ^{2}}, \ \ \Psi _{x} = \frac{\Omega \sum\limits_{i = 1}^{n}\Delta _{\xi _{i}}\xi _{i, x}-\Delta \sum\limits_{i = 1}^{n}\Omega _{\xi _{i}}\xi _{i, x}}{\Omega ^{2}}, $ |
$ \Psi _{y} = \frac{\Omega \sum\limits_{i = 1}^{n}\Delta _{\xi _{i}}\xi _{i, y}-\Delta \sum\limits_{i = 1}^{n}\Omega _{\xi _{i}}\xi _{i, y}}{\Omega ^{2}}, \ \ \Psi _{z} = \frac{ \Omega \sum\limits_{i = 1}^{n}\Delta _{\xi _{i}}\xi _{i, z}-\Delta \sum\limits_{i = 1}^{n}\Omega _{\xi _{i}}\xi _{i, z}}{\Omega ^{2}}. $ |
The one-wave function of the solution will be reduced as below form
$ Ψ=2Δ1Ω1, Ω1=1+ρ1+ρ2 eα1x+β1y+γ1z−δ1t, Δ1=σ1+σ2 eα1x+β1y+γ1z−δ1t, $
|
(3.1) |
in which $ \rho _{1}, \rho _{2}, \sigma _{1} $ and $ \sigma _{2} $ are unspecified amounts. Substituting (3.1) into Eq (1.8), the below cases will be concluded as:
Case I:
$ α1=α1, β1=β1, ρ1=ρ1, ρ2= σ2(ρ1+1)σ1 , σ1=σ1, σ2=σ2, δ1=δ1, γ1=γ1, γ2=γ2. $
|
(3.2) |
Case II:
$ α1=α1, β1=− αα1 3γ1−α1δ1λ1+α1γ1ω1−δ1γ1λ3+γ12ω3 α13−δ1λ2+γ1ω2, ρ1=−1, ρ2=ρ2, $
|
(3.3) |
$ \sigma _{1} = \sigma _{1}, \ \ \sigma _{{2}} = \sigma _{2}, \ \ \delta _{{1} } = \delta _{1}, \ \ \gamma _{1} = \gamma _{1}, \ \ \gamma _{2} = \gamma _{2}. $ |
Case III:
$ α1= γ1(αδ1λ2−αγ1ω2−δ1λ3+γ1ω3)δ1λ1−γ1ω1, β1=−αγ1, ρ1=ρ1, ρ2=ρ2, $
|
(3.4) |
$ \sigma _{1} = \sigma _{1}, \ \ \sigma _{{2}} = \sigma _{2}, \ \ \delta _{{1} } = \delta _{1}, \ \ \ \ \gamma _{1} = \gamma _{1}, \ \ \gamma _{2} = \gamma _{2}. $ |
Case IV:
$ α1=ϑ, β1=β1, or β1=−αγ1, ρ1=−1, ρ2=ρ2, σ1=σ1, σ2=σ2, δ1=ϑ3+γ1ω2λ2, γ1=γ1, γ2=γ2, $
|
(3.5) |
in which $ \vartheta $, solves the equation $ \lambda_1\vartheta ^4+(\gamma _1\lambda _3-\alpha \gamma _1\lambda_2) {\vartheta }^{3}+(\gamma _1\lambda _1\omega _2-\gamma_1\lambda _2\omega _1) \vartheta -\gamma _1 ^2\omega _3\lambda _2+\gamma_1^2\lambda _3\omega_2 = 0. $
For example, the 1-wave solution for Case III will be considered as
$ Ψ=2σ1+σ2e γ1(αδ1λ2−αγ1ω2−δ1λ3+γ1ω3)δ1λ1−γ1ω1 x−αγ1y+γ1z−δ1t1+ρ1+ρ2e γ1(αδ1λ2−αγ1ω2−δ1λ3+γ1ω3)δ1λ1−γ1ω1 x−αγ1y+γ1z−δ1t. $
|
(3.6) |
The two-wave function of the solution will be reduced as below form
$ Ψ=2Δ2Ω2, $
|
(3.7) |
$ Ω2=1+σ1eα1x+β1y+γ1z−δ1t+σ2eα2x+β2y+γ2z−δ2t+σ1σ2σ12e(α1+α2)x+(β1+β2)y+(γ1+γ2)z−(δ1+δ2)t, $
|
(3.8) |
$ \Delta _{2} = \rho _{1}e^{\alpha _{1}x+\beta _{1}y+\gamma _{1}z-\delta _{1}t}+\rho _{2}e^{\alpha _{2}x+\beta _{2}y+\gamma _{2}z-\delta _{2}t}+\rho _{1}\rho _{2}\rho _{12}e^{(\alpha _{1}+\alpha _{2})x+(\beta _{1}+\beta _{2})y+(\gamma _{1}+\gamma _{2})z-(\delta _{1}+\delta _{2})t}. $ |
Substituting (3.7) in terms of (3.8) into Eq (1.8), the below cases will be resulted as:
Case I:
$ α1=0, α2=α2, β1=β1, β2=−αγ2, δ1= γ1(β1ω2+ω3γ1)β1λ2+γ1λ3, δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=γ1, γ2=γ2, ρ1=0, ρ2=ρ2, $
|
(3.9) |
$ \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 1. $ |
Case II:
$ α1=α1, α2=0, β1=−αγ1, β2=β2, δ1= γ1(αγ1ω 2−α1ω1−ω3γ1)αγ1λ2−α1λ1−γ1λ3, δ2= γ2(β2ω2+γ2ω3)β2λ2+γ2λ3,γ1=γ1, γ2=γ2, ρ1=0, $
|
(3.10) |
$ \ \rho _{2} = \rho _{2}, \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 1. $ |
Case III:
$ α1=α1, α2=α2, β1=−αγ1, β2=−αγ2, δ1= γ1(αγ1ω 2−α1ω1−ω3γ1)αγ1λ2−α1λ1−γ1λ3, δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=γ1, γ2=γ2, ρ1=0, $
|
(3.11) |
$ \ \ \rho _{2} = \rho _{2}, \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 1. $ |
Case IV:
$ α1=0, α2=α2, β1=β1, β2=−αγ2, δ1= γ1(β1ω2+ω3γ1)β1λ2+γ1λ3, δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=γ1, γ2=γ2, ρ1=ρ1, ρ2=0, $
|
(3.12) |
$ \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 1. $ |
Case V:
$ α1=α1, α2=α2, β1=−αγ1, β2=−αγ2, δ1= γ1(αγ1ω 2−α1ω1−ω3γ1)αγ1λ2−α1λ1−γ1λ3, δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=γ1, γ2=γ2, ρ1=ρ1, ρ2=0, $
|
(3.13) |
$ \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 1. $ |
Case VI:
$ α1=α1, α2=α2, β1=−αα1γ2 α2, β2=−αγ2, δ1= α1γ2(αγ 2ω2−α2ω1−γ2ω3)α2(αγ2λ2−α2λ1−γ2λ3), δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=γ1, γ2=γ2, ρ1=ρ1, ρ2=0, $
|
(3.14) |
$ \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = \sigma _{12}. $ |
Case VII:
$ α1=α1, α2=α2, β1=−αα1γ2 α2, β2=−αγ2, δ1= α1γ2(αγ 2ω2−α2ω1−γ2ω3)α2(αγ2λ2−α2λ1−γ2λ3), δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1= α1γ2 α2 , γ2=γ2, ρ1=ρ1, ρ2=ρ2, $
|
(3.15) |
$ \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = 0, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = \sigma _{12}. $ |
Case VIII:
$ α1=12α2, α2=α2, β1=−12αγ2, β2=−αγ2, δ1=12 γ2(αγ2ω2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3, δ2= γ2(αγ2ω 2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3,γ1=12γ2, γ2=γ2, ρ1=ρ1, $
|
(3.16) |
$ \ \rho _{2} = \rho _{2}, \ \ \rho _{12} = \rho _{12}, \ \ \sigma _{1} = \sigma _{1}, \ \ \sigma _{2} = \sigma _{2}, \ \ \sigma _{12} = 0. $ |
For instance, the 2-wave solution for Case I will be taken as
$ Ψ1=2ρ2e− tγ2(αγ 2ω2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3 +xα2−yαγ2+zγ2 /(1+σ1e−tγ1(β1ω2+ω3γ1)β1λ2+γ1λ3 +yβ1+zγ1 + $
|
(3.17) |
$ \left. \sigma _{{2}}{\mathrm{e}^{- \ \ {\frac{t\gamma _{{2}}\left( \alpha \, \gamma _{{2}}\omega _{{2}}-\alpha _{{2}}\omega _{{1}}-\gamma _{{2}}\omega _{{3}}\right) }{\alpha \, \gamma _{{2}}\lambda _{{2}}-\alpha _{{2}}\lambda _{{ 1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+x\alpha _{{2}}-y\alpha \, \gamma _{{2} }+z\gamma _{{2}}} \ \ }+\sigma _{{1}}\sigma _{{2}}{\mathrm{e}^{- \ \ {\frac{t\gamma _{{ 1}}\left( \beta _{{1}}\omega _{{2}}+\omega _{{3}}\gamma _{{1}}\right) }{ \beta _{{1}}\lambda _{{2}}+\gamma _{{1}}\lambda _{{3}}} \ \ }- \ \ {\frac{t\gamma _{{2} }\left( \alpha \, \gamma _{{2}}\omega _{{2}}-\alpha _{{2}}\omega _{{1} }-\gamma _{{2}}\omega _{{3}}\right) }{\alpha \, \gamma _{{2}}\lambda _{{2} }-\alpha _{{2}}\lambda _{{1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+x\alpha _{{2} }+y\beta _{{1}}-y\alpha \, \gamma _{{2}}+z\gamma _{{1}}+z\gamma _{{2}}} } \right) . $ |
Also, the 2-wave solution for Case III will be considered as
$ Ψ2=2ρ2e− tγ2(αγ 2ω2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3 +xα2−yαγ2+zγ2 /(1+σ1e−tγ1(αγ1ω2−α1ω1−ω3γ1)αγ1λ2−α1λ1−γ1λ3 +xα1−yαγ1+zγ1 + $
|
(3.18) |
$ \left. \sigma _{{2}}{\mathrm{e}^{- \ \ {\frac{t\gamma _{{2}}\left( \alpha \gamma _{{2}}\omega _{{2}}-\alpha _{{2}}\omega _{{1}}-\gamma _{{2}}\omega _{{3} }\right) }{\alpha \gamma _{{2}}\lambda _{{2}}-\alpha _{{2}}\lambda _{{1} }-\gamma _{{2}}\lambda _{{3}}} \ \ }+x\alpha _{{2}}-y\alpha \gamma _{{2}}+z\gamma _{{2}}} \ \ }+\sigma _{{1}}\sigma _{{2}}{\mathrm{e}^{- \ \ {\frac{t\gamma _{{1}}\left( \alpha \gamma _{{1}}\omega _{{2}}-\alpha _{{1}}\omega _{{1}}-\omega _{{3} }\gamma _{{1}}\right) }{\alpha \gamma _{{1}}\lambda _{{2}}-\alpha _{{1} }\lambda _{{1}}-\gamma _{{1}}\lambda _{{3}}} \ \ }- \ \ {\frac{t\gamma _{{2}}\left( \alpha \gamma _{{2}}\omega _{{2}}-\alpha _{{2}}\omega _{{1}}-\gamma _{{2} }\omega _{{3}}\right) }{\alpha \gamma _{{2}}\lambda _{{2}}-\alpha _{{2} }\lambda _{{1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+x\alpha _{{1}}+x\alpha _{{2} }-y\alpha \gamma _{{1}}-y\alpha \gamma _{{2}}+z\gamma _{{1}}+z\gamma _{{2}}} } \right) . $ |
And finally, the resulting two-wave solution for Case VIII will be read as
$ Ψ3(x,y,z,t)=2(ρ1e−12 tγ2(αγ2ω2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3 +12xα2−12yαγ2+12zγ2 +ρ2e− tγ2(αγ2ω2−α2ω1−γ2ω3)αγ2λ2−α2λ1−γ2λ3 +xα2−yαγ2+zγ2 + $
|
(3.19) |
$ \left. \left. \rho _{{1}}\rho _{{2}}\rho _{{12}}{\ \mathrm{e}^{-\frac{3}{2}{ \frac{t\gamma _{{2}}\left( \alpha \, \gamma _{{2}}\omega _{{2}}-\alpha _{{2} }\omega _{{1}}-\gamma _{{2}}\omega _{{3}}\right) }{\alpha \, \gamma _{{2} }\lambda _{{2}}-\alpha _{{2}}\lambda _{{1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+ \frac{3}{2}x\alpha _{{2}}-\frac{3}{2}y\alpha \, \gamma _{{2}}+\frac{3}{2} z\gamma _{{2}}} \ \ }\right) \right/ \left( 1+\sigma _{{1}}{\mathrm{e}^{-\frac{1}{ 2} \ \ {\frac{t\gamma _{{2}}\left( \alpha \, \gamma _{{2}}\omega _{{2}}-\alpha _{{2 }}\omega _{{1}}-\gamma _{{2}}\omega _{{3}}\right) }{\alpha \, \gamma _{{2} }\lambda _{{2}}-\alpha _{{2}}\lambda _{{1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+ \frac{1}{2}x\alpha _{{2}}-\frac{1}{2}y\alpha \gamma _{{2}}+\frac{1}{2} z\gamma _{{2}}} \ \ }\right. $ |
$ \left. +\sigma _{{2}}{\mathrm{e}^{- \ \ {\frac{t\gamma _{{2}}\left( \alpha \, \gamma _{{2}}\omega _{{2}}-\alpha _{{2}}\omega _{{1}}-\gamma _{{2}}\omega _{{3}}\right) }{\alpha \, \gamma _{{2}}\lambda _{{2}}-\alpha _{{2}}\lambda _{{ 1}}-\gamma _{{2}}\lambda _{{3}}} \ \ }+x\alpha _{{2}}-y\alpha \, \gamma _{{2} }+z\gamma _{{2}}} \ \ }\right) . $ |
The triple-wave function of the solution will be reduced as below form
$ Ψ=Δ3Ω3, $
|
(3.20) |
$ Ω3=1+ρ1eΛ1+ρ2eΛ2+ρ3eΛ3+ρ1ρ2ρ12eΛ1+Λ2+ρ1ρ3ρ13eΛ1+Λ3+ρ2ρ3ρ23eΛ2+Λ3+ρ1ρ2ρ3ρ12ρ13ρ23eΛ1+Λ2+Λ3, $
|
(3.21) |
$ \Delta _{3} = 2\sigma _{1}e^{\Lambda _{1}}+2\sigma _{2}e^{\Lambda _{2}}+2\sigma _{1}\sigma _{2}\sigma _{12}e^{\Lambda _{1}+\Lambda _{2}}+2\sigma _{1}\sigma _{3}\sigma _{13}e^{\Lambda _{1}+\Lambda _{3}}+2\sigma _{2}\sigma _{3}\sigma _{23}e^{\Lambda _{2}+\Lambda _{3}}+ $ |
$ 2\sigma _{1}\sigma _{2}\sigma _{3}\sigma _{12}\sigma _{13}\sigma _{23}e^{\Lambda _{1}+\Lambda _{2}+\Lambda _{3}}, $ |
in which $ \Lambda _{i} = \alpha _{i}x+\beta _{i}y+\gamma _{i}x-\delta _{i}t, i = 1, 2, 3 $. Inserting (3.20) in terms of (3.21) into Eq (1.8), the below case will be reached:
$ αi=αi, γi=γi, σi=σi, ρ1=0, ρ2=ρ2, ρ3=ρ3, βi=−αγi, δi= γi(αγiω 2−αiω1−ω3γi)αγiλ2−αiλ1−γiλ3, i=1,2,3, ρij=ρij, σij=1, i,j=1,2,3, i≠j. $
|
(3.22) |
Then, the solution is
$ Ψ1=2σ1eΛ1+2σ2eΛ2+2σ1σ2eΛ1+Λ2+2σ1σ3eΛ1+Λ3+2σ2σ3eΛ2+Λ3+2σ1σ2σ3eΛ1+Λ2+Λ3 1+ρ2eΛ2+ρ3eΛ3+ρ2ρ3ρ23eΛ2+Λ3 , $
|
(3.23) |
in which $ \Lambda _{i} = \alpha _{i}x-\alpha \, \gamma _{{i}}y+\gamma _{i}x-{ \frac{\gamma _{{i}}\left(\alpha \, \gamma _{{i}}\omega _{{\ 2}}-\alpha _{{i} }\omega _{{1}}-\omega _{{3}}\gamma _{{i}}\right) }{\alpha \, \gamma _{{i} }\lambda _{{2}}-\alpha _{{i}}\lambda _{{1}}-\gamma _{{i}}\lambda _{{3}}} \ \ } t, i = 1, 2, 3 $ and $ \Psi = \Psi (x, y, z, t) $.
The triangular periodic waves for Eq (1.8) can be assumed as below:
$ f=exp(τ1)+a16exp(−τ1)+cosh(τ2)+cos(τ3)+a17, τ1=4∑i=1aixi+a5, τ2=9∑i=6aixi−5+a10, $
|
(4.1) |
$ τ3=14∑i=11aixi−10+a15, (x1,x2,x3,x4)=(x,t)=(x,y,z,t), Ψ(x,t)=v0+2ln(f)x, $
|
(4.2) |
in which $ a_{i}, i = 1, ..., 17 $ are unfound values. Substituting (4.1) and (4.2) into Eq (1.8) the below consequences will be gained:
Case I:
$ f=ea4t+a1x− y(a3a14ω3−a4a12ω2−a4a13ω3)a14ω2 +a3z+a5 +cosh(a9t−y(a8a14ω3−a9a12ω2−a 9a13ω3)a14ω2 +a8z+a 10)+cos(ta14+ya12+za13+a15). $
|
(4.3) |
Appending (4.3) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) as below will be achieved:
$ Ψ1=v0+2a1ea4t+a1x− y(a3a14ω3−a4a12ω2−a4a13ω3)a14ω2 +a3z+a5 f. $
|
(4.4) |
By selecting the suitable values of parameters including
$ a1=1,a3=1.5,a4=2,a5=1.5,a8=2,a9=1.5,a10=1,a12=2,a13=2.5,a14=1,a15=3.2,ω2=1.5,ω3=1.2, $
|
the graphical display of soliton-periodic wave solution is offered in Figure 1 such as 3D plot and density plot.
Case II:
$ f=ea4t+a1x+ya2− (a1 3a 14−a4a13ω2)za14ω2 +a5 +cosh(a9t+ya7+ a9a13za14 +a10)+cos(ta14+ya12+za13+a 15). $
|
(4.5) |
Plugging (4.5) into (4.1) and (4.2), obtain a soliton-periodic wave solution of Eq (1.8) as below case:
$ Ψ2=v0+2a1ea4t+a1x+ya2− (a13a14−a4a13ω2)za14ω2 +a5 f. $
|
(4.6) |
Case III:
$ f=ea4t+a1x− y(a3ω3+a4λ3)ω2 +a3z+a5 +cosh(a9t− y(a8ω3+a9λ3)ω2 +a8z+a10)+cos(− a13ω3yω2 +za13+a15). $
|
(4.7) |
Incorporating (4.7) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be gained as below:
$ Ψ3=v0+2a1ea4t+a1x− y(a3ω3+a4λ3)ω2 +a3z+a5 f. $
|
(4.8) |
Case IV:
$ f=ea4t− y(a3a9ω3−a4a7ω2−a4a8ω3)a9ω2 +a3z+a5 +cosh(a9t+ya7+a8z+a10)+cos(xa11+a15). $
|
(4.9) |
Plugging (4.9) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be achieved as below:
$ Ψ4=v0−2sin(xa11+a15)a11f. $
|
(4.10) |
Case V:
$ f=ea4t+ya2+ a4a8za9 +a5+cosh(a9t+ya7+a8z+a10)+cos(xa11− (a112ω3+ω 1ω2)a11yω22 + a 11 3zω2 +a15). $
|
(4.11) |
Incorporating (4.11) into (4.1) and (4.2), we capture a soliton-periodic wave solution of Eq (1.8) as below:
$ Ψ5=v0−2sin(xa11− (a11 2ω3+ω1ω2)a11yω2 2 + a113zω2 +a15)a11f. $
|
(4.12) |
Case VI:
$ f=ea4t+ ω2(a3a9−a4a8)xa9a112 −13 y(−2αa9a116ω2+2a9a11 6ω3+3αa32a9ω2 3−3αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9−a4a8) +a3z+a5+cosh(a9t−13 yΩa4ω2 3(a3a9−a4a8)(a92a116+ω22(a3a9−a4a8)2)+a8z+a10)+cos(xa11− αa113yω2 +a113zω2 +a15), $
|
(4.13) |
$ Ω=3αa4a8ω25(a3a9−a4a8)3+αa92a116ω23(a3a9+2a4a8)(a3a9−a4a8)−a92a114ω22(a3a9−a4a8)2(a112ω3+ω1ω2)−a92a1112(3a42−a9 2)(αω2−ω3). $
|
Appending (4.13) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be obtained as below:
$ Ψ5=v0+2f[ ω2(a3a9−a4a8)a9a112ea4t+ ω2(a3a9−a4a8)xa9a112 −13 y(−2αa9a116ω2+2a9a116ω3+3αa32a9ω23−3αa3a4a8ω23+2a9a114ω1ω2)ω23(a3a9−a4a8)+a3z+a5 +sin(−xa11+ αa113yω2 − a113zω2 −a15)a11]. $
|
(4.14) |
By selecting suitable values of parameters including
$ α=0.5,a3=1,a4=1.5,a5=2,a8=2,a9=1.5,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω1=1.5,ω2=1.2,ω3=1.5, $
|
the graphical display of soliton-periodic wave solution is offered in Figure 2 such as 3D chart and density chart.
Case VII:
$ f=e Ωa9ta113 +a1x−16 y(−6a14a115ω3−3a14a113ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω2 2)a115ω22a1 + (−a13a113+Ωa8ω2)za11 3ω2 +a5 + $
|
(4.15) |
$ \cosh \left( a_{{9}}t+ya_{{7}}+a_{{8}}z+a_{{10}}\right) +\cos \left( xa_{{11} }-\frac{1}{2}\, \ \ {\frac{\left( 2\, {a_{{11}}} ^{2}\omega _{{3}}+\omega _{{1} }\omega _{{2}}\right) a_{{11}}y}{{\omega _{{2}}} ^{2}}} \ \ + \ \ {\frac{{a_{{11}}} ^{3}z }{\omega _{{2}}} \ \ }+a_{{15}}\right) , $ |
$ \Omega = \sqrt{-{a_{{1}}} ^{6}-2\, {a_{{1}}} ^{4}{a_{{11}}} ^{2}+{a_{{11}}} ^{6}}. $ |
Incorporating (4.15) into (4.1) and (4.2), the soliton-periodic wave solution of Eq (1.8) will be received as below:
$ Ψ5=v0+2f[a1e Ωa9ta113 +a1x−16 y(−6a14a115ω3−3a14a11 3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1 + (−a13a11 3+Ωa8ω2)za113ω2 +a5 −sin(xa11−12 (2a11 2ω3+ω1ω2)a11yω22 + a113zω2 +a15)a11]. $
|
(4.16) |
By selecting the specific amounts of parameters including
$ α=0.5,a1=1,a4=a9=ω1=ω3=1.5,,a5=2,a7=1.5,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2, $
|
the graphical display of soliton-periodic wave solution is offered in Figure 3 such as 3D chart, density chart, and 2D chart and below cases:
$ (f3)\ y = 1, 2, 3, \ \ (f6)\ y = 1, 2, 3, \ and\ \ (f9)\ y = -1, -2, -3. $ |
Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:
$ f=exp(τ1)+a16exp(−τ1)+sinh(τ2)+sin(τ3)+a17, τ1=4∑i=1aixi+a5, τ2=9∑i=6aixi−5+a10, $
|
(5.1) |
$ τ3=14∑i=11aixi−10+a15, (x1,x2,x3,x4)=(x,t)=(x,y,z,t), Ψ(x,t)=v0+2ln(f)x, $
|
(5.2) |
in which $ a_{i}, i = 1, ..., 17 $ are unfound values. Substituting (5.2) into Eq (1.8) the below consequences will be gained:
Case I:
$ f=ea4t+a1x− (a3a14ω3−a4a12ω2−a4a13ω3)ya14ω2 +a3z+a5 +sinh(a9t− (a8a14ω3−a9a12ω2−a9a13ω3)ya14ω2 +a8z+a10) $
|
(5.3) |
$ +\sin \left( ta_{{14}}+ya_{{12}}+za_{{13}}+a_{{15}}\right) . $ |
Substituting (5.3) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:
$ Ψ1=v0+2a1ea4t+a1x− (a3a14ω3−a4a12ω2−a4a13ω3)ya14ω2 +a3z+a5 f. $
|
(5.4) |
By selecting the suitable values of parameters including
$ a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5, $
|
the graphical representation of cross-kink wave solution is offered in Figure 4 such 3D plot and density plot.
Case II:
$ f=ea4t+a1x+a2y− (a1 3a14−a4a13ω2)za14ω2 +a5 +sinh(a9t+a7y+ a9a13za14 +a10)+sin(ta14+ya12+za13+a15). $
|
(5.5) |
Putting (5.5) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:
$ Ψ2=v0+2a1ea4t+a1x+a2y−(a13a14−a4a13ω2)za14ω2 +a5 f. $
|
(5.6) |
By selecting the suitable values of parameters including
$ a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5, $
|
the graphical exhibition of cross-kink solution is offered in Figure 5 such as 3D chart and density chart.
Case III:
$ f=ea4t+a1x− (a3ω3+a4λ3)yω2 +a3z+a5 +sinh(a9t− (a8ω3+a9λ 3)yω2 +a8z+a10)+sin(− a13ω3yω2 +a13z+a15). $
|
(5.7) |
Plugging (5.7) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be obtained as the following:
$ Ψ3=v0+2a1ea4t+a1x− (a3ω3+a4λ3)yω2 +a3z+a5 f. $
|
(5.8) |
Case IV:
$ f=e− a9(a112(ω3a12−ω1ω2)(a1 3+a3ω2)−a15ω1ω2)ta12a7a112ω22 +a1x− a3(ω3a12−ω1ω2)ya12ω2 +a3z+a5 +sin(xa11+a15)+sinh(a9t+a7y− (a13+a3ω2)a12a7a112ω2za11 2(ω3a12−ω1ω2)(a13+a3ω2)−a15ω1ω2 +a10). $
|
(5.9) |
Inserting (5.9) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:
$ Ψ4=v0+2a1e− a9(a11 2(ω3a12−ω1ω2)(a13+a3ω2)−a15ω1ω2)ta12a7a112ω2 2 +a1x− a3(ω3a12−ω1ω2)ya12ω2 +a3z+a5 +cos(xa11+a15)a11 f. $
|
(5.10) |
Case V:
$ f=ea4t+a2y+ a4a8za9 +a5 +sinh(a9t+a7y+a8z+a10)+sin(xa11− a11(a112ω3+ω1ω2)yω22 + a113zω2 +a15). $
|
(5.11) |
Substituting (5.11) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be received as the following:
$ Ψ5=v0+2cos(xa11− a11(a112ω3+ω1ω2)yω22+ a113zω2 +a15)a11 f. $
|
(5.12) |
By selecting the suitable values of parameters including
$ a1=1,a3=3,a4=2,a5=1.5,a8=1.7,a9=1.5,a10=1.5,a12=2.5,a13=1.1,a14=2.1,a15=3.2,ω2=1,ω3=1.5, $
|
the graphical exhibition of cross-kink solution is offered in Figure 6 such as 3D chart and density chart.
Case VI:
$ f=e Ωa9ta113 +a1x−112 (3Ωa1a8ω2(4a112ω3+3ω1ω2)−12a14a115ω3−a113ω1ω2(9a14−2a112a12−2a11 4))ya115ω22a1 + (−a13a113+Ωa8ω2)zω2a113 +a5 sinh(a9t+a7y+a8z+a10)+sin(xa11−112 a11(12a112ω3+7ω1ω2)yω22 + a311zω2+a15), $
|
(5.13) |
$ \Omega = \sqrt{-3\, {a_{{1}}} ^{6}-4\, {a_{{1}}} ^{4}{a_{{11}}} ^{2}+{a_{{11}}} ^{6} }. $ |
Putting (5.13) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be concluded as the following:
$ Ψ5=v0+2f[a1e Ωa9ta113 +a1x−112 (3Ωa1a8ω2(4a112ω3+3ω1ω2)−12a14a11 5ω3−a113ω1ω2(9a1 4−2a112a12−2a114))ya115ω22a1 + (−a13a11 3+Ωa8ω2)zω2a113 +a5 +cos(xa11−112 a11(12a112ω3+7ω1ω2)yω2 2 + a113zω2 +a15)a11]. $
|
(5.14) |
By selecting suitable values of parameters including
$ α=0.5,a3=1,a4=a9=ω1=ω3=1.5,a5=2,a8=2,a10=1,a11=2,a13=2.5,a14=1,a15=3.2,ω2=1.2, $
|
the graphical representation of cross-kink solution is offered in Figure 7 such as 3D chart and density chart.
Case VII:
$ f=e Ωa9ta113 +a1x−16 y(−6a14a115ω3−3a14a113ω1ω2+2a11 7ω1ω2+6Ωa1a8a11 2ω2ω3+3Ωa1a8ω1 ω22)a115ω22a1 + (−a13a113+Ωa8ω2)za113ω2 +a5 +cosh(a9t+ya7+a8z+a10)+cos(xa 11−12 (2a112ω3+ω1ω2)a11yω22 + a113zω2 +a15), $
|
(5.15) |
$ \Omega = \sqrt{-{a_{{1}}} ^{6}-2\, {a_{{1}}} ^{4}{a_{{11}}} ^{2}+{a_{{11}}} ^{6}}. $ |
Inserting (5.15) into (5.1) and (5.2), the cross-kink solution of Eq (1.8) will be gained as the following:
$ Ψ5=v0+2f[a1e Ωa9ta113 +a1x−16 y(−6a14a115ω3−3a14a11 3ω1ω2+2a117ω1ω2+6Ωa1a8a112ω2ω3+3Ωa1a8ω1ω22)a115ω22a1 + (−a13a11 3+Ωa8ω2)za113ω2 +a5 −sin(xa11−12 (2a11 2ω3+ω1ω2)a11yω22 + a113zω2 +a15)a11]. $
|
(5.16) |
By selecting suitable values of parameters including
$ \alpha = 0.5, a_1 = 1, a_5 = 1.5, a_8 = 2, a_9 = 0.5, a_{10} = 1.5, a_{15} = 3.2, \omega_1 = 1.5, \omega_2 = 1.2, \omega_3 = 1.5, $ |
the graphical representation of cross-kink solution is offered in Figure 8 such as 3D chart and density chart.
Three function containing exponential, hyperbolic, and triangular periodic waves for Eq (1.8) can be assumed as the following:
$ f=exp(τ1)+a16exp(−τ1)+tanh(τ2)+tan(τ3)+a17, τ1=4∑i=1aixi+a5, τ2=9∑i=6aixi−5+a10, $
|
(6.1) |
$ τ3=14∑i=11aixi−10+a15, (x1,x2,x3,x4)=(x,t)=(x,y,z,t), Ψ(x,t)=v0+2ln(f)x, $
|
(6.2) |
in which $ a_{i}, i = 1, ..., 17 $ are unfound values. Substituting (6.2) into Eq (1.8) the below consequences will be gained:
Case I:
$ f=ea4t+a1x+a2y− (a1 3+a4λ2)zω2 +a5 +tanh(ya7+a10)+tan(ya12+a15)+a17. $
|
(6.3) |
Substituting (6.3) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as the following:
$ Ψ1=v0+2a1ea4t+a1x+a2y−(a13+a4λ2)zω2 +a5 f. $
|
(6.4) |
Case II:
$ f=ea1x+a2y− a13zω2 +a5 +tanh(ya7+a10)+tan(ya12+a15)+a17. $
|
(6.5) |
Inserting (6.5) into (6.1) and (6.2), we can capture a solitary wave solution of Eq (1.8) as below:
$ Ψ2=v0+2a1ea1x+a2y− a13zω2 +a5 f. $
|
(6.6) |
Case III:
$ f=ea4t+a1x+a2y− (a1 3ω3+a4λ3ω2)zω2ω3 +a5 +tanh(ta9+ya7− za9λ3 ω3 +a10)+tan(ya12+a15)+a17. $
|
(6.7) |
Putting (6.7) into (6.1) and (6.2), the solitary wave solution of Eq (1.8) can be indicated as below:
$ Ψ3=v0+2a1ea4t+a1x+a2y−(a13ω3+a4λ3ω2)zω2ω3 +a5 f. $
|
(6.8) |
Case IV:
$ f=ea4t+a1x+a2y+za3+a5 −tanh( ya8ω3 ω2 −za8−a10)−tan( ya13ω3 ω2 −a13z−a15)+a17. $
|
(6.9) |
Putting (6.9) into (6.1) and (6.2), the solitary wave of Eq (1.8) can be stated as the following:
$ Ψ4=v0+2a1ea4t+a1x+a2y+za3+a5 f. $
|
(6.10) |
By selecting the suitable values of parameters including
$ a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.5,a10=1.5,a13=2,a13=1.1,a15=3.2,a17=2,ω2=−1.5, $
|
$ \omega _{3} = 1.2, \lambda _{2} = 1, \lambda _{3} = 1.5, x = -2, t = 2, $ |
with the following components
$ α= a13ω3−a1ω1ω2−a2ω22−a3ω2ω3+a4λ2ω3−a4λ3ω2 ω2a13 , λ1=− a13a2ω2+a13a3ω3+a2a4λ2ω2+a3a4λ2ω3 a1a4ω2, $
|
the graphical representation of rational solitary solution is offered in Figure 9 such as 3D chart and density chart.
Case V:
$ f=ea1x− a3ω3yω2 +za3+a5 −tanh( ya8ω3 ω2−za8−a10)−tan( ya13ω3 ω2 −a13z−a15)+a17. $
|
(6.11) |
Incorporating (6.11) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below:
$ Ψ5=v0+2a1ea1x− a3ω3yω2 +za3+a5 f, α= a12ω3−ω1ω2 a12ω2 . $
|
(6.12) |
Case VI:
$ f=ea4t+a1x− (a3ω3+a4λ3)yω2 +za3+a5 +tanh(ta9− y(a8ω3+a9λ3)ω2 +za8+a10)−tan( ya13ω3 ω2 −a13z−a15)+a17. $
|
(6.13) |
Appending (6.13) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be written as the following:
$ Ψ6=v0+2a1ea4t+a1x− (a3ω 3+a4λ3)yω2 +za3+a5 f, α= a12ω3−ω1ω2 a12ω2 . $
|
(6.14) |
Case VII:
$ f=ea4t+a1x− a3ω3yω2 +za3+a5 +tanh(ta9− ya8ω3 ω2 +za8+a10)−tan( ya13ω3 ω2 −a13z−a15)+a17. $
|
(6.15) |
Appending (6.15) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be obtained as below:
$ Ψ7=v0+2a1ea4t+a1x− a3ω3yω2 +za3+a5 f, α= a12ω3−ω1ω2 a1 2ω2, λ2= λ3ω2 ω3 . $
|
(6.16) |
By choosing the specific amounts of parameters including
$ a1=1,a2=1.5,a3=2,a4=2,a5=1.5,a8=2,a9=1.3,a10=1.5,a13=2,a13=2,a15=3.2,a17=2,ω2=−1.5,ω3=1.2,λ2=1,λ3=1.5,x=−2,t=2, $
|
the graphical representation of rational solitary solution is offered in Figure 10 such as 3D chart and density chart.
Case VIII:
$ f=ea4t+a1x+a2y− (a1 3a 14−a4a13ω2)za14ω2 +a5 +tanh(ta9+ya7+ za9a13 a14 +a10)+tan(ta14+ya12+a13z+a 15)+a17. $
|
(6.17) |
Incorporating (6.17) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be received as below:
$ Ψ8=v0+2a1ea4t+a1x+a2y−(a13a14−a4a13ω2)za14ω2 +a5 f, α= a1 2ω3−ω1ω2 a12ω2, λ2=− a13ω2 a14, λ3=−a13ω3 a14 . $
|
(6.18) |
Case IX:
$ f=ea4t+a1x− (a3a14ω3−a4a12ω2−a4a13ω3)ya14ω2 +a3z+a5 $
|
(6.19) |
$ +tanh(ta9− y(a8a14ω3−a9a12ω2−a 9a13ω3)a14ω2 +za8+a 10) $
|
(6.20) |
$ +tan(ta14+ya12+za13+a15)+a17. $
|
(6.21) |
Appending (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be reached as below:
$ Ψ9=v0+2a1ea4t+a1x− (a3a14ω3−a4a12ω2−a4a13ω3)ya14ω2 +a3z+a5 f, α= a12ω3−ω1ω2 a12ω2, $
|
(6.22) |
$ \lambda _{{1}} = - \ \ {\frac{{a_{{1}}} ^{2}\left( a_{{12}}\omega _{{2}}+a_{{\ 13} }\omega _{{3}}\right) }{a_{{14}}\omega _{{2}}} }, \ \lambda _{{3}} = - \ \ {\frac{a_{{ 12}}\omega _{{2}}+a_{{13}}\omega _{{3}}} \ \ {a_{{\ 14}}} \ \ }. $ |
Case X:
$ f=ea4t+a1x− a3ω3yω2+a3z+a5 +tanh(− ya8ω3ω2 +za8+a10)+tan(ta14− ya13ω3 ω2 +za13+a15)+a17. $
|
(6.23) |
Inserting (6.21) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:
$ Ψ10=v0+2a1ea4t+a1x− a3ω3yω2 +a3z+a5 f, α=a12ω3−ω1ω2 a1 2ω2 , λ2= λ3ω2 ω3 . $
|
(6.24) |
By choosing the specific amounts of parameters including
$ a1=1,a3=1.5,a4=2,a5=1.5,a7=2,a8=2,a9=2.1,a10=1.5,a13=2,a13=2,a14=2.5,a15=3.2,a17=2,ω2=−1.5,ω3=1.2,λ3=1.5,x=−2,t=2, $
|
the graphical representation of rational solitary solution is offered in Figure 11 such as 3D chart and density chart.
Case XI:
$ f=ea4t+a1x+a2y− (a1 3a 14−a4a13ω2)za14ω2 +a5 +tanh( ta14a8 a13 +ya7+za8+a10)+tan(ta14+za13+a15)+a17. $
|
(6.25) |
Inserting (6.25) into (6.1) and (6.2), the solitary solution of Eq (1.8) can be stated as below case:
$ Ψ11=v0+2a1ea4t+a1x+a2y−(a13a14−a4a13ω2)za14ω2 +a5 f, α=− a1 3a2+a1a3ω1+a2a3ω2+a3 2ω3 a13a3, $
|
(6.26) |
$ λ1= a13a2a12a13−a1 3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3 a3a12a1a14 +−a32a122ω2−a32a12a13ω3−a32a12a14λ3 a3a12a1a14 , $
|
$ \lambda _{{2}} = - \ \ {\frac{a_{{13}}\left( a_{{12}}\omega _{{2}}+a_{{13}}\omega _{ {3}}+a_{{14}}\lambda _{{3}}\right) }{a_{{12}}a_{{14}}} \ \ }. $ |
Case XII:
$ f=ea4t+a1x− a3ω3yω2 +a3z+a5 +tanh(ta9+ya7− za7ω2 ω3 +a10)+tan(ta14− ya13ω3 ω2 +za13+a15)+a17. $
|
(6.27) |
Inserting (6.27) into (6.1) and (6.2), the solitary solution of Eq (1.8) will be gained as below form:
$ Ψ12=v0+2a1ea4t+a1x− a3ω3yω2 +a3z+a5 f, α=−a13a2+a1a3ω1+a2a3ω2+a32ω3 a13a3, $
|
(6.28) |
$ λ1= a13a2a12a13−a1 3a3a122+a2a3a12a13ω2+a2a3a132ω3+a2a3a13a14λ3 a3a12a1a14 +−a32a122ω2−a32a12a13ω3−a32a12a14λ3 a3a12a1a14 , $
|
$ \lambda _{{2}} = - \ \ {\frac{a_{{13}}\left( a_{{12}}\omega _{{2}}+a_{{13}}\omega _{ {3}}+a_{{14}}\lambda _{{3}}\right) }{a_{{12}}a_{{14}}} \ \ }. $ |
In the current section, we will analyze the continuous modulational instability of the nonlinear generalized KP equation. In addition, the feasibility of the localized waves in the present system is certified by linear stability analysis. First, we search the perturbed solution for the giving Eq (1.8) of the form
$ Ψ(x,y,z,t)=ζ+δ Θ, $
|
(7.1) |
where $ \Theta = \Theta(x, y, z, t) $ and $ \zeta $ is a steady state solution. Inserting (7.1) into Eq (1.8), become
$ δ ∂4∂x3∂yΘ+αδ ∂4∂x3∂zΘ+3δ2( ∂2∂x2 Θ) ∂∂yΘ+3δ2(∂∂xΘ) ∂2∂x∂yΘ+3αδ2( ∂2∂x2 Θ) ∂∂zΘ+ $
|
(7.2) |
$ 3\, \alpha\, {\delta}^{2} \left( \ \ {\frac {\partial }{\partial x}}\Theta \right) {\ \frac {\partial ^{2}}{\partial x\partial z}}\Theta + \lambda_{{1}}\delta\, \ \ {\frac {\partial ^{2}}{\partial t\partial x}}\Theta +\lambda_{{2}}\delta\, { \frac {\partial ^{2}}{ \partial t\partial y}}\Theta + \lambda_{{3}}\delta\, { \ \frac {\partial ^{2}}{\partial t\partial z}}\Theta + \omega_{{1}}\delta\, { \frac {\partial ^{2}}{\partial x\partial z}}\Theta +\omega_{{2}}\delta\, { \frac {\partial ^{2}}{ \partial y\partial z}}\Theta +\omega_{{3}}\delta\, {\ \frac {\partial ^{2}}{\partial {z}^{2}}} \ \ \Theta = 0, $ |
by linerization Eq (7.2), one gets
$ δ ∂4∂x3∂yΘ+αδ ∂4∂x3∂zΘ+λ1δ ∂2∂t∂xΘ+λ2δ ∂2∂t∂yΘ+λ3δ ∂2∂t∂zΘ+ω1δ ∂2∂x∂zΘ+ω2δ ∂2∂y∂zΘ+ω3δ ∂2∂z2 Θ=0. $
|
(7.3) |
Theorem 7.1. Assume that the solution of Eq (7.3) has the following case as
$ Θ(x,y,z,t)=ρ1 ei(Mx+Ny+Pz+Bt), $
|
(7.4) |
in which $ M, N, P $ are the normalized wave numbers, by plugging (7.4) into Eq (7.3), separation the coefficients of $ e^{i(Mx+Ny+Pz+Wt)} $ one gets
$ B(M,N,P)= M3Pα+M3N−MPω1−NPω2−P2ω3 Mλ1+Nλ2+Pλ3 . $
|
(7.5) |
Proof. By putting (7.4) into (7.3), becomes
$ δ ∂4∂x3∂y¯Θ+αδ ∂4∂x3∂z¯Θ+λ1δ ∂2∂t∂x¯Θ+λ2δ ∂2∂t∂y¯Φ+λ3δ ∂2∂t∂z¯Θ+ω1δ ∂2∂x∂z¯Θ+ω2δ ∂2∂y∂z¯Θ+ω3δ ∂2∂z2 ¯Θ $
|
(7.6) |
$ = {\mathrm{e}^{i \left( Mx+Ny+Pz+Bt \right) }}\delta\, \rho_{{1}} \left( {M} ^{3}P\alpha+{M}^{3}N-MP\omega_{{1}}-MB\lambda_{{1}}-NP\omega_{{2}}-NB \lambda_{{2}}-{P}^{2}\omega_{{3}}-PB\lambda_{{3}} \right), $ |
in which $ \overline{\Theta} = \Theta(x, y, z, t) $. By solving and simplifying we can determine the function of $ B(M, N, P) $ as the following
$ B(M,N,P)= M3Pα+M3N−MPω1−NPω2−P2ω3 Mλ1+Nλ2+Pλ3 . $
|
(7.7) |
Accordingly, the considered solution was obtained. Thereupon the proof is perfect.
It is easy to notice that modulation stability occurs when $ M\lambda_{{1} }+N\lambda_{{2}}+P\lambda_{{3}}\neq0 $. So, the modulation stability achieve spectrum $ \Upsilon(B) $ will be as below form:
$ Υ(B)= M3Pα+M3N−MPω1−NPω2−P2ω3 Mλ1+Nλ2+Pλ3 . $
|
(7.8) |
In Figures 12-14 can be discovered that while the sign of $ B(M, N, P) $ is positive for all quantity of $ M $. Furthermore, in Figure 12 can be observed if the $ B(M, N, P) $ is positive or negative for some quantities of $ M $. Finally, in Figure 13 and 14 can be perceived that while the sign of $ B(M, N, P) $ is positive for all quantity of $ M $.
Via employing the wave alteration $ \xi = k(x+ay+bz-ct) $ in Eq (1.8) once can gain to the below ODE as
$ k2(αb+a)Ψ′′′′+6k(αb+a)Ψ′Ψ′′+(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1)Ψ′′=0, $
|
(8.1) |
in which $ \Psi = \Psi(\xi) $ and $ \Psi^{\prime } = \frac{d\Psi}{d \xi} $. According to the SIVP [16,17] and by multiplying Eq (8.1) with $ \Psi^{\prime } $ and integrating once respect to $ \xi $, the following stationary integral will be arises
$ J=∫∞0[A1(Ψ′Ψ′′′−12(Ψ′′2)+13A2(Ψ′3+12A3(Ψ′2]dξ, $
|
(8.2) |
in which
$ A_1 = k^2(\alpha b+a), \ \ \ A_2 = 6k(\alpha b+a), \ \ \ A_3 = ab\omega_{{2} }-ac\lambda_{{2}}+{b}^{2}\omega_{{3}}-bc\lambda_{{3}}+b \omega_{{1} }-c\lambda_{{1}}. $ |
We utilize the solitary wave function as the following
$ u(ξ)=δ sech(μξ). $
|
(8.3) |
Hence, the stationary integral transforms to
$ J=130k2δ2μ−21αbk2μ2−21ak2μ2−8αbδkμ−8aδkμ+5abω2−5acλ2+5b2ω3−5bcλ 3+5bω1−5cλ1). $
|
(8.4) |
Based on the SIVP and using derivative $ J $ respect to $ A $ and $ B $, one get
$ ∂J∂A=115k2δμ−21αbk2μ2−21ak2μ2−8αbδkμ−8aδkμ+5abω2−5acλ2+5b2ω3−5bcλ3+5bω1−5cλ1)+130k2δ2μ(−8αbkμ−8akμ)=0, $
|
(8.5) |
and
$ ∂J∂B=130k2δ2−21αbk2μ2−21a k2μ2−8αbδkμ−8aδkμ+5abω2−5acλ2+5b2ω3−5bcλ3+5bω1−5cλ1)+130k2δ2μ(−42αbk2μ−42ak2μ−8αbδk−8aδk)=0. $
|
(8.6) |
Solve the Eqs (8.5) and (8.6), become
$ δ=±212 abω2−acλ2+b2ω3−bcλ3+bω1−cλ1 √−(21αb+21a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1), $
|
(8.7) |
$ \mu = \pm \frac{1}{21} \ \ {\frac{\sqrt{-\left( 21\, \alpha \, b+21\, a\right) \left( ab\omega _{{2}}-ac\lambda _{{2}}+{b}^{2}\omega _{{3}}-bc\lambda _{{3} }+b\omega _{{1}}-c\lambda _{{1}}\right) }}{\left( \alpha \, b+a\right) k}}. $ |
The condition can be obtained as below
$ (αb+a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1)<0. $
|
(8.8) |
Finally, the solitary solution received by utilizing of SIVP can be reached as
$ Ψ(x,y,z,t)=δ sech[kμ(x+ay+bz−ct)]. $
|
(8.9) |
We utilize the bright wave function as the following
$ u(ξ)=δ sech2(μξ). $
|
(8.10) |
Hence, the stationary integral transforms to
$ J=− 2δ2μ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ−14abω2 105+14acλ2−14b2ω3+14bcλ3−14bω1+14cλ1)105. $
|
(8.11) |
Based on the SIVP and using derivative $ J $ respect to $ A $ and $ B $, one get
$ ∂J∂A=− 4δμ(120αbk2μ2+120ak2μ2+35αbδkμ+35aδkμ−14abω2+14acλ2 105+−14b2ω3+14bcλ3−14bω1+14cλ1)−2δ2μ(35αbkμ+35akμ)105=0. $
|
(8.12) |
and
$ ∂J∂B=− 2δ2(120αbk2μ2+120a k2μ2+35αbδkμ+35aδkμ−14abω2+14acλ2−14b2ω3 105++14bcλ3−14bω1+14cλ1)−2δ2μ(240αbk2μ+240ak2μ+35αbδk+35aδk)105=0. $
|
(8.13) |
Solve the Eqs (8.12) and (8.13), become
$ δ=±485 abω2−acλ2+b2ω3−bcλ3+bω1−cλ1 √−(21αb+21a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1), $
|
(8.14) |
$ \mu = \pm \frac{1}{30} \ \ {\frac{\sqrt{-\left( 21\, \alpha \, b+21\, a\right) \left( ab\omega _{{2}}-ac\lambda _{{2}}+{b}^{2}\omega _{{3}}-bc\lambda _{{3} }+b\omega _{{1}}-c\lambda _{{1}}\right) }}{\left( \alpha \, b+a\right) k}}. $ |
The condition of definition of the above relations can be expressed as
$ (αb+a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1)<0. $
|
(8.15) |
Finally, the solitary solution gained by utilizing of SIVP will be as
$ Ψ(x,y,z,t)=δ sech2[kμ(x+ay+bz−ct)]. $
|
(8.16) |
Assume the dark soliton wave solution be as the below case as
$ u(ξ)=δ tanh2(μξ). $
|
(8.17) |
Hence, the stationary integral transforms to
$ J= 2δ2μ(−120αbk2μ2−120ak2μ2+35αbδkμ+35aδkμ+14abω2 105+−14acλ2+14b2ω3−14bcλ3+14bω1−14cλ1)105. $
|
(8.18) |
Based on the SIVP and using derivative $ J $ respect to $ A $ and $ B $, one get
$ ∂J∂δ= 4δμ(−120αbk2μ2−120ak2μ2+35αbδkμ+35aδkμ+14abω2−14acλ2 105++14b2ω3−14bcλ3+14bω1−14cλ1)+2δ2μ(35αbkμ+35akμ)105=0, $
|
(8.19) |
and
$ ∂J∂μ= 2δ2(−120αbk2μ2−120a k2μ2+35αbδkμ+35aδkμ+14abω2−14acλ2+105+14b2ω3−14bcλ3+14bω1−14cλ1)+2δ2μ(−240αbk2μ−240ak2μ+35αbδk+35aδk)105=0. $
|
(8.20) |
Solve the Eqs (8.19) and (8.20), one get
$ δ=∓485 abω2−acλ2+b2ω3−bcλ3+bω1−cλ1 √−(21αb+21a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1), $
|
(8.21) |
$ \mu = \pm \frac{1}{30} \ \ {\frac{\sqrt{-\left( 21\, \alpha \, b+21\, a\right) \left( ab\omega _{{2}}-ac\lambda _{{2}}+{b}^{2}\omega _{{3}}-bc\lambda _{{3} }+b\omega _{{1}}-c\lambda _{{1}}\right) }}{\left( \alpha \, b+a\right) k}}. $ |
The condition of definition of the above relations can be presented the following form
$ (αb+a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1)<0. $
|
(8.22) |
Finally, the dark solution acquired by utilizing of SIVP will be as
$ Ψ(x,y,z,t)=δ tanh2[kμ(x+ay+bz−ct)]. $
|
(8.23) |
Let the singular soliton wave solution be as the below case as
$ u(ξ)=δ csch2(μξ). $
|
(8.24) |
Then, the stationary integral transforms to
$ J=− 2δ2μ(−120αbk2μ2−120ak2μ2−70αbδkμ−70aδkμ+14abω2 105+−14acλ2+14b2ω3−14bcλ3+14bω1−14cλ1)105. $
|
(8.25) |
Based on the SIVP and using derivative $ J $ respect to $ A $ and $ B $, become
$ ∂J∂δ=− 4δμ(−120αbk2μ2−120ak2μ2−70αbδkμ−70aδkμ+14abω2−14acλ2105++14b2ω3−14bcλ3+14bω1−14cλ1)−2δ2μ(−70αbkμ−70akμ)105=0 $
|
(8.26) |
and
$ ∂J∂μ=− 2δ2(−120αbk2μ2−120ak2μ2−70αbδkμ−70aδkμ+14abω2−14acλ2+14b2ω3 105+−14bcλ3+14bω1−14cλ1)−2δ2μ(−240αbk2μ−240ak2μ−70αbδk−70aδk)105=0. $
|
(8.27) |
Solve the Eqs (8.26) and (8.27), one get
$ δ=±245 abω2−acλ2+b2ω3−bcλ3+bω1−cλ1 √−(21αb+21a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1), $
|
(8.28) |
$ \mu = \pm \frac{1}{30} \ \ {\frac{\sqrt{-\left( 21\, \alpha \, b+21\, a\right) \left( ab\omega _{{2}}-ac\lambda _{{2}}+{b}^{2}\omega _{{3}}-bc\lambda _{{3} }+b\omega _{{1}}-c\lambda _{{1}}\right) }}{\left( \alpha \, b+a\right) k}}. $ |
The condition of definition of the above relations can be presented as the below form as
$ (αb+a)(abω2−acλ2+b2ω3−bcλ3+bω1−cλ1)<0. $
|
(8.29) |
Finally, the singular solution acquired by utilizing of SIVP will be as
$ Ψ(x,y,z,t)=δ csch2[kμ(x+ay+bz−ct)]. $
|
(8.30) |
In this article, the MEFM employed for searching the MSSs for the gKP equation, which contains 1-wave, 2-wave, and 3-wave solutions. The periodic wave, cross-kink, and solitary wave solutions have been obtained. In continuing, the modulation instability applied to discuss the stability of earned solutions. It is quite visible that these novel schemes have plenty of family solutions containing rational exponential, hyperbolic, and periodic functions with selecting particular parameters. Also, the semi-inverse variational principle will be used for the gKP equation. Four major cases containing the solitary, bright, dark and singular wave solutions were studied from four different ansatzes.
By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained. Via various curve plots, density plot and three-dimensional plots, dynamical characteristics of these rouge waves are exhibited. Because of the strong nonlinear characteristic of Hirota bilinear method, the test function constructed by the Hirota operator, which can be regarded as the test function constructed by considered model. The results are beneficial to the study of the plasma, optics, acoustics, fluid dynamics and fluid mechanics. All computations in this paper have been employed quickly with the help of the Maple 18. Moreover, the method applied in this paper provides an effective tool to obtain exact solutions of nonlinear system and can in common use for other NLEEs.
This work is supported by the Education and scientific research project for young and middle-aged teachers of Fujian Province (No. JAT.190666-No.JAT200469)
The authors declare that there is no conflict of interests regarding the publication of this paper.
[1] | McKnight TE, Melechko AV, Griffin GD, et al. (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14 (5): 551-556. |
[2] | Guillorn MA, Melechko AV, Merkulov VI, et al. (2001) Operation of a gated field emitter using an individual carbon nanofiber cathode. Appl Phys Lett 79(21): 3506-3508. |
[3] | Melechko AV, McKnight TE, Hensley DK, et al. (2003) Simpson, Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres. Nanotechnology 14(9):1029-1035. |
[4] | Teo KBK, Chhowalla M, Amaratunga GAJ, et al. (2002) Characterization of plasmaenhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J Vac Sci Technol B 20(1): 116-121. |
[5] | Yang X, Guillorn MA, Austin D, et al. (2003) Fabrication and Characterization of Carbon Nanofiber-Based Vertically Integrated Schottky Barrier Junction Diodes. Nano Lett 3(12):1751-1755. |
[6] |
Pearce RC, Railsback JG, Anderson BD, et al. (2013) Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) While Maintaining their Alignment and Impalefection Functionality. Acs Appl Mater Interfaces 5: 878-882. doi: 10.1021/am302501z
![]() |
[7] | McKnight TE, Melechko AV, Austin DW, et al. (2004) Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel. J Phys Chem B 108(22): 7115-7125. |
[8] |
Shi JW, Xu F, Zhou PH, et al. (2013) Refined nano-textured surface coupled with SiNx, layer on the improved photovoltaic properties of multi-crystalline silicon solar cells. Solid-State Electron 85: 23-27. doi: 10.1016/j.sse.2013.03.002
![]() |
[9] |
Xiao SQ, Xu S, Ostrikov K, (2014) Low-temperature plasma processing for Si photovoltaics. Mat Sci Eng R 78: 1-29. doi: 10.1016/j.mser.2014.01.002
![]() |
[10] | Ostrikov K, Neyts EC, Meyyappan M, (2013) Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv Phys 62(2): 113-224. |
[11] | McKnight TE, Melechko AV, Hensley DK, (2004) Tracking gene expression after DNA delivery using spatially indexed nanofiber Arrays. Nano Lett 4(7): 1213-1219. |
[12] | Melechko AV, Desikan R, McKnight TE, et al. (2009) Synthesis of vertically aligned carbon nanofibres for interfacing with live systems. J Phys D Appl Phys 42(19): 193001. |
[13] | Melechko AV, Klein KL, Fowlkes JD, et al. (2007) Simpson, Control of carbon nanostructure: From nanofiber toward nanotube and back. J Appl Phys 102(7): 074314-7. |
[14] | Chhowalla M, Teo KBK, Ducati C, et al. (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys90(10): 5308-5317. |
[15] | Arumugam PU, Chen H, Siddiqui S, et al. (2009) Wafer-scale fabrication of patterned carbon nanofiber nanoelectrode arrays: A route for development of multiplexed, ultrasensitive disposable biosensors. Biosens Bioelectron 24(9): 2818-2824. |
[16] | Serikawa T, Okamoto A, (1984) Properties of Magnetron–Sputtered Silicon Nitride Films. J Electrochem Soc 131(12): |
[17] |
Benami A, Santana G, Monroy BM, et al. (2007) Visible photoluminescence from silicon nanoclusters embedded in silicon nitride films prepared by remote plasma-enhanced chemical vapor deposition. Physica E 38: 148-151. doi: 10.1016/j.physe.2006.12.047
![]() |
[18] | Benami A, Santana G, Ortiz A, et al. (2007) Strong white and blue photoluminescence from silicon nanocrystals in SiN x grown by remote PECVD using SiCl 4/NH 3. Nanotechnology18(15): 155704. |
[19] | Bommali RK, Singh SP, Rai S, et al. (2012) Excitation dependent photoluminescence study of Si-rich a-SiNx: H thin films. J Appl Phys 112(12): 123518-123518- |
[20] | Brewer A, von Haeften K, (2009) In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method. Appl Phys Lett 94(26): 261102-261102- |
[21] | Chopra S, Gupta RP, Joshi BC, et al. (2009) Study of hydrogen passivation in SiNx:H films using Fourier transform infrared and photoluminescence spectroscopy. Mater Sci P 27(2):559-568. |
[22] | Kim BH, Cho CH, Kim TW, et al. (2005) Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SIH4. Appl Phys Lett 86(9): 091908. |
[23] | Kim TY, Park NM, Kim KH, et al. (2004) Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett 85(22): 5355-5357. |
[24] |
Kistner J, Chen X, Weng Y, et al. (2011) Photoluminescence from silicon nitride-no quantum effect. J Appl Phys 110: 023520. doi: 10.1063/1.3607975
![]() |
[25] | Lopez-Suarez A, Fandino J, Monroy BM, et al. (2008) Study of the influence of NH3 flow rates on the structure and photoluminescence of silicon-nitride films with silicon nanoparticles. Physica E 40(10): 3141-3146. |
[26] | Ma K, Feng JY, Zhang ZJ, (2006) Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering. Nanotechnology 17(18): 4650. |
[27] | Nguyen PD, Kepaptsoglou DM, Ramasse QM, et al. (2012) Direct observation of quantum confinement of Si nanocrystals in Si-rich nitrides. Phys Rev B 85(8): 085315. |
[28] | Cho CH, Kim BH, Kim TW, et al. (2005) Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film. Appl Phys Lett 86(14): 143107. |
[29] | Pei Z, Hwang HL, (2003) Formation of silicon nano-dots in luminescent silicon nitride. Appl Surf Sci 212-213: 760-764. |
[30] | Santana G, Monroy BM, Ortiz A, et al. (2006) Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles. Appl Phys Lett88(4): 041916. |
[31] | Wang MH, Li DS, Yuan Z, et al. (2007) Photoluminescence of Si-rich silicon nitride: Defectrelated states and silicon nanoclusters. Appl Phys Lett 90(13): 131903. |
[32] | Hao HL, Wu LK, Shen WZ, et al. (2007) Origin of visible luminescence in hydrogenated amorphous silicon nitride. Appl Phys Lett 91(20): 201922. |
[33] | 34. Hensley DK, Melechko AV, Ericson MN, et al. (2010) Transparent microarrays of vertically aligned carbon nanofibers as a multimodal tissue interface. Biomedical Sciences and Engineering Conference (BSEC). |
1. | Chaudry Masood Khalique, Oke Davies Adeyemo, Kentse Maefo, Symmetry solutions and conservation laws of a new generalized 2D Bogoyavlensky-Konopelchenko equation of plasma physics, 2022, 7, 2473-6988, 9767, 10.3934/math.2022544 | |
2. | K. Hosseini, D. Baleanu, S. Rezapour, S. Salahshour, M. Mirzazadeh, M. Samavat, Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev−Petviashvili equation, 2022, 24680133, 10.1016/j.joes.2022.06.020 | |
3. | Abdul-Majid Wazwaz, Naisa S. Alatawi, Wedad Albalawi, S. A. El-Tantawy, Painlevé analysis for a new (3 +1 )-dimensional KP equation: Multiple-soliton and lump solutions, 2022, 140, 0295-5075, 52002, 10.1209/0295-5075/aca49f | |
4. | Yan Zhu, Chuyu Huang, Junjie Li, Runfa Zhang, Lump solitions, fractal soliton solutions, superposed periodic wave solutions and bright-dark soliton solutions of the generalized (3+1)-dimensional KP equation via BNNM, 2024, 112, 0924-090X, 17345, 10.1007/s11071-024-09911-2 | |
5. | Adisie Fenta Agmas, Fasika Wondimu Gelu, Meselech Chima Fino, A robust, exponentially fitted higher-order numerical method for a two-parameter singularly perturbed boundary value problem, 2025, 10, 2297-4687, 10.3389/fams.2024.1501271 |