Loading [MathJax]/jax/output/SVG/jax.js
Review

A «necklace» of large clusters of strategic raw materials over a stagnant oceanic slab in East Asia

  • Received: 11 July 2024 Revised: 30 August 2024 Accepted: 29 September 2024 Published: 01 November 2024
  • An analysis of geological-geophysical, metallogenic, geochronological, and seismic tomographic studies in territories joining Southeast Russia, East Mongolia, and Northeast China led to the conclusion that deep geodynamics significantly influenced the formation of highly productive ore-magmatic systems in the Late Jurassic-Early Cretaceous. This influence was likely manifested through the initiation of decompression processes around stagnant slab boundaries in the Late Mesozoic. Decompression and advection, which are particularly active near the natural boundaries of the slab, act as triggers for the intense interaction of under and over subduction asthenospheric fluids with adjacent sections of the mantle and for the directed upwelling of powerful flows of matter and energy into the lithosphere. These flows determine the locations of intermediate and peripheral magma chambers: Primary chambers in the lower lithosphere among the metasomatized mantle and lower crust and associated chambers in the middle and upper cratonized parts of the lithosphere. Large ore clusters containing noble metals (Au, PGE), uranium, fluorite, and Cu-Mo-porphyry deposits are associated with late- and postmagmatic derivatives of the emerging magma chambers over the frontal and peripheral (paleotransform) boundaries of a stagnant Pacific slab. These large Late Mesozoic ore clusters and districts form a distinctive "necklace" of strategic materials in East Asia.

    Citation: Natalia Boriskina. A «necklace» of large clusters of strategic raw materials over a stagnant oceanic slab in East Asia[J]. AIMS Geosciences, 2024, 10(4): 864-881. doi: 10.3934/geosci.2024040

    Related Papers:

    [1] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [2] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
    [3] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [4] Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706
    [5] Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165
    [6] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [7] Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
    [8] Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871
    [9] Xiaocong Chen, Qunying Wu . Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540
    [10] Haiwu Huang, Yuan Yuan, Hongguo Zeng . An extension on the rate of complete moment convergence for weighted sums of weakly dependent random variables. AIMS Mathematics, 2023, 8(1): 622-632. doi: 10.3934/math.2023029
  • An analysis of geological-geophysical, metallogenic, geochronological, and seismic tomographic studies in territories joining Southeast Russia, East Mongolia, and Northeast China led to the conclusion that deep geodynamics significantly influenced the formation of highly productive ore-magmatic systems in the Late Jurassic-Early Cretaceous. This influence was likely manifested through the initiation of decompression processes around stagnant slab boundaries in the Late Mesozoic. Decompression and advection, which are particularly active near the natural boundaries of the slab, act as triggers for the intense interaction of under and over subduction asthenospheric fluids with adjacent sections of the mantle and for the directed upwelling of powerful flows of matter and energy into the lithosphere. These flows determine the locations of intermediate and peripheral magma chambers: Primary chambers in the lower lithosphere among the metasomatized mantle and lower crust and associated chambers in the middle and upper cratonized parts of the lithosphere. Large ore clusters containing noble metals (Au, PGE), uranium, fluorite, and Cu-Mo-porphyry deposits are associated with late- and postmagmatic derivatives of the emerging magma chambers over the frontal and peripheral (paleotransform) boundaries of a stagnant Pacific slab. These large Late Mesozoic ore clusters and districts form a distinctive "necklace" of strategic materials in East Asia.



    Peng [1,2] introduced seminal concepts of the sub-linear expectations space to study the uncertainty in probability. The works of Peng [1,2] stimulate many scholars to investigate the results under sub-linear expectations space, extending those in classic probability space. Zhang [3,4] got exponential inequalities and Rosenthal's inequality under sub-linear expectations. For more limit theorems under sub-linear expectations, the readers could refer to Zhang [5], Xu and Zhang [6,7], Wu and Jiang [8], Zhang and Lin [9], Zhong and Wu [10], Chen [11], Chen and Wu [12], Zhang [13], Hu et al. [14], Gao and Xu [15], Kuczmaszewska [16], Xu and Cheng [17,18,19], Xu et al. [20] and references therein.

    In probability space, Shen et al. [21] obtained equivalent conditions of complete convergence and complete moment convergence for extended negatively dependent random variables. For references on complete moment convergence and complete convergence in probability space, the reader could refer to Hsu and Robbins [22], Chow [23], Ko [24], Meng et al. [25], Hosseini and Nezakati [26], Meng et al. [27] and refercences therein. Inspired by the work of Shen et al. [21], we try to investigate complete convergence and complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations, and the Marcinkiewicz-Zygmund type result for ND random variables under sub-linear expectations, which complements the relevant results in Shen et al. [21].

    Recently, Srivastava et al. [28] introduced and studied comcept of statistical probability convergence. Srivastava et al. [29] investigated the relevant results of statistical probability convergence via deferred Nörlund summability mean. For more recent works, the interested reader could refer to Srivastava et al. [30,31,32], Paikary et al. [33] and references therein. We conjecture the relevant notions and results of statistical probability convergence could be extended to that under sub-linear expectation.

    We organize the remainders of this article as follows. We cite relevant basic notions, concepts and properties, and present relevant lemmas under sub-linear expectations in Section 2. In Section 3, we give our main results, Theorems 3.1 and 3.2, the proofs of which are given in Section 4.

    In this article, we use notions as in the works by Peng [2], Zhang [4]. Suppose that (Ω,F) is a given measurable space. Assume that H is a collection of all random variables on (Ω,F) satisfying φ(X1,,Xn)H for X1,,XnH, and each φCl,Lip(Rn), where Cl,Lip(Rn) represents the space of φ fulfilling

    |φ(x)φ(y)|C(1+|x|m+|y|m)(|xy|),x,yRn

    for some C>0, mN relying on φ.

    Definition 2.1. A sub-linear expectation E on H is a functional E:HˉR:=[,] fulfilling the following: for every X,YH,

    (a) XY yields E[X]E[Y];

    (b) E[c]=c, cR;

    (c) E[λX]=λE[X], λ0;

    (d) E[X+Y]E[X]+E[Y] whenever E[X]+E[Y] is not of the form or +.

    We name a set function V:F[0,1] a capacity if

    (a)V()=0, V(Ω)=1;

    (b)V(A)V(B), AB, A,BF.

    Moreover, if V is continuous, then V obey

    (c) AnA concludes V(An)V(A);

    (d) AnA concludes V(An)V(A).

    V is named to be sub-additive when V(A+B)V(A)+V(B), A,BF.

    Under the sub-linear expectation space (Ω,H,E), set V(A):=inf{E[ξ]:IAξ,ξH}, AF (cf. Zhang [3,4,9,13], Chen and Wu [12], Xu et al. [20]). V is a sub-additive capacity. Set

    V(A)=inf{n=1V(An):An=1An},AF.

    By Definition 4.2 and Lemma 4.3 of Zhang [34], if E=E is linear expectation, V coincide with the probability measure introduced by the linear expectation E. As in Zhang [3], V is countably sub-additive, V(A)V(A). Hence, in Theorem 3.1, Corollary 3.1, V could be replaced by V, implying that the results here could be considered as natural extensions of the corresponding ones in classic probability space. Write

    CV(X):=0V(X>x)dx+0(V(X>x)1)dx.

    Assume X=(X1,,Xm), XiH and Y=(Y1,,Yn), YiH are two random vectors on (Ω,H,E). Y is called to be negatively dependent to X, if for ψ1 on Cl,Lip(Rm), ψ2 on Cl,Lip(Rn), we have E[ψ1(X)ψ2(Y)]E[ψ1(X)]E[ψ2(Y)] whenever ψ1(X)0, E[ψ2(Y)]0, E[|ψ1(X)ψ2(Y)|]<, E[|ψ1(X)|]<, E[|ψ2(Y)|]<, and either ψ1 and ψ2 are coordinatewise nondecreasing or ψ1 and ψ2 are coordinatewise nonincreasing (cf. Definition 2.3 of Zhang [3], Definition 1.5 of Zhang [4]).

    {Xn}n=1 is called to be negatively dependent, if Xn+1 is negatively dependent to (X1,,Xn) for each n1. The existence of negatively dependent random variables {Xn}n=1 under sub-linear expectations could be yielded by Example 1.6 of Zhang [4] and Kolmogorov's existence theorem in classic probabililty space. We below give an concrete example.

    Example 2.1. Let P={Q1,Q2} be a family of probability measures on (Ω,F). Suppose that {Xn}n=1 are independent, identically distributed under each Qi, i=1,2 with Q1(X1=1)=Q1(X1=1)=1/2, Q2(X1=1)=1. Define E[ξ]=supQPEQ[ξ], for each random variable ξ. Here E[] is a sub-linear expectation. By the discussion of Example 1.6 of Zhang [4], we see that {Xn}n=1 are negatively dependent random variables under E.

    Assume that X1 and X2 are two n-dimensional random vectors in sub-linear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2) repectively. They are named identically distributed if for every ψCl,Lip(Rn),

    E1[ψ(X1)]=E2[ψ(X2)]. 

    {Xn}n=1 is called to be identically distributed if for every i1, Xi and X1 are identically distributed.

    In this article we assume that E is countably sub-additive, i.e., E(X)n=1E(Xn) could be implied by Xn=1Xn, X,XnH, and X0, Xn0, n=1,2,. Write Sn=ni=1Xi, n1. Let C denote a positive constant which may vary in different occasions. I(A) or IA represent the indicator function of A. The notion axbx means that there exist two positive constants C1, C2 such that C1|bx||ax|C2|bx|.

    As in Zhang [4], by definition, if X1,X2,,Xn are negatively dependent random variables and f1, f2,,fn are all non increasing (or non decreasing) functions, then f1(X1), f2(X2),,fn(Xn) are still negatively dependent random variables.

    We cite the useful inequalities under sub-linear expectations.

    Lemma 2.1. (See Lemma 4.5 (III) of Zhang [3]) If E is countably sub-additive under (Ω,H,E), then for XH,

    E|X|CV(|X|).

    Lemma 2.2. (See Lemmas 2.3, 2.4 of Xu et al. [20] and Theorem 2.1 of Zhang [4]) Assume that p1 and {Xn;n1} is a sequence of negatively dependent random varables under (Ω,H,E). Then there exists a positive constant C=C(p) relying on p such that

    E[|nj=1Xj|p]C{ni=1E|Xi|p+(ni=1[|E(Xi)|+|E(Xi)|])p},1p2, (2.1)
    E[max1in|ij=1Xj|p]C(logn)p{ni=1E|Xi|p+(ni=1[|E(Xi)|+|E(Xi)|])p},1p2, (2.2)
    E[max1in|ij=1Xi|p]C{ni=1E|Xi|p+(ni=1EX2i)p/2+(ni=1[|E(Xi)|+|E(Xi)|])p},p2. (2.3)

    Lemma 2.3. Assume that XH, α>0, γ>0, CV(|X|α)<. Then there exists a positive constant C relying on α,γ such that

    0V{|X|>γy}yα1dyCCV(|X|α)<.

    Proof. By the method of substitution of definite integral, letting γy=z1/α, we get

    0V{|X|>γy}yα1dy0V{|X|α>z}(z1/α/γ)α1z1/α1/γdzCCV(|X|α)<.

    Lemma 2.4. Let Yn,ZnH. Then for any q>1, ε>0 and a>0,

    E(max1jn|ji=1(Yi+Zi)|εa)+(1εq+1q1)1aq1E(max1jn|ji=1Yi|q)+E(max1jn|ji=1Zi|). (2.4)

    Proof. By Markov' inequality under sub-linear expectations, Lemma 2.1, and the similar proof of Lemma 2.4 of Sung [35], we could finish the proof. Hence, the proof is omitted here.

    Our main results are below.

    Theorem 3.1. Suppose α>12 and αp>1. Assume that {Xn,n1} is a sequence of negatively dependent random variables, and for each n1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Moreover, assume E(X)=E(X)=0 if p1. Suppose CV(|X|p)<. Then for all ε>0,

    n=1nαp2V{max1jn|ji=1Xi|>εnα}<. (3.1)

    Remark 3.1. By Example 2.1, the assumption E(X)=E(X)=0 if p1 in Theorem 3.1 can not be weakened to E(X)=0 if p1. In fact, in the case of Example 2.1, if 12<α1, αp>1, then for any 0<ε<1,

    n=1nαp2V{max1jn|ji=1Xi|>εnα}n=1nαp2V{max1jn|ji=1Xi|n}=n=1nαp2=+,

    which implies that Theorems 3.1, 3.2, Corollary 3.1 do not hold. However, by Example 1.6 of Zhang [4], the assumptions of Theorem 3.3, Corollary 3.2 hold for random variables in Example 2.1, hence Theorem 3.3, Corollary 3.2 are valid in this example.

    By Theorem 3.1, we could get the Marcinkiewicz-Zygmund strong law of large numbers for negatively dependent random variables under sub-linear expectations below.

    Corollary 3.1. Let α>12 and αp>1. Assume that under sub-linear expectation space (Ω,H,E), {Xn} is a sequence of negatively dependent random variables and for each n, Xn is identically distributed as X. Moreover, assume E(X)=E(X)=0 if p1. Assume that V induced by E is countably sub-additive. Suppose CV{|X|p}<. Then

    V(lim supn1nα|ni=1Xi|>0)=0. (3.2)

    Theorem 3.2. If the assumptions of Theorem 3.1 hold for p1 and CV{|X|plogθ|X|}< for some θ>max{αp1α12,p}, then for any ε>0,

    n=1nαp2αE(max1jn|ji=1Xi|εnα)+<. (3.3)

    By the similar proof of Theorem 3.1, with Theorem 2.1 (b) for negative dependent random variables of Zhang [4] (cf. the proof of Theorem 2.1 (c) there) in place of Lemma 2.2 here, we could obtain the following result.

    Theorem 3.3. Suppose α>12, p1, and αp>1. Assume that Xk is negatively dependent to (Xk+1,,Xn), for each k=1,,n, n1. Suppose for each n, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Suppose CV(|X|p)<. Then for all ε>0,

    n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<,
    n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<.

    By the similar proof of Corollary 3.1, with Theorem 3.3 in place of Theorem 3.1, we get the following result.

    Corollary 3.2. Let α>12, p1, and αp>1. Assume that Xk is negatively dependent to (Xk+1,,Xn), for each k=1,,n, n1. Suppose for each n, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Assume that V induced by E is countably sub-additive. Suppose CV{|X|p}<. Then

    V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.

    By the similar proof of Theorem 3.1 and Corollary 3.1, and adapting the proof of (4.10), we could obtain the following result.

    Corollary 3.3. Suppose α>1 and p1. Assume that {Xn,n1} is a sequence of negatively dependent random variables, and for each n1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Suppose CV(|X|p)<. Then for all ε>0,

    n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<,
    n=1nαp2V{max1jnji=1[XiE(Xi)]>εnα}<.

    Moreover assume that V induced by E is countably sub-additive. Then

    V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.

    By the discussion below Definition 4.1 of Zhang [34], and Corollary 3.2, we conjecture the following.

    Conjecture 3.1. Suppose 12<α1 and αp>1. Assume that {Xn,n1} is a sequence of negatively dependent random variables, and for each n1, Xn is identically distributed as X under sub-linear expectation space (Ω,H,E). Assume that V induced by E is continuous. Suppose CV{|X|p}<. Then

    V({lim supn1nαni=1[XiE(Xi)]>0}{lim supn1nαni=1[XiE(Xi)]>0})=0.

    Proof of Theorem 3.1. We investigate the following cases.

    Case 1. 0<p<1.

    For fixed n1, for 1in, write

    Yni=nαI{Xi<nα}+XiI{|Xi|nα}+nαI{Xi>nα},
    Zni=(Xinα)I{Xi>nα}+(Xi+nα)I{Xi<nα},
    Yn=nαI{X<nα}+XI{|X|nα}+nαI{X>nα},
    Zn=XYn.

    Observing that Xi=Yni+Zni, we see that for all ε>0,

    n=1nαp2V{max1jn|ji=1Xi|>εnα}n=1nαp2V{max1jn|ji=1Yni|>εnα/2}+n=1nαp2V{max1jn|ji=1Zni|>εnα/2}=:I1+I2. (4.1)

    By Markov's inequality under sub-linear expectations, Cr inequality, and Lemmas 2.1, 2.3, we conclude that

    I1Cn=1nαp2αni=1E|Yni|=Cn=1nαp1αE|Yn|Cn=1nαp1αCV(|Yn|)Cn=1nαp1αnα0V{|Yn|>x}dx=Cn=1nαp1αnk=1kα(k1)αV{|X|>x}dx=Ck=1kα(k1)αV{|X|>x}dxn=knαp1α=Ck=1kα1V{|X|>(k1)α}kαpαCk=1kαp1V{|X|>kα}+CC0xαp1V{|X|>xα}dx+CCCV{|X|p}+C<, (4.2)

    and

    I2Cn=1nαp2αp/2ni=1E|Zni|p/2Cn=1nαp/21E|Zn|p/2Cn=1nαp/21CV{|Zn|p/2}Cn=1nαp/21CV{|X|p/2I{|X|>nα}}Cn=1nαp/21[nα0V{|X|>nα}sp/21ds+nαV{|X|>s}sp/21ds]Cn=1nαp1V{|X|>nα}+Cn=1nαp/21k=n(k+1)αkαV{|X|>s}sp/21dsCCV{|X|p}+Ck=1(k+1)αkαV{|X|>s}sp/21dskn=1nαp/21CCV{|X|p}+Ck=1V{|X|>kα}kαp1CCV{|X|p}+CCV{|X|p}<. (4.3)

    Therefore, by (4.1)–(4.3), we deduce that (3.1) holds.

    Case 2. p1.

    Observing that αp>1, we choose a suitable q such that 1αp<q<1. For fixed n1, for 1in, write

    X(1)ni=nαqI{Xi<nαq}+XiI{|Xi|nαq}+nαqI(Xi>nαq),
    X(2)ni=(Xinαq)I{Xi>nαq},X(3)ni=(Xi+nαq)I{Xi<nαq},

    and X(1)n, X(2)n, X(3)n is defined as X(1)ni, X(2)ni, X(3)ni only with X in place of Xi above. Observing that ji=1Xi=ji=1X(1)ni+ji=1X(2)ni+ji=1X(3)ni, for 1jn, we see that for all ε>0,

    n=1nαp2V{max1jn|ji=1Xi|>εnα}n=1nαp2V{max1jn|ji=1X(1)ni|>εnα/3}+n=1nαp2V{max1jn|ji=1X(2)ni|>εnα/3}+n=1nαp2V{max1jn|ji=1X(3)ni|>εnα/3}=:II1+II2+II3. (4.4)

    Therefore, to establish (3.1), it is enough to prove that II1<, II2<, II3<.

    For II1, we first establish that

    nαmax1jn|ji=1EX(1)ni|0, as n. (4.5)

    By E(X)=0, Markov's inequality under sub-linear expectations, Lemma 2.1, we conclude that

    nαmax1jn|ji=1EX(1)ni|nαni=1|E(X(1)n)|n1α|E(X(1)n)E(X)|n1αE|X(1)nX|n1αCV(|X(1)nX|)Cn1α[0V{|X|I{|X|>nαq}>x}dx]Cn1α[nαq0V{|X|>nαq}dx+nαqV{|X|>y}dy]Cn1α+αqV{|X|>nαq}+Cn1αnαqV{|X|>y}yp1nαq(p1)dyCn1α+αqE|X|pnαqp+Cn1α+αqαqpCV{|X|p}Cn1αqpα+αqCV{|X|p},

    which results in (4.5) by CV{|X|p}< and 1/(αp)<q<1. Thus, from (4.5), it follows that

    II1Cn=1nαp2V{max1jn|ji=1(X(1)niEX(1)ni)|>εnα6}. (4.6)

    For fixed n1, we note that {X(1)niEX(1)ni,1in} are negatively dependent random variables. By (4.6), Markov's inequality under sub-linear expectations, and Lemma 2.2, we see that for any β2,

    II1Cn=1nαp2αβE(max1jn|ji=1(X(1)niEX(1)ni)|β)Cn=1nαp2αβ[ni=1E|X(1)ni|β+(ni=1E|X(1)ni|2)β/2+(ni=1[|EX(1)ni|+|E(X(1)ni)|])β]=:II11+II12+II13. (4.7)

    Taking β>max{αp1α1/2,2,p,αp1αqpαq+α1}, we obtain

    αpαβ+αqβαpq1=α(pβ)(1q)1<1,
    αp2αβ+β/2<1,

    and

    αp2αβ+βαq(p1)β<1.

    By Cr inequality, Markov's inequality under sub-linear expectations, Lemma 2.1, we see that

    II11Cn=1nαp2αβni=1E|X(1)ni|βCn=1nαp1αβE|X(1)n|βCn=1nαp1αβCV{|X(1)n|β}=Cn=1nαp1αβnαqβ0V{|X|β>x}dxCn=1nαp1αβnαq0V{|X|>x}xβ1dxCn=1nαp1αβnαq0V{|X|>x}xp1nαq(βp)dxCn=1nαp1αβ+αqβαqpCV{|X|p}<, (4.8)
    II12Cn=1nαp2αβ(ni=1E|X(1)n|2)β/2Cn=1nαp2αβ+β/2(CV{|X(1)n|2})β/2Cn=1nαp2αβ+β/2(nαq0V{|X|>x}xdx)β/2{Cn=1nαp2αβ+β/2(CV{|X|2})β/2, if p2;Cn=1nαp2αβ+β/2(nαq0V{|X|>x}xp1nαq(2p)dx)β/2, if 1p<2,{Cn=1nαp2αβ+β/2(CV{|X|2})β/2<, if p2;Cn=1n(αp1)(1β/2)1(CV(|X|p))β/2<, if 1p<2, (4.9)

    and

    II13Cn=1nαp2αβ(ni=1[|EX(1)n|+|E(X(1)n)|])βCn=1nαp2αβ+β(E|X(1)nX|)βCn=1nαp2αβ+β(E|X|p)βnαq(p1)βCn=1nαp2αβ+βαq(p1)β(CV(|X|p))β<. (4.10)

    Therefore, combining (4.7)–(4.10) results in II1<.

    Next, we will establish that II2<. Let gμ(x) be a non-increasing Lipschitz function such that I{xμ}gμ(x)I{x1}, μ(0,1). Obviously, I{x>μ}>1gμ(x)>I{x>1}. For fixed n1, for 1in, write

    X(4)ni=(Xinαq)I(nαq<Xinα+nαq)+nαI(Xi>nα+nαq),

    and

    X(4)n=(Xnαq)I(nαq<Xnα+nαq)+nαI(X>nα+nαq).

    We see that

    (max1jn|ij=1X(2)ni|>εnα3)(max1in|Xi|>nα)(max1jn|ij=1X(4)ni|>εnα3),

    which results in

    II2n=1nαp2ni=1V{|Xi|>nα}+n=1nαp2V{max1jn|ij=1X(4)ni|>εnα3}=:II21+II22. (4.11)

    By CV{|X|p}<, we conclude that

    II21Cn=1nαp2ni=1E[1gμ(|Xi|)]=Cn=1nαp1E[1gμ(|X|)]Cn=1nαp1V{|X|>μnα}C0xαp1V{|X|>μxα}dxCCV(|X|p)<. (4.12)

    Observing that 1αp<q<1, from the definition of X(2)ni, follows that

    nαmax1jn|ji=1EX(4)ni|Cn1αE|X(4)n|Cn1αCV(|X(4)n|)Cn1α[nαq0V{|X|I{|X|>nαq}>x}dx+nαqV{|X|>x}dx]Cn1α+αqE|X|pnαpq+Cn1αnαqV{|X|>x}xp1nαq(p1)dxCn1α+αqαpqCV{|X|p}0 as n. (4.13)

    By X(4)ni>0, (4.11)–(4.13), we see that

    II2Cn=1nαp2V{|ni=1[X(4)niEX(4)ni]|>εnα6}. (4.14)

    For fixed n1, we know that {X(4)niEX(4)ni,1in} are negatively dependent random variables under sub-linear expectations. By Markov's inequality under sub-linear expectations, Cr-inequality, Lemma 2.2, we obtain

    II2Cn=1nαp2αβE(|ni=1[X(4)niEX(4)ni]|β)Cn=1nαp2αβ[ni=1E|X(4)ni|β+(ni=1E(X(4)ni)2)β/2+(ni=1[|EX(4)ni|+|E(X(4)ni)|])β]=:II21+II22+II23. (4.15)

    By Cr inequality, Lemma 2.3, we have

    II21Cn=1nαp2αβni=1E|X(4)n|βCn=1nαp1αβCV{|X(4)n|β}Cn=1nαp1αβCV{|X|βI{nαq<Xnα+nαq}+nαqβI{X>nα+nαq}}Cn=1nαp1αβ2nα0V{|X|>x}xβ1dxCn=1nαp1αβnk=12kα2(k1)αV{|X|>x}xβ1dxCk=1V{|X|>2(k1)α}kαβ1n=knαp1αβCk=1V{|X|>2(k1)α}kαp1C0V{|X|>2xα}xαp1dxCCV{|X|p}<. (4.16)

    As in the proof of (4.9) and (4.16), we can deduce that II22<.

    By Lemma 2.1, we see that

    II23Cn=1nαp1αβnβ(E|X(4)n|)βCn=1nαp1αβ+β(E|X|pnαq(p1))βCn=1nαp1αβ+βαq(p1)(CV{|X|p})β<. (4.17)

    By (4.15)–(4.17), we deduce that II2<.

    As in the proof of II2<, we also can obtain II3<. Therefore, combining (4.5), II1<, II2<, and II3< results in (3.1). This finishes the proof.

    Proof of Corollary 3.1. By CV{|X|p}<, and Theorem 3.1, we deduce that for all ε>0,

    n=1nαp2V(max1jn|ji=1Xi|>εnα)<. (4.18)

    By (4.18), we conclude that for any ε>0,

    >n=1nαp2V(max1jn|ji=1Xi|>εnα)=k=02k+11n=2knαp2V(max1jn|ji=1Xi|>εnα){k=0(2k)αp22kV(max1j2k|ji=1Xi|>ε2(k+1)α), if αp2,k=0(2k+1)αp22kV(max1j2k|ji=1Xi|>ε2(k+1)α), if 1<αp<2,{k=0V(max1j2k|ji=1Xi|>ε2(k+1)α), if αp2,k=012V(max1j2k|ji=1Xi|>ε2(k+1)α), if 1<αp<2,

    which, combined with Borel-Cantell lemma under sub-linear expectations, yields that

    V(lim supnmax1j2k|ji=1Xi|2(k+1)α>0)=0. (4.19)

    For all positive integers n, a positive integer k satisfying 2k1n<2k, we see that

    nα|ni=1Xi|max2k1n2knα|ni=1Xi|22αmax1j2k|ji=1Xi|2(k+1)α,

    which yields (3.2). This completes the proof.

    Proof of Theorem 3.2. For fixed n1, for 1in, write

    Yni=nαI{Xi<nα}+XiI{|Xi|nα}+nαI{Xi>nα},
    Zni=XiYni=(Xinα)I{Xi>nα}+(Xi+nα)I{Xi<nα},

    and

    Yn=nαI{X<nα}+XI{|X|nα}+nαI{X>nα},
    Zn=XYn=(Xnα)I{X>nα}+(X+nα)I{X<nα}.

    From Lemma 2.4 follows that for any β>1,

    n=1nαp2αE(max1jn|ji=1Xi|εnα)+Cn=1nαp2αβE(max1jn|ji=1(YniEYni)|β)+n=1nαp2αE(max1jn|ji=1(ZniEZni)|)=:III1+III2. (4.20)

    Noticing that Zn(|X|nα)I(|X|>nα)|X|I(|X|>nα), by Lemma 2.3, we see that

    III2Cn=1nαp2αni=1E|Zni|Cn=1nαp1αE|Zn|Cn=1nαp1αCV{|Zn|}Cn=1nαp1αCV{|X|I(|X|>nα)}Cn=1nαp1α[nα0V{|X|>nα}dx+nαV{|X|>x}dx]Cn=1nαp1V{|X|>nα}+Cn=1nαp1αk=n(k+1)αkαV{|X|>x}dxCCV{|X|p}+Ck=1V{|X|>kα}kα1kn=1nαp1α{CCV{|X|p}+Ck=1V{|X|>kα}kα1log(k), if p=1,CCV{|X|p}+Ck=1V{|X|>kα}kαp1, if p>1,{CCV{|X|log|X|}<, if p=1,CCV{|X|p}<, if p>1. (4.21)

    Now, we will establish III1<. Observing that θ>p1, we can choose β=θ. We analysize the following two cases.

    Case 1. 1<θ2. From (2.2) of Lemma 2.2, Lemma 2.1, E(Y)=E(Y)=0, and Markov's inequality under sub-linear expectations follows that

    III1=Cn=1nαp2αθE(max1jn|ji=1(YniEYni)|θ)Cn=1nαp2αθlogθn[ni=1E|Yni|θ+(ni=1[|E(Yni)|+|E(Yni)|])θ]=Cn=1nαp2αθlogθn[ni=1E|Yn|θ+(ni=1[|E(Yn)|+|E(Yn)|])θ]Cn=1nαp1αθlogθnCV{|Yn|θ}+Cn=1nαp2αθ+θlogθn(E|YnX|)θCn=1nαp1αθlogθnnα0V{|X|>x}xθ1dx+Cn=1nαp2αθ+θlogθn(CV{|YnX|})θCn=1nαp1αθlogθnnk=1kα(k1)αV{|X|>x}xθ1dx+Cn=1nαp2αθ+θlogθn(CV{|X|I{|X|>nα}})θCk=1V{|X|>(k1)α}kαθ1n=knαp1αθ+Cn=1nαp2αθ+θlogθn(0V{|X|I{|X|>nα}>y}dy)θCk=1V{|X|>(k1)α}kαp1logθk+Cn=1nαp2αθ+θlogθn(nαE{|X|plogθ|X|}nαplogθn)θ+Cn=1nαp2αθ+θlogθn(nαV{|X|plogθ|X|>yplogθy}d(yplogθy)/(nα(p1)logθn))θC0V{|X|>xα}xαp1logθxdx+C(CV{|X|plogθ|X|})θ+Cn=1nαp2+θαpθlogθθ2n(CV{|X|plogθ|X|})θCCV{|X|plogθ|X|}+C(CV{|X|plogθ|X|})θ<. (4.22)

    Case 2. θ>2. Observe that θ>αp1α12, we conclude that αp2αθ+θ2<1. As in the proof of (4.22), by Lemma 2.2, and Cr inequality, we see that

    III1=Cn=1nαp2αθE(max1jn|ji=1(YniE(Yni))|θ)Cn=1nαp2αθ[ni=1E|Yni|θ+(ni=1E|Yni|2)θ/2+(ni=1[|E(Yni)|+|E(Yni)|])θ]=:III11+III12+III13. (4.23)

    By Lemma 2.3, we see that

    III11Cn=1nαp1αθE|Yn|θCn=1nαp1αθCV{|Yn|θ}Cn=1nαp1αθnα0V{|X|>x}xθ1dx=Cn=1nαp1αθnk=1kα(k1)αV{|X|>x}xθ1dxCk=1V{|X|>(k1)α}kαθ1n=knαp1αθCk=1V{|X|>(k1)α}kαp1C0V{|X|>xα}xαp1dxCCV{|X|p}<.

    By Lemma 2.1, we deduce that

    III12Cn=1nαp2αθ(ni=1E|Yn|2)θ/2{Cn=1nαp2αθ+θ/2(E|X|2)θ/2, if p2,Cn=1nαp2αθ+θ/2(E|X|pnα(2p))θ/2, if 1p<2,{CCV{|X|2}<, if p2,Cn=1nαp2+θ/2αpθ/2(CV{|X|p})θ/2<, if 1p<2.

    And the proof of III13< is similar to that of (4.22). This finishes the proof.

    We have obtained new results about complete convergence and complete moment convergence for maximum partial sums of negatively dependent random variables under sub-linear expectations. Results obtained in our article extend those for negatively dependent random variables under classical probability space, and Theorems 3.1, 3.2 here are different from Theorems 3.1, 3.2 of Xu et al. [20], and the former can not be deduced from the latter. Corollary 3.1 complements Theorem 3.1 in Zhang [9] in the case p2, Corollaries 3.2, 3.3 complement Theorem 3.3 in Zhang [4] in the case p>1 in some sense.

    This study was supported by Science and Technology Research Project of Jiangxi Provincial Department of Education of China (No. GJJ2201041), Academic Achievement Re-cultivation Project of Jingdezhen Ceramic University (No. 215/20506135), Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (No. 102/01003002031).

    All authors state no conflicts of interest in this article.



    [1] Khomich VG, Boriskina NG (2013) The deep geodynamics of Southeast Russia and the setting of platinum-bearing basite-hyperbasite massifs. J Volcanolog Seismol 7: 328–337. http://dx.doi.org/10.1134/S0742046313040040 doi: 10.1134/S0742046313040040
    [2] Khomich VG, Boriskina NG (2014) Deep geodynamics and uranium giants of Southeastern Russia. Dokl Earth Sci 458: 1226–1229. http://dx.doi.org/10.1134/S1028334X14100249 doi: 10.1134/S1028334X14100249
    [3] Khomich VG, Boriskina NG, Santosh M (2018) Super large mineral deposits and deep mantle dynamics: The scenario from Southeast Trans-Baikal region, Russia. Geol J 53: 412–423. https://doi.org/10.1002/gj.2908 doi: 10.1002/gj.2908
    [4] Khomich VG, Boriskina NG, Santosh M (2014) A geodynamic perspective of world-class gold deposits in East Asia. Gondwana Res 26: 816–833. https://doi.org/10.1016/j.gr.2014.05.007 doi: 10.1016/j.gr.2014.05.007
    [5] Khomich VG, Boriskina NG, Santosh M (2015) Geodynamics of Late Mesozoic PGE, Au, and U mineralization in the Aldan shield, North Asian Craton. Ore Geol Rev 68: 30–42. http://dx.doi.org/10.1016/j.oregeorev.2015.01.007 doi: 10.1016/j.oregeorev.2015.01.007
    [6] Khomich VG, Boriskina NG (2019) Paleovolcanic necks and extrusions: Indicators of large uranium orebelts in the territories joining Russia, Mongolia, and China. J Volcanol Geotherm Res 383: 88–102. https://doi.org/10.1016/j.jvolgeores.2018.05.004 doi: 10.1016/j.jvolgeores.2018.05.004
    [7] Seminskiy ZV (2021) Clusters of mineral deposits of the Southern East Siberia and prospects for their development: an overview of the problem. Geodyn Tectonophysics 12: 754–768.
    [8] Zonenshain LP, Kuzmin MI, Natapov LM (1990) Tectonics of lithosphere plates of the USSR territory: in 2 books, Moscow: Nedra. Available from: https://www.geokniga.org/books/6515
    [9] Parfenov LM, Berzin NA, Khanchuk AI, et al. (2003) Model of formation of orogenic belts of Central and North-East Asia. Tikhookeanskaya Geologiya 22: 7–41.
    [10] Shatkov GA, Volsky AS (2004) Tectonics, deep structure, and minerageny of the Amur river region and neighboring areas. St. Petersburg: VSEGEI.
    [11] Gordienko IV (2014) Metallogeny of various geodynamic settings of the Mongolia-Transbaikalia region. Geol Miner Resour Sib S3–1: 7–13.
    [12] Yarmolyuk VV, Kudryashov EA, Kozlovsky AM, et al. (2011) Late Cenozoic volcanic province in Central and East Asia. Petrology 19: 327–347. http://dx.doi.org/10.1134/S0869591111040072 doi: 10.1134/S0869591111040072
    [13] Didenko AI, Malyshev YuF, Saksin BG (2010) Deep structure and metallogeny of East Asia, Vladivostok: Dalnauka. Available from: https://search.rsl.ru/ru/record/01004906622?ysclid = m2mxy27n73631732383.
    [14] Didenko AN, Nosyrev MY, Gil'manova GZ (2022) A gravity-derived Moho model for the Sikhote Alin orogenic belt. Pure Appl Geophys 179: 3967–3988. https://doi.org/10.1007/s00024-021-02842-8 doi: 10.1007/s00024-021-02842-8
    [15] Grachev AF (1996) The main problems of the latest tectonics and geodynamics of Northern Eurasia. Izv Phys Solid Earth 12: 5–36.
    [16] Larin AM (2014) Ulkan-Dzhugdzhur ore-bearing anorthosite-rapakivi granite-peralkaline granite association, Siberian Craton: Age, tectonic setting, sources, and metallogeny. Geol Ore Deposits 56: 257–280. https://doi.org/10.1134/S1075701514040047 doi: 10.1134/S1075701514040047
    [17] Larin AM, Kotov AB, Salnikova EB, et al. (2023) Age and tectonic setting of the kopri-type granitoids at the Junction Zone of the Dzhugdzhur-Stanovoi and Western Stanovoi superterranes of the Central Asian fold belt. Dokl Earth Sc 509: 111–117. https://doi.org/10.1134/S1028334X22601821 doi: 10.1134/S1028334X22601821
    [18] Sorokin AA, Sorokin AP, Ponomorchuk VA, et al. (2009) Late Mesozoic volcanism of the eastern part of the Argun superterrane (Far East): Geochemistry and 40Ar/39Ar geochronology. Stratigr Geol Correl 17: 645–658. https://doi.org/10.1134/S0869593809060069 doi: 10.1134/S0869593809060069
    [19] Li XC, Fan HR, Santosh M, et al. (2012) An evolving magma chamber within extending lithosphere: An integrated geochemical, isotopic and zircon U–Pb geochronological study of the Gushan granite, eastern North China Craton. J Asian Earth Sci 50: 27–43. https://doi.org/10.1016/j.jseaes.2012.01.016 doi: 10.1016/j.jseaes.2012.01.016
    [20] Ouyang HG, Mao JW, Zhou ZH, et al. (2015) Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China. Gondwana Res 27: 1153–1172. http://dx.doi.org/10.1016/j.gr.2014.08.010 doi: 10.1016/j.gr.2014.08.010
    [21] Zhou JB, Wilde SA, (2013) The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Res 23: 1365–1377. http://dx.doi.org/10.1016/j.gr.2012.05.012 doi: 10.1016/j.gr.2012.05.012
    [22] Zhao R, Wang QF, Liu XF, et al. (2016) Architecture of the Sulu crustal suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic granitoids. Lithos 266–267: 348–361. http://dx.doi.org/10.1016/j.lithos.2016.10.018 doi: 10.1016/j.lithos.2016.10.018
    [23] Larin AM, Kotov AB, Salnikova EB, et al. (2021) Age and tectonic setting of granitoids of the Uda Complex of the Dzhugdzhur block of the Stanovoy suture: new data on the formation of giant magmatic belts in Eastern Asia. Dokl Earth Sci 498: 362–366 https://doi.org/10.1134/S1028334X21050081 doi: 10.1134/S1028334X21050081
    [24] Fan WM, Guo F, Wang YJ, et al. (2003) Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. J Volcanol Geotherm Res 121: 115–135. https://doi.org/10.1016/S0377-0273(02)00415-8 doi: 10.1016/S0377-0273(02)00415-8
    [25] Fan HR, Hu FF, Yang JH, et al. (2007) Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the Jiaodong Peninsula, eastern China. Geol Soc London Spec Publ 280: 303–316. https://doi.org/10.1144/SP280.16 doi: 10.1144/SP280.16
    [26] Gordienko IV (2001) Geodynamic evolution of the Central-Asian and Mongol-Okhotsk fold belts and formation of the endogenic deposits. Geosci J 5: 233–241. https://doi.org/10.1007/BF02910306 doi: 10.1007/BF02910306
    [27] Sun JG, Han SJ, Zhang Y, et al. (2013) Diagenesis and metallogenetic mechanisms of the Tuanjiegou gold deposit from the Lesser Xing'an Range, NE China: Zircon U-Pb geochronology and Lu-Hf isotopic constraints. J Asian Earth Sci 62: 373–388. https://doi.org/10.1016/j.jseaes.2012.10.021 doi: 10.1016/j.jseaes.2012.10.021
    [28] Ren YS, Chen C, Zou XT, et al. (2016) The age, geological setting, and types of gold deposits in the Yanbian and adjacent areas, NE China. Ore Geol Rev 73: 284–297. https://doi.org/10.1016/j.oregeorev.2015.03.013 doi: 10.1016/j.oregeorev.2015.03.013
    [29] Chen YJ, Zhang C, Wang P, et al. (2017) The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol Rev 81: 602–640. http://dx.doi.org/10.1016/j.oregeorev.2016.04.017 doi: 10.1016/j.oregeorev.2016.04.017
    [30] Li Q, Santosh M, Li SR, et al. (2015) Petrology, geochemistry and zircon U–Pb and Lu–Hf isotopes of the Cretaceous dykes in the central North China Craton: Implications for magma genesis and gold metallogeny. Ore Geol Rev 67: 57–77. https://doi.org/10.1016/j.oregeorev.2014.11.015 doi: 10.1016/j.oregeorev.2014.11.015
    [31] Andreeva OV, Petrov VA, Poluektov VV (2020) Mesozoic acid magmatites of Southeastern Transbaikalia: petrogeochemistry and relationship with metasomatism and ore formation. Geol Ore Deposits 62: 69–96. https://doi.org/10.1134/S1075701520010018 doi: 10.1134/S1075701520010018
    [32] Zhao D, Pirajno F, Dobretsov NL, et al. (2010) Mantle structure and dynamics under East Russia and adjacent regions. Russ Geol Geophys 51: 925–938. https://doi.org/10.1016/j.rgg.2010.08.003 doi: 10.1016/j.rgg.2010.08.003
    [33] Deng J, Wang Q (2016) Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res 36: 219–274. https://doi.org/10.1016/j.gr.2015.10.003 doi: 10.1016/j.gr.2015.10.003
    [34] Zonenshain LP, Savostin LA (1981) Geodynamics of the Baikal Rift System and Plate Tectonics of Asia. Tectonophysics 76: 1–45. https://doi.org/10.1016/0040-1951(81)90251-1 doi: 10.1016/0040-1951(81)90251-1
    [35] Kepezhinskas PK, Kepezhinskas NP, Berdnikov NV, et al. (2020) Native metals and intermetallic compounds in subduction-related ultramafic rocks from the Stanovoy mobile belt (Russian Far East): implications for redox heterogeneity in subduction zones. Ore Geol Rev 127: 103800. https://doi.org/10.1016/j.oregeorev.2020.103800 doi: 10.1016/j.oregeorev.2020.103800
    [36] Kepezhinskas P, Berdnikov N, Kepezhinskas N, et al. (2022) Adakites, high-Nb basalts and copper-gold depositions in magmatic arcs and collictional orogens: an overview. Geosciences 12: 29. https://doi.org/10.3390/geosciences12010029 doi: 10.3390/geosciences12010029
    [37] Malyshev YF, Podgornyi VY, Shevchenko BF, et al. (2007) Deep structure of the Amur lithospheric plate border zone. Russ J Pac Geol 1: 107–119. https://doi.org/10.1134/S1819714007020017 doi: 10.1134/S1819714007020017
    [38] Maruyama S, Santosh M, Zhao D (2007) Superplume, supercontinent, and post-perovskite: Mantle dynamics and antiplate tectonics on the Core-Mantle Boundary. Gondwana Res 11: 7–37. http://dx.doi.org/10.1016/j.gr.2006.06.003 doi: 10.1016/j.gr.2006.06.003
    [39] Li C, van der Hilst RD (2010) Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res Solid Earth 115: B07308. https://doi.org/10.1029/2009JB006882
    [40] Li J, Wang X, Wang X, et al. (2013) P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet Sci Lett 367: 71–81. https://doi.org/10.1016/j.epsl.2013.02.026 doi: 10.1016/j.epsl.2013.02.026
    [41] Zhao D, Tian Y (2013) Changbai intraplate volcanism and deep earthquakes in East Asia: a possible link? Geophys J Int 195: 706–724.
    [42] Jiang G, Zhang G, Zhao D, et al. (2015) Mantle dynamics and cretaceous magmatism in east-central China: Insight from teleseismic tomograms. Tectonophysics 664: 256–268. http://dx.doi.org/10.1016/j.tecto.2015.09.019 doi: 10.1016/j.tecto.2015.09.019
    [43] Khomich VG, Boriskina NG, Kasatkin SA (2019) Geology, magmatism, metallogeny, and geodynamics of the South Kuril Islands. Ore Geol Rev 105: 151–162. https://doi.org/10.1016/j.oregeorev.2018.12.015 doi: 10.1016/j.oregeorev.2018.12.015
    [44] Khomich VG, Boriskina NG, Santosh M (2016) Geodynamic framework of large unique uranium orebelts in Southeast Russia and East Mongolia. J Asian Earth Sci 119: 145–166. http://dx.doi.org/10.1016/j.jseaes.2016.01.018 doi: 10.1016/j.jseaes.2016.01.018
    [45] Khutorskoi MD, Polyak BG (2017) Special features of heat flow in transform faults of the North Atlantic and Southeast Pacific. Geotectonics 51: 152–162. https://doi.org/10.1134/S0016852117010022 doi: 10.1134/S0016852117010022
    [46] Goldfarb RJ, Santosh M (2014) The dilemma of the Jiaodong gold deposits: are they unique? Geosci Front 5: 139–153. http://dx.doi.org/10.1016/j.gsf.2013.11.001 doi: 10.1016/j.gsf.2013.11.001
    [47] Mao XC, Ren J, Liu ZK, et al. (2019) Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit. J Geochem Explor 203: 27–44. https://doi.org/10.1016/j.gexplo.2019.04.002 doi: 10.1016/j.gexplo.2019.04.002
    [48] Chen Y, Guo G, Li X (1998) Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China Craton. Sci China Ser D-Earth Sci 41: 113–120. https://doi.org/10.1007/BF02932429 doi: 10.1007/BF02932429
    [49] Zorin YA, Turutanov EK, Kozhevnikov VM, et al. (2006) On the nature of Cenozoic upper mantle plumes in Eastern Siberia (Russia) and Central Mongolia. Russ Geol Geophys 47: 1056–1070.
    [50] Khomich VG, Boriskina NG (2009) Relationship between the gold bearing areas and gradient sones of the gravity field of southeastern regions of Russia. Dokl Earth Sc 428: 1100–1104. http://dx.doi.org/10.1134/S1028334X09070137 doi: 10.1134/S1028334X09070137
    [51] Laverov NP, Velichkin VI, Vlasov BP, et al. (2012) Uranium and molybdenum-uranium deposits in the areas of continental intracrustal magmatism: geology, geodynamic and physico-chemical conditions of formation. Moscow: IFSN RAN IGEM RAN.
    [52] Berzina AP, Berzina AN, Gimon VO, et al. (2015) The Zhireken porphyry Mo ore-magmatic system (Eastern Transbaikalia): U-Pb age, sources, and geodynamic setting. Russ Geol Geophys 56: 446–465. https://doi.org/10.1016/j.rgg.2015.02.006 doi: 10.1016/j.rgg.2015.02.006
    [53] Mashkovtsev GA, Korotkov VV, Rudnev VV (2020) Ore-bearing of the Mesozoic tectonic-magmatic activation area of the Eastern Siberia and the Far East. Prospect Prot Miner Resour 11: 5–7.
    [54] Vetluzhskikh VG, Kazansky VI, Kochetkov AY, et al. (2002) Central Aldan gold deposits. Geol Ore Deposits 44: 405–434. Available from: https://www.pleiades.online/cgi-perl/search.pl?type = abstract & name = geolore & number = 6 & year = 2 & page = 405.
    [55] Shatov VV, Molchanov AV, Shatova NV, et al. (2012) Petrography, geochemistry and isotopic (U-Pb and Rb-Sr) dating of alkaline magmatic rocks of the Ryabinovy massif (South Yakutia). Reg Geol Metallog 51: 62–78.
    [56] Chernyshev IV, Prokof'ev VY, Bortnikov NS, et al. (2014) Age of granodiorite porphyry and beresite from the Darasun gold field, Eastern Transbaikal region, Russia. Geol Ore Deposits 56: 1–14. https://doi.org/10.1134/S1075701514010036 doi: 10.1134/S1075701514010036
    [57] Andreeva OV, Golovin VA, Kozlova PS, et al. (1996) Evolution of mesozoic magmatism and ore-forming metasomatic processes in the Southeastern Transbaikal region (Russia). Geol Ore Deposits 38: 101–113.
    [58] Stupak FM, Kudryashova EA, Lebedev VA, et al. (2018) The structure, composition, and conditions of generation for the early cretaceous Mongolia—East-Transbaikalia volcanic belt: the Durulgui–Torei area (Southern Transbaikalia, Russia). J Volcanolog Seismol 12: 34–46. https://doi.org/10.1134/S0742046318010074 doi: 10.1134/S0742046318010074
    [59] Ponomarchuk AV, Prokopyev IR, Svetlitskaya TV, et al. (2019) 40Ar/39Ar geochronology of alkaline rocks of the Inagli massif (Aldan Shield, Southern Yakutia). Russ Geol Geophys 60: 33–44. https://doi.org/10.15372/RGG2019003 doi: 10.15372/RGG2019003
    [60] Gaskov IV, Borisenko AS, Borisenko ID, et al. (2023) Chronology of alkaline magmatism and gold mineralization in the Central Aldan ore district (Southern Yakutia). Russ Geol Geophys 64: 175–191. https://doi.org/10.2113/RGG20214427 doi: 10.2113/RGG20214427
    [61] Shukolyukov YA, Yakubovich OV, Mochalov AG, et al. (2012) New geochronometer for the direct isotopic dating of native platinum minerals (190Pt-4He method). Petrology 20: 491–505. http://dx.doi.org/10.1134/S0869591112060033 doi: 10.1134/S0869591112060033
    [62] Ronkin YL, Efimov AA, Lepikhina GA, et al. (2013) U-Pb dating of the baddeleytte-zircon system from Pt-bearing dunite of the Konder massif, Aldan Shield: New data. Dokl Earth Sc 450: 607–612. https://doi.org/10.1134/S1028334X13060135 doi: 10.1134/S1028334X13060135
    [63] Mochalov AG, Yakubovich OV, Bortnikov NS (2016) 190Pt–4He age of PGE ores in the alkaline–ultramafic Konder massif (Khabarovsk district, Russia). Dokl Earth Sc 469: 846–850. https://doi.org/10.1134/S1028334X16080134 doi: 10.1134/S1028334X16080134
    [64] Mochalov AG, Yakubovich OV, Bortnikov NS (2022) 190Pt–4He dating of placer-forming minerals of platinum from the Chad alkaline-ultramafic massif: new evidence of the polycyclic nature of ore formation. Dokl Earth Sc 504: 240–247. https://doi.org/10.1134/S1028334X22050105 doi: 10.1134/S1028334X22050105
    [65] Kazansky VI (2004) The unique Central Aldan gold-uranium ore district (Russia). Geol Ore Deposits 46: 167–181.
    [66] Mashkovtsev GA, Konstantinov AK, Miguta AK, et al. (2010) Uranium of Russian entrails, Moscow: VIMS. Available from: https://elib.biblioatom.ru/text/uran-rossiyskih-nedr_2010/p0/.
    [67] Afanasyev GV, Mironov YB, Pinsky EM (2018) Role of combined paleohydrogeological systems in forming uranium mineralization in volcano-tectonic depressions of the Central Asian mobile belt. Reg Geol Metallog 3: 77–87.
    [68] Rui GZ (2010) Discussion on the geological characteristics and origin of the 460 large uranium-molybdenum deposit. World Nucl Geol 27: 149–154.
    [69] Wu JH, Ding H, Niu ZL, et al. (2015) SHRIMP zircon U-Pb dating of country rock in Zhangmajing U-Mo deposit in Guyuan, Hebei Province, and its geological significance. Mineral Deposit 4: 757–768.
    [70] Wang JQ, Liu GJ, Dong S, et al. (2023) The "trinity" prospecting prediction geological model of the Zhangmajing uranium molybdenum deposit in Guyuan County, Hebei Province. Geol Bull China 42: 931–940. http://dx.doi.org/10.12097/j.issn.1671-2552.2023.06.006 doi: 10.12097/j.issn.1671-2552.2023.06.006
    [71] Rybalov BL (2000) Evolutionary rows of Late Mesozoic ore deposits of the Eastern Transbaikal region (Russia). Geol Ore Deposits 42: 340–350.
    [72] Berzina AP, Berzina AN, Gimon VO (2014) Geochemical and Sr–Pb–Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia). J Asian Earth Sci 79: 655–665. http://dx.doi.org/10.1016/j.jseaes.2013.07.028 doi: 10.1016/j.jseaes.2013.07.028
    [73] Berzina AP, Berzina AN, Gimon VO (2016) Paleozoic-Mesozoic porphyry Cu (Mo) and Mo (Cu) deposits within the southern margin of the Siberian Craton: geochemistry, geochronology, and petrogenesis (a Review). Minerals 6: 125. http://dx.doi.org/10.3390/min6040125 doi: 10.3390/min6040125
    [74] Pushkarev YD, Kostoyanov AI, Orlova MP, et al. (2002) Features of Rb-Sr, Sm-Nd, Pb-Pb, Re-Os and K-Ar isotope systems in the Konder massif: mantle substrate enriched in platinum group metals. Reg Geol Metallog 16: 80–91.
    [75] Simonov VA, Prikhodko VS, Kovyazin SV (2011) Genesis of platiniferous massifs in the Southeastern Siberian platform. Petrology 19: 549–567. http://dx.doi.org/10.1134/S0869591111050043 doi: 10.1134/S0869591111050043
    [76] Shatkov GA, Antonov AV, Butakov PM, et al. (2014) Uranyl molybdates in fluorites and uranium-carbonate ores from the Streltsovskoe ore field of the Argun deposit. Dokl Earth Sc 456: 764–768. https://doi.org/10.1134/S1028334X14060373 doi: 10.1134/S1028334X14060373
    [77] Konstantinov MM, Politov VK, Novikov VP, et al. (2002) Geological structure of gold districts of volcano-plutonic belts in Eastern Russia. Geol Ore Deposits 44: 252–266.
    [78] Dobretsov NL, Koulakov I, Kukarina EV, et al. (2015) An integrate model of subduction: contributions from geology, experimental petrology, and seismic tomography. Russ Geol Geophys 56: 13–38. https://doi.org/10.1016/j.rgg.2015.01.002 doi: 10.1016/j.rgg.2015.01.002
    [79] Pechenkin IG (2016) Relationship between uranium metallogeny and geodynamic processes in the marginal parts of Eurasia. Ores Metals 2: 5–17.
  • This article has been cited by:

    1. Mingzhou Xu, Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 17067, 10.3934/math.2023871
    2. Mingzhou Xu, Xuhang Kong, Complete qth moment convergence of moving average processes for m-widely acceptable random variables under sub-linear expectations, 2024, 214, 01677152, 110203, 10.1016/j.spl.2024.110203
    3. Mingzhou Xu, Kun Cheng, Wangke Yu, Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, 2023, 2023, 1029-242X, 10.1186/s13660-023-02990-6
    4. Mingzhou Xu, On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations, 2024, 9, 2473-6988, 3369, 10.3934/math.2024165
    5. Mingzhou Xu, Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 19442, 10.3934/math.2023992
    6. Lunyi Liu, Qunying Wu, Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 22319, 10.3934/math.20231138
    7. Yuyan Wei, Xili Tan, Peiyu Sun, Shuang Guo, Weak and strong law of large numbers for weakly negatively dependent random variables under sublinear expectations, 2025, 10, 2473-6988, 7540, 10.3934/math.2025347
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1010) PDF downloads(43) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog