The relationship between Geography and the Visual has always been strong intertwined. As it is true that Geography has always operates through images (in the form of pictures, creative representations and above all cartographies), in the last two years, with the distance learning due to the spread of the Covid-19 pandemic, this phenomenon has not only increased, but it also became necessary. "The classroom as the most radical space", in the words of bell hooks, had to turn into a virtual space, where images have a fundamental role in the teaching/learning process. This paper wants to analyse the relationship between Geography and the Visual by analysing three images we used in the lessons of the course Geopolitics of Migration at the University of Palermo during the academic year 2020–2021, that speak about the "Mediterranean Complex". With this expression, inspired by Mirzoeff's work, I will briefly focus on the clash between dominant visuality and the counter-visualities emerging from the Mediterranean Sea, a particular sea-space where on the one hand, violent geopolitics daily act against migrants' crossing; on the other hand, new imaginative geographies emerge against coloniality devices of power and knowledge. A further reflection will be dedicated to the use of these images as a didactic tool. Why do we use these images? What do they tell us? Which one is the relationship between our increasingly digital classrooms and these images? If it is true that the pandemic phenomenon is acting as a laboratory of experimentation and acceleration, how is the visual nature of geography changing and participating to the construction of our knowledge? This contribution is a first attempt to reflect about those questions through the visuality and the counter-visualities of the "Mediterranean complex".
Citation: Gabriella Palermo. Visual Methodologies and Geography's education in the pandemic time: notes on geopolitics of migration in the 'Mediterranean Complex'[J]. AIMS Geosciences, 2022, 8(2): 254-265. doi: 10.3934/geosci.2022015
[1] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the {2}-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
[2] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[3] | Yubin Zhong, Sakander Hayat, Suliman Khan, Vito Napolitano, Mohammed J. F. Alenazi . Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity. AIMS Mathematics, 2025, 10(6): 13343-13364. doi: 10.3934/math.2025599 |
[4] | Shumin Zhang, Tianxia Jia, Minhui Li . Partial domination of network modelling. AIMS Mathematics, 2023, 8(10): 24225-24232. doi: 10.3934/math.20231235 |
[5] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[6] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[7] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[8] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[9] | Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao . Upper paired domination in graphs. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069 |
[10] | Ahlam Almulhim . Signed double Italian domination. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580 |
The relationship between Geography and the Visual has always been strong intertwined. As it is true that Geography has always operates through images (in the form of pictures, creative representations and above all cartographies), in the last two years, with the distance learning due to the spread of the Covid-19 pandemic, this phenomenon has not only increased, but it also became necessary. "The classroom as the most radical space", in the words of bell hooks, had to turn into a virtual space, where images have a fundamental role in the teaching/learning process. This paper wants to analyse the relationship between Geography and the Visual by analysing three images we used in the lessons of the course Geopolitics of Migration at the University of Palermo during the academic year 2020–2021, that speak about the "Mediterranean Complex". With this expression, inspired by Mirzoeff's work, I will briefly focus on the clash between dominant visuality and the counter-visualities emerging from the Mediterranean Sea, a particular sea-space where on the one hand, violent geopolitics daily act against migrants' crossing; on the other hand, new imaginative geographies emerge against coloniality devices of power and knowledge. A further reflection will be dedicated to the use of these images as a didactic tool. Why do we use these images? What do they tell us? Which one is the relationship between our increasingly digital classrooms and these images? If it is true that the pandemic phenomenon is acting as a laboratory of experimentation and acceleration, how is the visual nature of geography changing and participating to the construction of our knowledge? This contribution is a first attempt to reflect about those questions through the visuality and the counter-visualities of the "Mediterranean complex".
Multilevel programming deals with decision-making situations in which decision makers are arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming containing three planner, occurs in a variety of applications such as planning [6,7], security and accident management [1,18], supply chain management [14,17], economics, [10] and decentralized inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to optimize his objective function, chooses values for the variables that he controls. Next, the second-level planner in attempting to optimize his objective function while considering the reactions of the third-level planner chooses values for the variables that he controls. Lastly, the third-level planner, with regard to the decisions made by the previous levels, optimizes his own objective function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and have proposed some procedures to solve it. Some algorithms are proposed based on penalty method [16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme points of constraint region [19] to find the exact optimal solution to special classes of trilevel programming problem. In addition, because of the complexity of solving trilevel problems especially for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic approaches [8,15] to find good approximate solutions for these problems. For a good bibliography of the solution approaches to solve trilevel programming problems, the interested reader can refer to [11].
The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP problem have been stated and proven. It ought to be mentioned that despite the similarity of some presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then, a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of objective functions in both the second level and third level which is not considered in the proposed Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm is capable of giving more accurate solutions.
The organization of the paper is as follows. Basic definitions concerning LTLP problem that we shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section 5. Ultimately, the paper is concluded with Section 6.
As it is mentioned before, we consider the linear trilevel programming problem which can be formulated as follows:
minx1∈X1f1(x1,x2,x3)=3∑j=1αT1jxjs.t3∑j=1A1jxj≤b1where x2,x3 solve:minx2∈X2f2(x1,x2,x3)=3∑j=1αT2jxjs.t3∑j=1A2jxj≤b2where x3 solves:minx3∈X3f3(x1,x2,x3)=3∑j=1αT3jxjs.t3∑j=1A3jxj≤b3 | (2.1) |
where
In this section, we state some definitions and notations about the LTLP problem.
● Constraint region:
● Constraint region for middle and bottom level, for fixed
● Feasible set for the level 3, for fixed
● Rational reaction set for level 3, for fixed
● Feasible set for level 2, for fixed
● Rational reaction set for level 2, for fixed
● Inducible region :
In the above definitions, the term
Definition 2.1. A point
Definition 2.2. A feasible point
In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve the following problem:
min{f1(x1,x2,x3):(x1,x2,x3)∈IR}. | (2.2) |
In this section, we will demonstrate some geometric properties of the problem (2.1). Let
Assumption 3.1.
Assumption 3.2.
Assumption 3.3.
Note that by Assumption 3.1, we can conclude that
Example 3.1.
maxx1x1+10x2−2x3+x4s.t0≤x1≤1maxx2,x3x2+2x3s.tx2+x3≤x10≤x2,x3≤1x4=0maxx4x4s.tx4≤x3x4≤1−x3 |
In this example, we have
Ψ3(x1,x2,x3)={x3 if 0≤x3≤12,1−x3 if 12≤x3≤1. |
Then,
and
Ψ2(x1)=argmax{x2+2x3:(x2,x3,x4)∈Ω2(x1)} | (3.1) |
It is clear that if
Ψ2(x1)={(x1,0,0) if0≤x1<1(0,1,0) ifx1=1 |
It is evident that
Lemma 3.1. Let
Proof. It follows from
minx2≥03∑j=2αT2jxjs.t3∑j=2A2jxj≤b2−A21ˉx1where x3 solves:minx3≥03∑j=2αT3jxjs.t3∑j=2A3jxj≤b3−A31ˉx1 | (3.2) |
By Theorem 5.2.2 of [3] we conclude that
Since
Thus, it can be concluded that
Corollary 3.1. Let
Proof. The statement is immediately derived from the fact that
Theorem 3.1. Let
Proof. Let
Moreover, we can choose
Besides, for all
Consequently, from Corollary 3.1, it can be concluded that:
In addition,
Eventually,
If we repeat the process, we can construct from
Therefore, we approach point
Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of S that are not necessarily connected.
Corollary 3.3. If
Proof. Notice that the problem (2.2) can be written equivalently as
min{f1(x1,x2,x3):(x1,x2,x3)∈conv IR} | (3.3) |
where conv
Through the above results, it has been demonstrated that there exists at least a vertex of
In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified algorithm takes into account LTLP problems with unbounded middle and bottom level problems. These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:
The Algorithm
Step 1. Initialization: Set
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be
min{f1(x1,x2,x3):(x1,x2,x3)∈S} | (4.1) |
Step 3. Solve the following problem.
min{αT3 3x3:x3∈Ω3(x[k]1,x[k]2)}. | (4.2) |
If the problem (4.2) is unbounded go to step 7, else let
Step 4. If
Step 5. Solve the following problem.
min{αT2 2x2+αT2 3x3:(x2,x3)∈S2(x[k]1),x3=x[k]3}. | (4.3) |
If problem (4.3) is unbounded go to step 7, else let
Step 6. If
Step 7. Set
Step 8. If
Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.
Remark 4.1. It is clear that if
Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.
Proof. Let
It is worth mentioning that, by omitting the examined extreme points from
To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are solved according to the outline indicated in the previous section.
Example 5.1. Consider the following LTLP problem:
minx12x1+2x2+5x3x1≤8x2≤5 where x2,x3 solve:maxx26x1+x2−3x3x1+x2≤8x1+4x2≥87x1−2x2≥0 where x3 solves:minx32x1+x2−2x35x1+5x2+14x3≤40x1,x2,x3≥0 |
In this example, we have
Ψ2(x1)={(72x1,114(40−452x1)):815≤x1≤169}∪{(8−x1,0):169≤x1≤8}. |
It is clear that for
Actually,
which is disconnected. This fact shows that despite the continuity of
By Corollary 3.3, an optimal solution of the above example occurs at the point
To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
4.
Iteration 2
1.
2.
3.
4.
Iteration 3
1.
2.
3.
4. The point
As demonstrated in the solving process of this problem, although the number of iterations and the optimal solution found by the two algorithms are the same, the number of optimization problems needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of computations in each iteration of the modified Kth-Best algorithm is less than that of the corresponding iteration in the Kth-Best algorithm..
The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an erroneous result.
Example 5.2.
minxf1(x,y,z)=−x−4z+2ywhere y, z soleve:s.tminyf2(x,y,z)=3y−2zwhere z solves:s.tminzf3(x,y,z)=2z−ys.tx+y+z≤20≤x,y,z≤1 |
In this example, we have
The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 :
Therefore,
Iteration 2 :
Iteration 7 :
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
Iteration 2
1.
2.
3.
Continuing this method, at iteration 4 we get:
Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for some fixed values of upper and middle-level variables, is not considered as a constraint for the second level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting it in the problem (4.3).
Example 5.3.
minx1x1−4x2+2x3−x1−x2≤−3−3x1+2x2−x3≥−10where x2,x3 solve:minx2x1+x2−x3−2x1+x2−2x3≤−12x1+x2+4x3≤14where x3 solves:minx3x1−2x2−2x32x1−x2−x3≤2x1,x2,x3≥0 | (5.1) |
The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 2
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 3
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 4
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 5
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 6
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 7
1.
2. The bottom level problem corresponding to
.
4.
5.
Iteration 8
1.
2. The bottom level problem corresponding to
4.
5. There is no optimal solution.
In the above example, the constraint region is a bounded polyhedron. Let
minx3x1−2x2−2x32x1−x2−x3≤2x1=x∗1 , x2=x∗2 , x3≥0 | (5.2) |
It is easy to see that the problem (5.2) is unbounded. Therefore,
In this study, the linear trilevel programming problem whereby each planner has his (her) own constraints, was considered. Some geometric properties of the inducible region were discussed. Under certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the union of some non-empty faces of the constraint region
The authors declare no conflict of interest in this paper.
[1] | Bignante E (2011) Geografia e ricerca visuale: strumenti e metodi, Roma-Bari: Laterza. |
[2] | Heidegger M (2003) Die Zeit des Weltbildes, Frankfurt am Main: Klostermann. |
[3] | Sloterdijk P (2005) Im Weltinnenraum des Kapitals, Frankfurt am Main: Suhrkamp Verlag. |
[4] | De Spuches G (2015) Le esposizioni universali: spazialità e politiche di rappresentazione, Ric Storiche 45: 105–114. |
[5] | Spivak GC (1988) Can the Subaltern Speak? Marxism and the Interpretation of Culture, Champaign: University of Illinois Press, 271–313. |
[6] | Mirzoeff N (2011) The Right to Look. A Counterhistory of Visuality, Durham: Duke University Press. |
[7] | Vallorani N (2017) Nessun Kurtz. Cuore di tenebra e le parole dell'Occidente, Milano: Mimesis. |
[8] | Sharpe C (2016) In the Wake: on Blackness and Being, Durham: Duke University Press. |
[9] | Rose G (2016) Visual Methodologies. An Introduction to Researching with Visual Materials, 4th Edition, New York: Sage Publishing. |
[10] | Cosgrove D, (2008) Geography and Vision. Seeing, Imagining and Representing the World, London-New York: I.B. Tauris and Co. |
[11] | Haraway DJ (1991) Simians, Cyborgs, and Women, New York: Routledge. |
[12] |
Hughes R (2007) Through the Looking Blast: Geopolitics and Visual Culture. Geogr Compass 1: 976–994. https://doi.org/10.1111/j.1749-8198.2007.00052.x doi: 10.1111/j.1749-8198.2007.00052.x
![]() |
[13] | Crang M (2009) Visual Methods and Methodologies. In: DeLyser D (eds.) The SAGE Handbook of Qualitative Geography, New York: Sage Publishing, 208–225. |
[14] |
Rose G (2003) On the Need to Ask How, Exactly, is Geography "Visual"? Antipode 35: 212–221. https://doi.org/10.1111/1467-8330.00317. doi: 10.1111/1467-8330.00317
![]() |
[15] |
De Spuches G, Sabatini F, Palermo G, et al. (2020) Risk narrations and perceptions in the Covid-19 time. A discourse analysis through the Italian press. AIMS Geosci 6: 504–514. https://doi.org/10.3934/geosci.2020028 doi: 10.3934/geosci.2020028
![]() |
[16] |
Palmentieri S (2022) E-Learning in Geography: new perspectives in post-pandemic. AIMS Geosci 8: 52–67. https://doi.org/10.3934/geosci.2022004 doi: 10.3934/geosci.2022004
![]() |
[17] | Hooks B (1994) Teaching to transgress. Education as the Practice of Freedom, New York: Routledge. |
[18] | Haraway DJ (2016) Staying with the Trouble. Making Kin in the Chthulucene, Durham: Duke University Press. |
[19] | Rinella A (2019) Cinema, narrazione delle guerre e discorso geopolitico: riflessioni metodologiche e proposte didattiche In: Salvatori F (ed.) L'apporto della Geografia tra rivoluzioni e riforme. Atti del XXXII Congresso Geografico Italiano, Roma: A.Ge.I., 2123–2129. Available from: https://www.ageiweb.it/wp-content/uploads/2019/02/S29_p.pdf. |
[20] | Smithsonian National Museum of African Art, Exhibition by Yinka Shonibare. Available from: https://africa.si.edu/exhibits/shonibare/scramble.html |
[21] | Harley JB (2011) Deconstructing the Map, The Map Reader. Theories of Mapping Practice and Cartographic Representation, Hoboken: Wiley-Blackwell. https://doi.org/10.1002/9780470979587 |
[22] | Ó Tuathail G, Dalby S, Routledge P (1997) The Geopolitics Reader, New York: Routledge. |
[23] |
Mbembe A (2003) Necropolitics. Public Culture 15: 11–40. https://doi.org/10.1215/08992363-15-1-11 doi: 10.1215/08992363-15-1-11
![]() |
[24] | de Spuches G, Palermo G (2020) Between Wakes and Waves: An Anti-Geopolitical View of a Postcolonial Mediterranean Space, In Favarò V, Marcenò S, Rethinking Borders. Decolonizing Knowledge and Categories, Palermo: Palermo University Press, 33–60. |
1. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 |