In this paper, we consider a cross-diffusive model for pursuit-evasion processes which was described as
$ \begin{equation*} \left\{\begin{aligned} & u_{t} = \Delta u-\chi\nabla\cdot(u(u+1)^{r-1}\nabla w)+u(\lambda_{1}-\mu_{1}u^{r_{1}-1}+av), &x\in\Omega, t>0, \\ & v_{t} = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda_{2}-\mu_{2}v^{r_{2}-1}-bu), &x\in\Omega, t>0, \\ & w_{t} = \Delta w-w+v, &x\in\Omega, t>0, \\ & 0 = \Delta z-z+u, &x\in\Omega, t>0 \end{aligned}\right. \end{equation*} $
in a smooth bounded domain $ \Omega \subset \mathbb{R}^N $ ($ N \geq 1 $) under homogeneous Neumann boundary conditions. For nonnegative initial data with appropriate regularity, the unique globally bounded classical solution is obtained provided that $ \min \{(r_{1}-1)(r_{2}-1), (r_{1}-r)(r_{2}-1) \} > \frac{(N-2)_{+}}{N} $, where $ r, \lambda_i, \mu_i, \chi, \xi > 0 $ and $ r_i > 1 $($ i = 1, 2 $). This generalizes the results of Li et al. [
Citation: Yuxuan Liang, Chuchu Du, Kaiqiang Li, Jiashan Zheng. Existence of globally bounded solutions for a predator-prey system with indirect taxis-driven pursuit-evasion and parabolic-elliptic signal[J]. Electronic Research Archive, 2025, 33(7): 4222-4240. doi: 10.3934/era.2025191
In this paper, we consider a cross-diffusive model for pursuit-evasion processes which was described as
$ \begin{equation*} \left\{\begin{aligned} & u_{t} = \Delta u-\chi\nabla\cdot(u(u+1)^{r-1}\nabla w)+u(\lambda_{1}-\mu_{1}u^{r_{1}-1}+av), &x\in\Omega, t>0, \\ & v_{t} = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda_{2}-\mu_{2}v^{r_{2}-1}-bu), &x\in\Omega, t>0, \\ & w_{t} = \Delta w-w+v, &x\in\Omega, t>0, \\ & 0 = \Delta z-z+u, &x\in\Omega, t>0 \end{aligned}\right. \end{equation*} $
in a smooth bounded domain $ \Omega \subset \mathbb{R}^N $ ($ N \geq 1 $) under homogeneous Neumann boundary conditions. For nonnegative initial data with appropriate regularity, the unique globally bounded classical solution is obtained provided that $ \min \{(r_{1}-1)(r_{2}-1), (r_{1}-r)(r_{2}-1) \} > \frac{(N-2)_{+}}{N} $, where $ r, \lambda_i, \mu_i, \chi, \xi > 0 $ and $ r_i > 1 $($ i = 1, 2 $). This generalizes the results of Li et al. [
| [1] |
G. Li, Y. Tao, M. Winkler, Large time behavior in a predator-prey system with indirect pursuit-evasion interaction, Discrete Contin. Dyn. Syst.-Ser. B, 25 (2020), 4383–4396. https://doi.org/10.3934/dcdsb.2020102 doi: 10.3934/dcdsb.2020102
|
| [2] |
J. Zheng, X. Liu, P. Zhang, Existence and boundedness of solutions for a parabolic-elliptic predator-prey chemotaxis system, Discrete Contin. Dyn. Syst.-Ser. B, 28 (2023), 5437–5446. https://doi.org/10.3934/10.3934/dcdsb.2023060 doi: 10.3934/10.3934/dcdsb.2023060
|
| [3] |
J. Zheng, P. Zhang, Blow-up prevention by logistic source an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction, J. Math. Anal. Appl., 519 (2023), 126741. https://doi.org/10.1016/j.jmaa.2022.126741 doi: 10.1016/j.jmaa.2022.126741
|
| [4] |
Y. Tyutyunov, L. Titova, R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122–134. https://doi.org/10.1051/mmnp:2008028 doi: 10.1051/mmnp:2008028
|
| [5] |
E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
|
| [6] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
|
| [7] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
|
| [8] |
X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891–1904. https://doi.org/10.3934/dcds.2015.35.1891 doi: 10.3934/dcds.2015.35.1891
|
| [9] |
H. Tang, J. Zheng, K. Li, Global bounded classical solution for an attraction-repulsion chemotaxis system, Appl. Math. Lett., 138 (2023), 108532. https://doi.org/10.1016/j.aml.2022.108532 doi: 10.1016/j.aml.2022.108532
|
| [10] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse, Math. Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146
|
| [11] |
M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), 40. https://doi.org/10.1007/s00033-018-0935-8 doi: 10.1007/s00033-018-0935-8
|
| [12] |
J. Zheng, Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear logistic source, J. Math. Anal. Appl., 450 (2017), 1047–1061. https://doi.org/10.1016/j.jmaa.2017.01.043 doi: 10.1016/j.jmaa.2017.01.043
|
| [13] |
T. Goudon, L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253–2286. https://doi.org/10.4310/CMS.2016.v14.n8.a7 doi: 10.4310/CMS.2016.v14.n8.a7
|
| [14] |
P. Amorim, B. Telch, L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114–5145. https://doi.org/10.3934/mbe.2019257 doi: 10.3934/mbe.2019257
|
| [15] |
Y. Tao, M. Winkler, A fully cross-diffusive two-component evolution system: Existence and qualitative analysis via entropy-consistent thin-film-type approximation, J. Funct. Anal., 281 (2021), 109069. https://doi.org/10.1016/j.jfa.2021.109069 doi: 10.1016/j.jfa.2021.109069
|
| [16] |
Y. Tao, M. Winkler, Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system, SIAM J. Math. Anal., 54 (2022), 4806–4864. https://doi.org/10.1137/21M1449841 doi: 10.1137/21M1449841
|
| [17] |
S. Qiu, C. Mu, H. Yi, Boundedness and asymptotic stability in a predator-prey chemotaxis system with indirect pursuit-evasion dynamics, Acta Math. Sci., 42 (2022), 1035–1057. https://doi.org/10.1007/s10473-022-0313-7 doi: 10.1007/s10473-022-0313-7
|
| [18] |
D. Qi, Y. Ke, Large time behavior in a predator-prey system with pursuit-evasion interaction, Discrete Contin. Dyn. Syst.-Ser. B, 27 (2022), 4531–4549. https://doi.org/10.3934/dcdsb.2021240 doi: 10.3934/dcdsb.2021240
|
| [19] |
A. Rehman, Boundedness of a two-species chemotaxis system with lotka-volterra type competition and two signals, Int. J. Math., 15 (2021), 393–405. https://doi.org/10.1007/s11572-021-09577-6 doi: 10.1007/s11572-021-09577-6
|
| [20] |
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
|
| [21] |
P. Amorim, B. Telch, A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal, J. Math. Anal. Appl., 500 (2021), 125128. https://doi.org/10.1016/j.jmaa.2021.125128 doi: 10.1016/j.jmaa.2021.125128
|
| [22] |
J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equations, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
|
| [23] |
H. Br$\acute{\mathrm{e}}$zis, W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Jpn., 25 (1973), 565–590. https://doi.org/10.2969/jmsj/02540565 doi: 10.2969/jmsj/02540565
|
| [24] |
H. Tang, J. Zheng, K. Li, Global and bounded solution to a quasilinear parabolic-elliptic pursuit-evasion system in N-dimensional domains, J. Math. Anal. Appl., 527 (2023), 127406. https://doi.org/10.1016/j.jmaa.2023.127406 doi: 10.1016/j.jmaa.2023.127406
|