This paper investigates the space-time decay properties of solutions to the three-dimensional compressible quantum magnetohydrodynamic (QMHD) model. By employing weighted Sobolev space techniques, we establish the optimal decay rate for the $ k $-th order spatial derivatives of solutions with $ k \in [0, 4] $, which concides with the heat equation. Specifically, we prove that the decay rate in the weighted space $ H^2_{\gamma}(\mathbb{R}^3) $ is given by $ t^{-\frac{3}{4} - \frac{k}{2} + \gamma} $ for the spatial derivatives of order $ k $. The key contribution lies in developing a unified framework that connects the weighted energy estimates with time decay analysis, which enables us to simultaneously capture both the spatial regularity and temporal decay characteristics of the solution. This result generalizes the previous decay estimates and provides a new description of the solution's asymptotic behavior in quantum magnetohydrodynamic systems.
Citation: Siyi Luo, Yinghui Zhang. Space-time decay rate for the 3D compressible quantum magnetohydrodynamic model[J]. Electronic Research Archive, 2025, 33(7): 4184-4204. doi: 10.3934/era.2025189
This paper investigates the space-time decay properties of solutions to the three-dimensional compressible quantum magnetohydrodynamic (QMHD) model. By employing weighted Sobolev space techniques, we establish the optimal decay rate for the $ k $-th order spatial derivatives of solutions with $ k \in [0, 4] $, which concides with the heat equation. Specifically, we prove that the decay rate in the weighted space $ H^2_{\gamma}(\mathbb{R}^3) $ is given by $ t^{-\frac{3}{4} - \frac{k}{2} + \gamma} $ for the spatial derivatives of order $ k $. The key contribution lies in developing a unified framework that connects the weighted energy estimates with time decay analysis, which enables us to simultaneously capture both the spatial regularity and temporal decay characteristics of the solution. This result generalizes the previous decay estimates and provides a new description of the solution's asymptotic behavior in quantum magnetohydrodynamic systems.
| [1] |
D. K. Ferry, J. R. Zhou, Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling, Phys. Rev. B, 48 (1993), 7944–7950. https://doi.org/10.1103/PhysRevB.48.7944 doi: 10.1103/PhysRevB.48.7944
|
| [2] |
J. Grant, Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations, J. Phys. A: Math. Nucl. Gen., 6 (1973), L151–L153. https://doi.org/10.1088/0305-4470/6/11/001 doi: 10.1088/0305-4470/6/11/001
|
| [3] | R. Wyatt, Quantum Dynamics with Trajectories, Introduction to Quantum Hydrodynamics, Springer Science and Business Media, 28 (2005). |
| [4] |
F. Haas, A magnetohydrodynamic model for quantum plasmas, Phys. Plasmas, 12 (2005), 062117–062125. https://doi.org/10.1063/1.1939947 doi: 10.1063/1.1939947
|
| [5] |
B. Karine, Z. Enrique, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 199 (2011), 177–227. https://doi.org/10.1007/s00205-010-0321-y doi: 10.1007/s00205-010-0321-y
|
| [6] |
Q. Chen, Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrody namical equations, Nonlinear Anal. Theory Methods Appl., 72 (2010), 4438–4451. https://doi.org/10.1016/j.na.2010.02.019 doi: 10.1016/j.na.2010.02.019
|
| [7] |
R. J. Duan, S. Ukai, Y. Yang, H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17 (2007), 737–758. https://doi.org/10.1142/S021820250700208X doi: 10.1142/S021820250700208X
|
| [8] |
R. J. Duan, H. X. Liu, S. Ukai, T. Yang, Optimal $L^p-L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Differ. Equations, 238 (2007), 220–233. https://doi.org/10.1016/j.jde.2007.03.008 doi: 10.1016/j.jde.2007.03.008
|
| [9] |
R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133–197. https://doi.org/10.1142/S0219530512500078 doi: 10.1142/S0219530512500078
|
| [10] |
X. K. Pu, B. L. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519–538. https://doi.org/10.1007/s00033-012-0245-5 doi: 10.1007/s00033-012-0245-5
|
| [11] |
J. Wang, C. G. Xiao, Y. H. Zhang, Optimal large time behavior of the compressible Navier–Stokes–Korteweg system in $\mathbb R^3$, Appl. Math. Lett., 120 (2021), 107274. https://doi.org/10.1016/j.aml.2021.107274 doi: 10.1016/j.aml.2021.107274
|
| [12] |
X. K. Pu, X. L. Xu, Decay rates of the magnetohydrodynamic model for quantum plasmas, Z. Angew. Math. Phys., 68 (2017), 18. https://doi.org/10.1007/s00033-016-0762-8 doi: 10.1007/s00033-016-0762-8
|
| [13] |
Y. Guo, Y. J. Wang, Decay of dissipative equations and Negative Sobolev spaces, Commun. Partial Differ. Equations, 37 (2012), 2165–2208. https://doi.org/10.1080/03605302.2012.696296 doi: 10.1080/03605302.2012.696296
|
| [14] |
X. K. Pu, X. L. Xu, Asymptotic behaviors of the full quantum hydrodynamic equations, J. Math. Anal. Appl., 454 (2017), 219–245. https://doi.org/10.1016/j.jmaa.2017.04.053 doi: 10.1016/j.jmaa.2017.04.053
|
| [15] |
X. Y. Xi, X. K. Pu, B. L. Guo, Long-time behavior of solutions for the compressible quantum magnetohydrodynamic model in $\mathbb R^3$, Z. Angew. Math. Phys., 70 (2019), 1–16. https://doi.org/10.1007/s00033-018-1049-z doi: 10.1007/s00033-018-1049-z
|
| [16] |
J. Wang, Y. H. Zhang, Optimal decay rate for higher-order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model, Adv. Nonlinear Anal., 11 (2022), 830–849. https://doi.org/10.1515/anona-2021-0219 doi: 10.1515/anona-2021-0219
|
| [17] |
S. K. Weng, Space-iime decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 270 (2016), 2168–2187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
|
| [18] | L. Nirenberg, On elliptic partial differential equations, Il principio di minimo e sue applicazioni alle equazioni funzionali, (2011), 1–48. |
| [19] |
I. Kukavica, J. J. Torres, Weighted $L^{p}$ decay for solutions of the Navier–Stokes equations, Commun. Partial Differ. Equations, 32 (2007), 819–831. https://doi.org/10.1080/03605300600781659 doi: 10.1080/03605300600781659
|