Research article

Well-posedness for a coupled system of gKdV equations in analytic spaces

  • Published: 04 July 2025
  • In this article, a Cauchy problem for a coupled system of the generalized Korteweg-de Vries equations (gKdV) is considered. In the periodic case, it is shown that the system is locally well-posed in a large class of analytic functions and conditions for which weak solutions extend holomorphically in a symmetric strip of the complex plane around the $ x $-axis at large times. In addition, the uniform analyticity radius of the solution does not change as time progresses. Also, information about the regularity of the solution in the time variable is obtained.

    Citation: Malika Amir, Aissa Boukarou, Safa M. Mirgani, M'hamed Kesri, Khaled Zennir, Mdi Begum Jeelani. Well-posedness for a coupled system of gKdV equations in analytic spaces[J]. Electronic Research Archive, 2025, 33(7): 4119-4134. doi: 10.3934/era.2025184

    Related Papers:

  • In this article, a Cauchy problem for a coupled system of the generalized Korteweg-de Vries equations (gKdV) is considered. In the periodic case, it is shown that the system is locally well-posed in a large class of analytic functions and conditions for which weak solutions extend holomorphically in a symmetric strip of the complex plane around the $ x $-axis at large times. In addition, the uniform analyticity radius of the solution does not change as time progresses. Also, information about the regularity of the solution in the time variable is obtained.



    加载中


    [1] A. Boukarou, D. O. da Silva, On the radius of analyticity for a Korteweg-de Vries-Kawahara equation with a weak damping term, Z. Anal. Ihre Anwend., 42 (2024), 359–374. https://doi.org/10.4171/zaa/1743 doi: 10.4171/zaa/1743
    [2] A. Boukarou, K. Guerbati, K. Zennir, S. Alodhaibi, S. Alkhalaf, Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces, Mathematics, 8 (2020), 809. https://doi.org/10.3390/math8050809 doi: 10.3390/math8050809
    [3] J. L. Bona, Z. Grujić, H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Nonl., 22 (2005), 783–797. https://doi.org/10.1016/j.anihpc.2004.12.004 doi: 10.1016/j.anihpc.2004.12.004
    [4] S. Otmani, A. Bouharou, K. Zennir, K. Bouhali, A. Moumen, M. Bouye, On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping, AIMS Math., 9 (2024), 28341–28360. https://doi.org/10.3934/math.20241375 doi: 10.3934/math.20241375
    [5] A. Atmani, A. Boukarou, D. Benterki, K. Zennir, Spatial analyticity of solutions for a coupled system of generalized KdV equations, Math. Methods Appl. Sci., 47 (2024), 10351–10372. https://doi.org/10.1002/mma.10126 doi: 10.1002/mma.10126
    [6] A. Boukarou, K. Guerbati, K. Zennir, M. Alnegga, Gevrey regularity for the generalized Kadomtsev-Petviashvili Ⅰ (gKP-Ⅰ) equation, AIMS Mathe., 6 (2021), 10037–10054. https://doi.org/10.3934/math.2021583 doi: 10.3934/math.2021583
    [7] L. Rosier, B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45 (2006), 927–956. https://doi.org/10.1137/050631409 doi: 10.1137/050631409
    [8] G. Perla-Menzala, C. F. Vasconcellos, E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Q. Appl. Math., 60 (2002), 111–129. https://doi.org/10.1090/qam/1878262 doi: 10.1090/qam/1878262
    [9] A. V. Faminskii, N. A. Larkin, Odd-order quasilinear evolution equations posed on a bounded interval, Bol. Soc. Paranaense de Mat., 28 (2010), 67–77. https://doi.org/10.5269/bspm.v28i1.10816 doi: 10.5269/bspm.v28i1.10816
    [10] A. V. Faminskii, A. Nikolayev, On stationary solutions of KdV and mKdV equations, in Differential and Difference Equations with Applications, 164 (2016), 63–70. https://doi.org/10.1007/978-3-319-32857-7_6
    [11] P. Byers, A. Himonas, Nonanalytic solutions of the KdV equation, in Abstract and Applied Analysis, Hindawi Publishing Corporation, (2004), 453–460. https://doi.org/10.1155/S1085337504303076
    [12] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$, J. Am. Math. Soc., 16 (2003), 705–749. https://doi.org/10.1090/S0894-0347-03-00421-1 doi: 10.1090/S0894-0347-03-00421-1
    [13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173–218. https://doi.org/10.1016/S0022-1236(03)00218-0 doi: 10.1016/S0022-1236(03)00218-0
    [14] J. A. Gear, R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math., 70 (1984), 235–258. https://doi.org/10.1002/sapm1984703235 doi: 10.1002/sapm1984703235
    [15] A. J. Majda, J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves, J. Atmos. Sci., 60 (2003), 1809–1821. https://doi.org/10.1175/1520-0469(2003)060%3C1809:TNIOBA%3E2.0.CO;2 doi: 10.1175/1520-0469(2003)060%3C1809:TNIOBA%3E2.0.CO;2
    [16] W. Craig, T. Kappeler, W. A. Strauss, Gain of regularity for equations of KdV type, Ann. I. H. Poincaré C, Anal. Non Linéaire, 9 (1992), 147–186. https://doi.org/10.1016/S0294-1449(16)30243-8 doi: 10.1016/S0294-1449(16)30243-8
    [17] J. Gorsky, A. A. Himonas, On analyticity in space variable of solutions to the KdV equation, Contemp. Math., 368 (2005), 233–248. https://doi.org/10.1090/conm/368/06782 doi: 10.1090/conm/368/06782
    [18] A. A. Himonas, G. Petronilho, Analytic well-posedness of periodic gKdV, J. Differ. Equations, 253 (2012), 3101–3112. https://doi.org/10.1016/j.jde.2012.08.024 doi: 10.1016/j.jde.2012.08.024
    [19] S. Tarama, Analyticity of solutions of the Korteweg-de Vries equation, J. Math. Kyoto Univ., 44 (2004), 1–32. https://doi.org/10.1215/kjm/1250283580 doi: 10.1215/kjm/1250283580
    [20] Z. Grujić, H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differ. Integr. Equations, 15 (2002), 1325–1334. https://doi.org/10.57262/die/1356060724 doi: 10.57262/die/1356060724
    [21] C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., 9 (1996), 573–603. https://doi.org/10.1090/S0894-0347-96-00200-7 doi: 10.1090/S0894-0347-96-00200-7
    [22] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations: Part Ⅱ: The KdV-equation, Geometric Funct. Anal. GAFA, 3 (1993), 209–262. https://doi.org/10.1007/BF01895688 doi: 10.1007/BF01895688
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(660) PDF downloads(42) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog