A nonlinear correction finite volume scheme preserving the discrete maximum principle (DMP) was presented to solve diffusion equations with anisotropic and discontinuous coefficients. It is well-known that existing cell-centered finite volume schemes for the diffusion problem with the general discontinuous coefficient often impose severe restrictions on the mesh-cell geometry to maintain the DMP. We proposed a nonlinear method for modifying the flux to obtain a new scheme which eliminated the requirement for nonnegative interpolation coefficients at the midpoint of cell-edge unknowns while still preserving the DMP. That is, our new scheme satisfied the DMP unconditionally and can be applied to the diffusion problem with the discontinuous coefficient on arbitrary distorted meshes. We then provided a priori estimation under a coercivity assumption and proved that the scheme satisfied the DMP. Numerical results were presented to demonstrate that our scheme can handle diffusion equations with anisotropic and discontinuous coefficients, satisfied the DMP, and, in some cases, outperformed existing schemes which preserved the DMP in terms of accuracy.
Citation: Yao Yu, Guanyu Xue. A nonlinear correction finite volume scheme preserving maximum principle for diffusion equations with anisotropic and discontinuous coefficient[J]. Electronic Research Archive, 2025, 33(3): 1589-1609. doi: 10.3934/era.2025075
A nonlinear correction finite volume scheme preserving the discrete maximum principle (DMP) was presented to solve diffusion equations with anisotropic and discontinuous coefficients. It is well-known that existing cell-centered finite volume schemes for the diffusion problem with the general discontinuous coefficient often impose severe restrictions on the mesh-cell geometry to maintain the DMP. We proposed a nonlinear method for modifying the flux to obtain a new scheme which eliminated the requirement for nonnegative interpolation coefficients at the midpoint of cell-edge unknowns while still preserving the DMP. That is, our new scheme satisfied the DMP unconditionally and can be applied to the diffusion problem with the discontinuous coefficient on arbitrary distorted meshes. We then provided a priori estimation under a coercivity assumption and proved that the scheme satisfied the DMP. Numerical results were presented to demonstrate that our scheme can handle diffusion equations with anisotropic and discontinuous coefficients, satisfied the DMP, and, in some cases, outperformed existing schemes which preserved the DMP in terms of accuracy.
| [1] |
F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481–499. https://doi.org/10.1006/jcph.2000.6466 doi: 10.1006/jcph.2000.6466
|
| [2] |
J. M. Nordbotten, I. Aavatsmark, Monotonicity conditons for control volume methods on uniform parallelogram grids in homogeneous media, Comput. Geosci., 9 (2005), 61–72. https://doi.org/10.1007/s10596-005-5665-2 doi: 10.1007/s10596-005-5665-2
|
| [3] |
E. Bertolazzi, G. Manzini, A second-order maximum principle preserving finite volume method for steady convection-diffusion problems, SIAM J. Numer. Anal., 43 (2005), 2172–2199. https://doi.org/10.1137/040607071 doi: 10.1137/040607071
|
| [4] |
J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, Math. Models Methods Appl. Sci., 24 (2014), 1575–1619. https://doi.org/10.1142/S0218202514400041 doi: 10.1142/S0218202514400041
|
| [5] | C. L. Potier, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, C. R. Math., 341 (2005) 787–792. https://doi.org/10.1016/j.crma.2005.10.010 |
| [6] |
K. Lipnikov. D. Svyatskiy, Y. Vassilevski, Monotone finite volume method for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227 (2007), 492–512. https://doi.org/10.1016/j.jcp.2007.08.008 doi: 10.1016/j.jcp.2007.08.008
|
| [7] |
Z. Sheng, J. Yue, G. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes, SIAM J. Sci. Comput., 31 (2009), 2915–2934. https://doi.org/10.1137/080721558 doi: 10.1137/080721558
|
| [8] |
K. Lipnikov, D. Svyatskiy, Y. Vassilevski, A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes, J. Comput. Phys., 229 (2010), 4017–4032. https://doi.org/10.1016/j.jcp.2010.01.035 doi: 10.1016/j.jcp.2010.01.035
|
| [9] |
K. Lipnikov, G. Manzini, D. Svyatskiy, Analysis of the monotonicity condition in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230 (2011), 2620–2642. https://doi.org/10.1016/j.jcp.2010.12.039 doi: 10.1016/j.jcp.2010.12.039
|
| [10] |
J. Camier, F. Hermeline, A monotone nonlinear finite volume method for approximating diffusion operators on general meshes, Int. J. Numer. Methods Eng., 107 (2016), 496–519. https://doi.org/10.1002/nme.5184 doi: 10.1002/nme.5184
|
| [11] | C. L. Potier, A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators, Int. J. Finite Vol., 2 (2009). |
| [12] |
Z. Sheng, G. Yuan, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, J. Comput. Phys., 230 (2011), 2588–2604. https://doi.org/10.1016/j.jcp.2010.12.037 doi: 10.1016/j.jcp.2010.12.037
|
| [13] |
Z. Sheng, G. Yuan, Construction of nonlinear weighted method for finite volume schemes preserving maximum principle, SIAM J. Sci. Comput., 40 (2018), A607–A628. https://doi.org/10.1137/16m1098000 doi: 10.1137/16m1098000
|
| [14] |
Y. Yu, G. Yuan, Z. Sheng, The finite volume scheme preserving maximum principle for diffusion equations with discontinuous coefficient, Comput. Math. Appl., 79 (2020), 2168–2188. https://doi.org/10.1016/j.camwa.2019.10.012 doi: 10.1016/j.camwa.2019.10.012
|
| [15] |
S. Su, J. Wu, A symmetric and coercive finite volume scheme preserving the discrete maximum principle for anisotropic diffusion equations on star-shaped polygonal meshes, Appl. Numer. Math., 198 (2024), 217–235. https://doi.org/10.1016/J.APNUM.2024.01.008 doi: 10.1016/J.APNUM.2024.01.008
|
| [16] |
J. Droniou, C. L. Potier, Construction and convergence study of schemes preserving the elliptic local maximum principle, SIAM J. Numer. Anal., 49 (2011), 459–490. https://doi.org/10.1137/090770849 doi: 10.1137/090770849
|
| [17] |
Z. Sheng, G. Yuan, Analysis of nonlinear scheme preserving maximum principle for anisotropic diffusion equation on distorted meshes, Sci. China Math., 65 (2022), 2379–2396. https://doi.org/10.1007/S11425-021-1931-3 doi: 10.1007/S11425-021-1931-3
|
| [18] |
S. Korotov, M. Krizek. P. Neittaanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comput., 70 (2000), 107–119. https://doi.org/10.1090/s0025-5718-00-01270-9 doi: 10.1090/s0025-5718-00-01270-9
|
| [19] |
E. Burman, A. Ern, Discrete maximum principle for Galerkin approximatios of the Laplace operator on arbitrary meshes, C. R. Math., 338 (2004), 641–646. https://doi.org/10.1016/j.crma.2004.02.010 doi: 10.1016/j.crma.2004.02.010
|
| [20] |
C. Lu, W. Huang, J. Qiu, Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math., 127 (2014), 515–537. https://doi.org/10.1007/s00211-013-0595-8 doi: 10.1007/s00211-013-0595-8
|
| [21] |
W. Huang, Y. Wang, Discrete maximum principle for the weak Galerkin method for anisotropic diffusion problems, Commum. Comput. Phys., 18 (2015), 65–90. https://doi.org/10.4208/cicp.180914.121214a doi: 10.4208/cicp.180914.121214a
|
| [22] |
C. Cances, M. Cathala, C. L. Potier, Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations, Numer. Math., 125 (2013), 387–417. https://doi.org/10.1007/s00211-013-0545-5 doi: 10.1007/s00211-013-0545-5
|
| [23] |
H. Yang, B. Yu, Y. Li, Monotonicity correction for second order element finite volume methods of anisotropic diffusion problems, J. Comput. Phys., 449 (2022), 110759. https://doi.org/10.1016/J.JCP.2021.110759 doi: 10.1016/J.JCP.2021.110759
|
| [24] | Z. Sheng, G. Yuan, A nonlinear scheme preserving maximum principle for heterogeneous anisotropic diffusion equation, J. Comput. Appl. Math., 436 (2024). https://doi.org/10.1016/J.CAM.2023.115438 |
| [25] |
Z. Sheng, G. Yuan, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput., 30 (2008), 1341–1361. https://doi.org/10.1137/060665853 doi: 10.1137/060665853
|
| [26] |
Z. Sheng, G. Yuan, A new nonlinear finite volume scheme preserving positivity for diffusion equations, J. Comput. Phys., 315 (2016), 182–193. https://doi.org/10.1016/j.jcp.2016.03.053 doi: 10.1016/j.jcp.2016.03.053
|