In this work, we investigated the existence of nontrivial weak solutions for the equation
−div(w(x)∇u) = f(x,u),x∈R2,
where w(x) is a positive radial weight, the nonlinearity f(x,s) possesses growth at infinity of the type exp((α0+h(|x|))|s|2/(1−β)), with α0>0, 0<β<1 and h is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.
Citation: Yony Raúl Santaria Leuyacc. Elliptic equations in R2 involving supercritical exponential growth[J]. Electronic Research Archive, 2024, 32(9): 5341-5356. doi: 10.3934/era.2024247
[1] | Wen Huang, Leiye Xu, Shengnan Xu . Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29(4): 2819-2827. doi: 10.3934/era.2021015 |
[2] | Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077 |
[3] | Mingtao Cui, Wang Li, Guang Li, Xiaobo Wang . The asymptotic concentration approach combined with isogeometric analysis for topology optimization of two-dimensional linear elasticity structures. Electronic Research Archive, 2023, 31(7): 3848-3878. doi: 10.3934/era.2023196 |
[4] | Julian Gerstenberg, Ralph Neininger, Denis Spiegel . On solutions of the distributional Bellman equation. Electronic Research Archive, 2023, 31(8): 4459-4483. doi: 10.3934/era.2023228 |
[5] | Natália Bebiano, João da Providência, Wei-Ru Xu . Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians. Electronic Research Archive, 2022, 30(5): 1864-1880. doi: 10.3934/era.2022094 |
[6] | Xiang Xu . Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113 |
[7] | Agustín Moreno Cañadas, Pedro Fernando Fernández Espinosa, José Gregorio Rodríguez-Nieto, Odette M Mendez, Ricardo Hugo Arteaga-Bastidas . Extended Brauer analysis of some Dynkin and Euclidean diagrams. Electronic Research Archive, 2024, 32(10): 5752-5782. doi: 10.3934/era.2024266 |
[8] | Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012 |
[9] | Zhenhua Wang, Jinlong Yang, Chuansheng Dong, Xi Zhang, Congqin Yi, Jiuhu Sun . SSMM-DS: A semantic segmentation model for mangroves based on Deeplabv3+ with swin transformer. Electronic Research Archive, 2024, 32(10): 5615-5632. doi: 10.3934/era.2024260 |
[10] | Suhua Wang, Zhen Huang, Bingjie Zhang, Xiantao Heng, Yeyi Jiang, Xiaoxin Sun . Plot-aware transformer for recommender systems. Electronic Research Archive, 2023, 31(6): 3169-3186. doi: 10.3934/era.2023160 |
In this work, we investigated the existence of nontrivial weak solutions for the equation
−div(w(x)∇u) = f(x,u),x∈R2,
where w(x) is a positive radial weight, the nonlinearity f(x,s) possesses growth at infinity of the type exp((α0+h(|x|))|s|2/(1−β)), with α0>0, 0<β<1 and h is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.
Throughout this paper, by a topological dynamical system
Given a TDS
Define
E(T)={hμ(T):μ∈Me(X,T)} |
where
It is interesting to consider the case when
[0,htop(f))⊂E(f) | (1.1) |
for any
Conjecture 1.1 (Katok). Let
We need to point out that Katok's conjecture implies that any positive entropy smooth system is not uniquely ergodic, though whether or not a smooth diffeomorphism of positive topological entropy can be uniquely ergodic is still in question (see [5] for Herman's example: positive entropy minimal
In this paper, we study intermediate entropy for affine transformations of nilmanifolds. Throughout this paper, by a nilmanifold
Theorem 1.2. Let
Following Lind [11], we say that an affine transformation of a nilmanifold is quasi-hyperbolic if its associated matrix has no eigenvalue 1. As an application of Theorem 1.2, one has the following.
Theorem 1.3. Let
The paper is organized as follows. In Section 2, we introduce some notions. In Section 3, we prove Theorem 1.2 and Theorem 1.3.
In this section, we recall some notions of entropy, nilmanifold and upper semicontinuity of entropy map.
We summarize some basic concepts and useful properties related to topological entropy and measure-theoretic entropy here.
Let
Definition 2.1. Let
htop(T,U)=limn→+∞1nlogN(⋁n−1i=0T−iU), |
where
htop(T)=supUhtop(T,U), |
where supremum is taken over all finite open covers of
A subset
hd(T,K)=limϵ→0lim supn→∞logs(T)n(ϵ,K)n. |
Let
hd(T,Z)=supK⊂ZK is compacthd(T,K). |
And the Bowen's topological entropy of a TDS
Next we define measure-theoretic entropy. Let
hμ(T,ξ)=limn→+∞1nHμ(⋁n−1i=0T−iξ), |
where
hμ(T)=supξ∈PXhμ(T,ξ). |
The basic relationship between topological entropy and measure-theoretic entropy is given by the variational principle [12].
Theorem 2.2 (The variational principle). Let
htop(T)=sup{hμ(T):μ∈M(X,T)}=sup{hμ(T):μ∈Me(X,T)}. |
A factor map
supμ∈M(X,T)π(μ)=νhμ(T)=hν(S)+∫Yhd(T,π−1(y))dν(y) | (2.1) |
where
Let
The following is from [1,Theorem 19].
Theorem 2.3. Let
Remark 2.4. (1) In the above situation, Bowen shows that
hd(T,π−1(y))=htop(τ) for any y∈Y, | (2.2) |
where
(2) If
hd(T,π−1(y))=htop(τ) for any y∈G/H, | (2.3) |
where
Given a TDS
∫Me(X,T)∫Xf(x)dm(x)dρ(m)=∫Xf(x)dμ(x) for all f∈C(X). |
We write
Theorem 2.5. Let
hμ(T)=∫Me(X,T)hm(T)dρ(m). |
We say that the entropy map of
limn→∞μn=μ implies lim supn→∞hμn(T)≤hμ(T). |
We say that a TDS
limδ→0supx∈Xhd(T,Γδ(x))=0. |
Here for each
Γδ(x):={y∈X:d(Tjx,Tjy)<δ for all j≥0}. |
The result of Misiurewicz [12,Corollary 4.1] gives a sufficient condition for upper semicontinuity of the entropy map.
Theorem 2.6. Let
The result of Buzzi [3] gives a sufficient condition for asymptotic entropy expansiveness.
Theorem 2.7. Let
In this section, we prove our main results. In the first subsection, we prove that Katok's conjecture holds for affine transformations of torus. In the second subsection, we show some properties of metrics on nilmanifolds. In the last subsection, we prove Theorem 1.2 and Theorem 1.3.
We say that a topological dynamical system
Theorem 3.1. Let
Proof. We think of
τ(x)=A(x)+b for each x∈Tm. |
Let
htop(τ)=∫Me(Tm,τ)hν(τ)dρ(ν). |
By variational principle, there exists
Case 1.
π(x)=x−q for each x∈Tm. |
Then
Case 2.
H={x∈Tm:(A−id)mx=0}. |
Then
This ends the proof of Theorem 3.1.
Let
If
We fix an
τ(gΓ)=g0A(g)Γ for each g∈G |
where
Aj:Gj−1Γ/GjΓ→Gj−1Γ/GjΓ:Aj(hGjΓ)=A(h)GjΓ for each h∈Gj−1 |
and
τj:G/GjΓ→G/GjΓ:τj(hGjΓ)=g0A(h)GjΓ for each h∈G. |
It is easy to see that
For each
πj+1(gGj+1Γ)=gGjΓ for each g∈G. | (3.1) |
It is easy to see that
Lemma 3.2. For each
Proof. In Remark 2.4 (2), we let
hdj+1(τj+1,π−1j+1(y))=htop(Aj+1)=bj+1 for every y∈G/GjΓ. |
This ends the proof of Lemma 3.2.
The following result is immediately from Lemma 3.2, (2.1) and Theorem 2.7.
Lemma 3.3. For
We have the following.
Corollary 3.4.
Proof. We prove the corollary by induction on
htop(τj+1)=supμ∈M(G/Gj+1Γ,τj+1)hμ(τj+1)≤supμ∈M(G/GjΓ,τj)(hμ(τj)+∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y))≤htop(τj)+supμ∈M(G/GjΓ,τj)∫G/GjΓhdj+1(τj+1,π−1j+1(y))dμ(y)=j∑i=1bi+bj+1=j+1∑i=1bi, |
where we used Lemma 3.2. On the other hand, by Lemma 3.3 there exists
Remark 3.5. We remark that the topological entropy of
htop(τ)=hd(τ)=∑|λi|>1log|λi| |
where
Lemma 3.6. For
Proof. We fix
hν(τj+1)=supμ∈M(G/Gj+1Γ,τj+1)πj+1(μ)=νjhμ(τj+1)=hνj(τj)+bj+1. |
We fix such
ν=∫Me(G/Gj+1Γ,τj+1)mdρ(m). |
Then by property of ergodic decomposition, one has
ρ({m∈Me(G/Gj+1Γ,τj+1):πj+1(m)=νj})=1. |
Therefore, for
hm(τj+1)≤hν(τj+1)=hνj(τj)+bj+1. |
Hence by Theorem 2.5, one has
hνj(τj)+bj+1=hν(τj+1)=∫Me(G/Gj+1Γ,τj+1)hm(τj+1)dρ(m)≤hνj(τj)+bj+1. |
We notice that the equality holds only in the case
hνj+1(τj+1)=hνj(τj)+bj+1 and πj+1(νj+1)=νj. |
This ends the proof of Lemma 3.6.
Now we are ready to prove our main results.
Proof of Theorem 1.2. Firstly we assume that
s+1∑j=i+1bj≤a≤s+1∑j=ibj. |
Since
τi(pGi−1Γ/GiΓ)=pγGi−1Γ/GiΓ⊂p[γ,Gi−1]Gi−1γΓ/GiΓ⊂pGi−1Γ/GiΓ, |
where we used the fact
π(phGiΓ)=hGiΓ for each h∈Gi−1. |
Then for each
π∘τi(phGiΓ)=p−1g0A(p)A(h)GiΓ=γA(h)GiΓ=A(h)γ[γ,A(h)]GiΓ=A(h)GiΓ |
where we used the fact
(pGi−1Γ/GiΓ,τi) topologically conjugates to (Gi−1Γ/GiΓ,Ai). |
Notice that
hμa(τ)=hνs+1(τs+1)=hνi(τi)+s+1∑j=i+1bj=a. |
Thus
Now we assume that
This ends the proof of Theorem 1.2.
Proposition 3.7. Let
Proof. We prove the proposition by induction on
gA(p)=gA(˜p)A(p′)=˜pˉg−1ˉgp′=˜pp′=p. |
By induction, we end the proof of Proposition 3.7.
Proof of Theorem 1.3. This comes immediately from Proposition 3.7 and Theorem 1.2.
W. Huang was partially supported by NNSF of China (11731003, 12031019, 12090012). L. Xu was partially supported by NNSF of China (11801538, 11871188, 12031019) and the USTC Research Funds of the Double First-Class Initiative.
[1] | H. Brézis, Elliptic equations with limiting Sobolev exponents, Comm. Pure Appl. Math., 39 (1986), 517–539. |
[2] |
H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
![]() |
[3] | T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555–3561. |
[4] | A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Henri Poincaré, 2 (1985), 463–470. |
[5] |
W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differ. Equations, 3 (1998), 441–472. https://doi.org/10.57262/ade/1366399849 doi: 10.57262/ade/1366399849
![]() |
[6] |
W. Y. Ding, W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283–308. https://doi.org/10.1007/BF00282336. doi: 10.1007/BF00282336
![]() |
[7] |
J. P. G. Azorero, I. P. Alonso, Existence and non-uniqueness for the p-Laplacian, Comm. Partial Differ. Equations, 12 (1987), 1389–1430. https://doi.org/10.1080/03605308708820534 doi: 10.1080/03605308708820534
![]() |
[8] |
J. V. Gonçalves, C. O. Alves, Existence of positive solutions for m-Laplacian equations in RN involving critical Sobolev exponents, Nonlinear Anal., 32 (1998), 53–70. https://doi.org/10.1016/S0362-546X(97)00452-5 doi: 10.1016/S0362-546X(97)00452-5
![]() |
[9] |
E. A. B de Silva, S. H. M. Soares, Quasilinear Dirichlet problems in RN with critical growth, Nonlinear Anal., 43 (2001), 1–20. https://doi.org/10.1016/S0362-546X(99)00128-5 doi: 10.1016/S0362-546X(99)00128-5
![]() |
[10] | A. Adimurthi, Existence of positive solutions of the semilinear Dirichlet Problem with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa, 17 (1990), 393–413. |
[11] |
J. M. do Ó, N-Laplacian equations in RN with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315. https://doi.org/10.1155/S1085337597000419 doi: 10.1155/S1085337597000419
![]() |
[12] |
L. Baldelli, R. Filippucci, Existence of solutions for critical (p,q)-Laplacian equations in RN, Commun. Contemp. Math., 9 (2022), 2150109. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091
![]() |
[13] |
L. Gongbao, Z. Guo, Multiple solutions for the p & q-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 903–918. https://doi.org/10.1016/S0252-9602(09)60077-1 doi: 10.1016/S0252-9602(09)60077-1
![]() |
[14] |
M. Calanchi, B. Ruf, On a Trudinger-Moser type inequality with logarithmic weights, J. Differ. Equations, 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019
![]() |
[15] |
Y. R. S. Leuyacc, Standing waves for quasilinear Schrodinger equations involving double exponential growth, AIMS Math., 8 (2023), 1682?1695. https://doi.org/10.3934/math.2023086 doi: 10.3934/math.2023086
![]() |
[16] |
Y. R. S. Leuyacc, Hamiltonian elliptic system involving nonlinearities with supercritical exponential growth, AIMS Math., 8 (2023), 19121–19141. https://doi.org/10.3934/math.2023976 doi: 10.3934/math.2023976
![]() |
[17] |
Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems involving double exponential growth in dimension two, Partial Differ. Equations Appl. Math., 10 (2024), 100681. https://doi.org/10.1016/j.padiff.2024.100681 doi: 10.1016/j.padiff.2024.100681
![]() |
[18] | S. Pohožaev, The Sobolev embedding in the special case pl=n, in Proceedings of the Technical Science Conference on Advance Science Research Mathematics Sections, (1965), 158–170. |
[19] | N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. |
[20] | V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808. |
[21] | J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970), 1077–1092. |
[22] | S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of R2 involving critical exponent, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 27 (1990), 481–504. |
[23] |
D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equations, 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
![]() |
[24] |
D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R2, Comm. Partial Differ. Equations, 17 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848
![]() |
[25] |
M. de Souza, J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Math. Nachr., 284 (2011), 1754–1776. https://doi.org/10.1016/j.aml.2012.05.007 doi: 10.1016/j.aml.2012.05.007
![]() |
[26] |
A. Alvino, V. Ferone, G. Trombetti, Moser-Type Inequalities in Lorentz Spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
![]() |
[27] |
H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differ. Equations, 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154 doi: 10.1080/03605308008820154
![]() |
[28] |
D. Cassani, C. Tarsi, A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in RN, Asymptotic Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
![]() |
[29] |
G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
![]() |
[30] |
Y. R. S. Leuyacc, Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two, AIMS Math., 8 (2023), 18354–18372. https://doi.org/10.3934/math.2023933 doi: 10.3934/math.2023933
![]() |
[31] |
Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equations, 59 (2020), 69. https://doi.org/10.1007/s00526-020-1705-y doi: 10.1007/s00526-020-1705-y
![]() |
[32] |
S. Aouaoui, A new Trudinger-Moser type inequality and an application to some elliptic equation with doubly exponential nonlinearity in the whole space R2, Arch. Math., 114 (2020), 199–214. https://doi.org/10.1007/s00013-019-01386-7 doi: 10.1007/s00013-019-01386-7
![]() |
[33] | O. Kavian, Introduction à la théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, Paris, 1993. |
[34] |
F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2, J. Math. Anal. Appl., 409 (2014), 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005. doi: 10.1016/j.jmaa.2013.07.005
![]() |
[35] |
B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in R2, J. Funct. Anal., 219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013
![]() |
[36] | B. Ruf, F. Sani, Ground states for elliptic equations with exponential critical growth, in Geometric Properties for Parabolic and Elliptic PDE's (eds. R. Magnanini, S. Sakaguchi, A. Alvino), Springer INdAM Series, Springer, Milano, (2013), 321–349. |
[37] |
D. Cassani, C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differ. Equations, 54 (2015), 1673–1704. https://doi.org/10.1007/s00526-015-0840-3 doi: 10.1007/s00526-015-0840-3
![]() |
[38] |
Y. R. S. Leuyacc, S. H. M. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
![]() |
[39] |
S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
![]() |
[40] | H. Zhao, Y. Guo, Y. Shen, Singular type trudinger-moser inequalities with logarithmic weights and the existence of extremals, Mediterr. J. Math., 21 (2024), 50. https://doi.org/0.1007/s00009-023-02582-0 |
[41] |
Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, Boundary Value Probl., 39 (2023), 17. https://doi.org/10.1186/s13661-023-01725-2. doi: 10.1186/s13661-023-01725-2
![]() |
[42] |
W. A. Strauss, Existence of solitary waves in higher dimension, Commun. Math. Phys., 55 (1977), 149–162. https://doi.org/10.1007/BF01626517 doi: 10.1007/BF01626517
![]() |
[43] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI, 1986. |
[44] | M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996. |
1. | XIAOBO HOU, XUETING TIAN, Conditional intermediate entropy and Birkhoff average properties of hyperbolic flows, 2024, 44, 0143-3857, 2257, 10.1017/etds.2023.110 | |
2. | Peng Sun, Ergodic measures of intermediate entropies for dynamical systems with the approximate product property, 2025, 465, 00018708, 110159, 10.1016/j.aim.2025.110159 | |
3. | Yi Shi, Xiaodong Wang, Measures of intermediate pressures for geometric Lorenz attractors, 2025, 436, 00220396, 113280, 10.1016/j.jde.2025.113280 |