Loading [MathJax]/jax/output/SVG/jax.js
Research article

Dynamics and density function for a stochastic anthrax epidemic model

  • Received: 20 November 2023 Revised: 29 January 2024 Accepted: 02 February 2024 Published: 19 February 2024
  • In response to the pressing need to understand anthrax biology, this paper focused on the dynamical behavior of the anthrax model under environmental influence. We defined the threshold parameter Rs, when Rs>1; the disease was almost certainly present and the model exists a unique ergodic stationary distribution. Subsequently, statistical features were employed to analyze the dynamic behavior of the disease. The exact representation of the probability density function in the vicinity of the quasi-equilibrium point was determined by the Fokker-Planck equation. Finally, some numerical simulations validated our theoretical results.

    Citation: Bing Zhao, Shuting Lyu, Qimin Zhang. Dynamics and density function for a stochastic anthrax epidemic model[J]. Electronic Research Archive, 2024, 32(3): 1574-1617. doi: 10.3934/era.2024072

    Related Papers:

    [1] Wei Liu, Qinghua Zuo, Chen Xu . Finite-time and global Mittag-Leffler stability of fractional-order neural networks with S-type distributed delays. AIMS Mathematics, 2024, 9(4): 8339-8352. doi: 10.3934/math.2024405
    [2] Li Wan, Qinghua Zhou, Hongbo Fu, Qunjiao Zhang . Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays. AIMS Mathematics, 2021, 6(8): 8030-8043. doi: 10.3934/math.2021466
    [3] Snezhana Hristova, Antonia Dobreva . Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay. AIMS Mathematics, 2020, 5(4): 3809-3824. doi: 10.3934/math.2020247
    [4] Jin Gao, Lihua Dai . Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775
    [5] Yucai Ding, Hui Liu . A new fixed-time stability criterion for fractional-order systems. AIMS Mathematics, 2022, 7(4): 6173-6181. doi: 10.3934/math.2022343
    [6] Qinghua Zhou, Li Wan, Hongbo Fu, Qunjiao Zhang . Exponential stability of stochastic Hopfield neural network with mixed multiple delays. AIMS Mathematics, 2021, 6(4): 4142-4155. doi: 10.3934/math.2021245
    [7] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [8] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [9] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [10] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
  • In response to the pressing need to understand anthrax biology, this paper focused on the dynamical behavior of the anthrax model under environmental influence. We defined the threshold parameter Rs, when Rs>1; the disease was almost certainly present and the model exists a unique ergodic stationary distribution. Subsequently, statistical features were employed to analyze the dynamic behavior of the disease. The exact representation of the probability density function in the vicinity of the quasi-equilibrium point was determined by the Fokker-Planck equation. Finally, some numerical simulations validated our theoretical results.



    Let W be a set and H:WW be a mapping. A point wW is called a fixed point of H if w=Hw. Fixed point theory plays a fundamental role in functional analysis (see [15]). Shoaib [17] introduced the concept of α-dominated mapping and obtained some fixed point results (see also [1,2]). George et al. [11] introduced a new space and called it rectangular b-metric space (r.b.m. space). The triangle inequality in the b-metric space was replaced by rectangle inequality. Useful results on r.b.m. spaces can be seen in ([5,6,8,9,10]). Ćirić introduced new types of contraction and proved some metrical fixed point results (see [4]). In this article, we introduce Ćirić type rational contractions for α -dominated mappings in r.b.m. spaces and proved some metrical fixed point results. New interesting results in metric spaces, rectangular metric spaces and b-metric spaces can be obtained as applications of our results.

    Definition 1.1. [11] Let U be a nonempty set. A function dlb:U×U[0,) is said to be a rectangular b-metric if there exists b1 such that

    (ⅰ) dlb(θ,ν)=dlb(ν,θ);

    (ⅱ) dlb(θ,ν)=0 if and only if θ=ν;

    (ⅲ) dlb(θ,ν)b[dlb(θ,q)+dlb(q,l)+dlb(l,ν)] for all θ,νU and all distinct points q,lU{θ,ν}.

    The pair (U,dlb) is said a rectangular b-metric space (in short, r.b.m. space) with coefficient b.

    Definition 1.2. [11] Let (U,dlb) be an r.b.m. space with coefficient b.

    (ⅰ) A sequence {θn} in (U,dlb) is said to be Cauchy sequence if for each ε>0, there corresponds n0N such that for all n,mn0 we have dlb(θm,θn)<ε or limn,m+dlb(θn,θm)=0.

    (ⅱ) A sequence {θn} is rectangular b-convergent (for short, (dlb)-converges) to θ if limn+dlb(θn,θ)=0. In this case θ is called a (dlb)-limit of {θn}.

    (ⅲ) (U,dlb) is complete if every Cauchy sequence in Udlb-converges to a point θU.

    Let ϖb, where b1, denote the family of all nondecreasing functions δb:[0,+)[0,+) such that +k=1bkδkb(t)<+ and bδb(t)<t for all t>0, where δkb is the kth iterate of δb. Also bn+1δn+1b(t)=bnbδb(δnb(t))<bnδnb(t).

    Example 1.3. [11] Let U=N. Define dlb:U×UR+{0} such that dlb(u,v)=dlb(v,u) for all u,vU and α>0

    dlb(u,v)={0, if u=v;10α, if u=1, v=2;α, if u{1,2} and v{3};2α, if u{1,2,3} and v{4};3α, if u or v{1,2,3,4} and uv.

    Then (U,dlb) is an r.b.m. space with b=2>1. Note that

    d(1,4)+d(4,3)+d(3,2)=5α<10α=d(1,2).

    Thus dlb is not a rectangular metric.

    Definition 1.4. [17] Let (U,dlb) be an r.b.m. space with coefficient b. Let S:UU be a mapping and α:U×U[0,+). If AU, we say that the S is α-dominated on A, whenever α(i,Si)1 for all iA. If A=U, we say that S is α-dominated.

    For θ,νU, a>0, we define Dlb(θ,ν) as

    Dlb(θ,ν)=max{dlb(θ,ν),dlb(θ,Sθ).dlb(ν,Sν)a+dlb(θ,ν),dlb(θ,Sθ),dlb(ν,Sν)}.

    Now, we present our main result.

    Theorem 2.1. Let (U,dlb) be a complete r.b.m. space with coefficient b, α:U×U[0,),S:UU, {θn} be a Picard sequence and S be a α-dominated mapping on {θn}. Suppose that, for some δbϖb, we have

    dlb(Sθ,Sν)δb(Dlb(θ,ν)), (2.1)

    for all θ,ν{θn} with α(θ,ν)1. Then {θn} converges to θU. Also, if (2.1) holds for θ and α(θn,θ)1 for all nN{0}, then S has a fixed point θ in U.

    Proof. Let θ0U be arbitrary. Define the sequence {θn} by θn+1=Sθn for all nN{0}. We shall show that {θn} is a Cauchy sequence. If θn=θn+1, for some nN, then θn is a fixed point of S. So, suppose that any two consecutive terms of the sequence are not equal. Since S:UU be an α-dominated mapping on {θn}, α(θn,Sθn)1 for all nN{0} and then α(θn,θn+1)1 for all nN{0}. Now by using inequality (2.1), we obtain

    dlb(θn+1,θn+2)=dlb(Sθn,Sθn+1)δb(Dlb(θn,θn+1))δb(max{dlb(θn,θn+1),dlb(θn,θn+1).dlb(θn+1,θn+2)a+dlb(θn,θn+1),dlb(θn,θn+1),dlb(θn+1,θn+2)})δb(max{dlb(θn,θn+1),dlb(θn+1,θn+2)}).

    If max{dlb(θn,θn+1),dlb(θn+1,θn+2)}=dlb(θn+1,θn+2), then

    dlb(θn+1,θn+2)δb(dlb(θn+1,θn+2))bδb(dlb(θn+1,θn+2)).

    This is the contradiction to the fact that bδb(t)<t for all t>0. So

    max{dlb(θn,θn+1),dlb(θn+1,θn+2)}=dlb(θn,θn+1).

    Hence, we obtain

    dlb(θn+1,θn+2)δb(dlb(θn,θn+1))δ2b(dlb(θn1,θn))

    Continuing in this way, we obtain

    dlb(θn+1,θn+2)δn+1b(dlb(θ0,θ1)). (2.2)

    Suppose for some n,mN with m>n, we have θn=θm. Then by (2.2)

    dlb(θn,θn+1)=dlb(θn,Sθn)=dlb(θm,Sθm)=dlb(θm,θm+1)δmnb(dlb(θn,θn+1))<bδb(dlb(θn,θn+1))

    As dlb(θn,θn+1)>0, so this is not true, because bδb(t)<t for all t>0. Therefore, θnθm for any n,mN. Since +k=1bkδkb(t)<+, for some νN, the series +k=1bkδkb(δν1b(dlb(θ0,θ1))) converges. As bδb(t)<t, so

    bn+1δn+1b(δν1b(dlb(θ0,θ1)))<bnδnb(δν1b(dlb(θ0,θ1))), for all nN.

    Fix ε>0. Then ε2=ε>0. For ε, there exists ν(ε)N such that

    bδb(δν(ε)1b(dlb(θ0,θ1)))+b2δ2b(δν(ε)1b(dlb(θ0,θ1)))+<ε (2.3)

    Now, we suppose that any two terms of the sequence {θn} are not equal. Let n,mN with m>n>ν(ε). Now, if m>n+2,

    dlb(θn,θm)b[dlb(θn,θn+1)+dlb(θn+1,θn+2)+dlb(θn+2,θm)]b[dlb(θn,θn+1)+dlb(θn+1,θn+2)]+b2[dlb(θn+2,θn+3)+dlb(θn+3,θn+4)+dlb(θn+4,θm)]b[δnb(dlb(θ0,θ1))+δn+1b(dlb(θ0,θ1))]+b2[δn+2b(dlb(θ0,θ1))+δn+3b(dlb(θ0,θ1))]+b3[δn+4b(dlb(θ0,θ1))+δn+5b(dlb(θ0,θ1))]+bδnb(dlb(θ0,θ1))+b2δn+1b(dlb(θ0,θ1))+b3δn+2b(dlb(θ0,θ1))+=bδb(δn1b(dlb(θ0,θ1)))+b2δ2b(δn1b(dlb(θ0,θ1)))+.

    By using (2.3), we have

    dlb(θn,θm)<bδb(δν(ε)1b(dlb(θ0,θ1)))+b2δ2b(δν(ε)1b(dlb(θ0,θ1)))+<ε<ε.

    Now, if m=n+2, then we obtain

    dlb(θn,θn+2)b[dlb(θn,θn+1)+dlb(θn+1,θn+3)+dlb(θn+3,θn+2)]b[dlb(θn,θn+1)+b[dlb(θn+1,θn+2)+dlb(θn+2,θn+4)+dlb(θn+4,θn+3)]+dlb(θn+3,θn+2)]bdlb(θn,θn+1)+b2dlb(θn+1,θn+2)+bdlb(θn+2,θn+3)+b2dlb(θn+3,θn+4)+b3[dlb(θn+2,θn+3)+dlb(θn+3,θn+5)+dlb(θn+5,θn+4)]bdlb(θn,θn+1)+b2dlb(θn+1,θn+2)+(b+b3)dlb(θn+2,θn+3)+b2dlb(θn+3,θn+4)+b3dlb(θn+5,θn+4)+b4[dlb(θn+3,θn+4)+dlb(θn+4,θn+6)+dlb(θn+6,θn+5)]bdlb(θn,θn+1)+b2dlb(θn+1,θn+2)+(b+b3)dlb(θn+2,θn+3)+(b2+b4)dlb(θn+3,θn+4)+b3dlb(θn+5,θn+4)+b4dlb(θn+6,θn+5)+b5[dlb(θn+4,θn+5)+dlb(θn+5,θn+7)+dlb(θn+7,θn+6)]bdlb(θn,θn+1)+b2dlb(θn+1,θn+2)+(b+b3)dlb(θn+2,θn+3)+(b2+b4)dlb(θn+3,θn+4)+(b3+b5)dlb(θn+4,θn+5)+<2[bdlb(θn,θn+1)+b2dlb(θn+1,θn+2)+b3dlb(θn+2,θn+3)+b4dlb(θn+3,θn+4)+b5dlb(θn+4,θn+5)+]2[bδnb(dlb(θ0,θ1))+b2δn+1b(dlb(θ0,θ1))+b3δn+2b(dlb(θ0,θ1))+]<2[bδb(δν(ε)1b(dlb(θ0,θ1)))+b2δ2b(δν(ε)1b(dlb(θ0,θ1)))+]<2ε=ε.

    It follows that

    limn,m+dlb(θn,θm)=0. (2.4)

    Thus {θn} is a Cauchy sequence in (U,dlb). As (U,dlb) is complete, so there exists θ in U such that {θn} converges to θ, that is,

    limn+dlb(θn,θ)=0. (2.5)

    Now, suppose that dlb(θ,Sθ)>0. Then

    dlb(θ,Sθ)b[dlb(θ,θn)+dlb(θn,θn+1)+dlb(θn+1,Sθ)b[dlb(θ,θn+1)+dlb(θn,θn+1)+dlb(Sθn,Sθ).

    Since α(θn,θ)1, we obtain

    dlb(θ,Sθ)bdlb(θ,θn+1)+bdlb(θn,θn+1)+bδb(max{dlb(θn,θ),dlb(θ,Sθ).dlb(θn,θn+1)a+dlb(θn,θ), dlb(θn,θn+1) dlb(θ,Sθ)}).

    Letting n+, and using the inequalities (2.4) and (2.5), we obtain dlb(θ,Sθ)bδb(dlb(θ,Sθ)). This is not true, because bδb(t)<t for all t>0 and hence dlb(θ,Sθ)=0 or θ=Sθ. Hence S has a fixed point θ in U.

    Remark 2.2. By taking fourteen different proper subsets of Dlb(θ,ν), we can obtainvnew results as corollaries of our result in a complete r.b.m. space with coefficient b.

    We have the following result without using α-dominated mapping.

    Theorem 2.3. Let (U,dlb) be a complete r.b.m. space with coefficient b,S:UU, {θn} be a Picard sequence. Suppose that, for some δbϖb, we have

    dlb(Sθ,Sν)δb(Dlb(θ,ν)) (2.6)

    for all θ,ν{θn}. Then {θn} converges to θU. Also, if (2.6) holds for θ, then S has a fixed point θ in U.

    We have the following result by taking δb(t)=ct, tR+ with 0<c<1b without using α-dominated mapping.

    Theorem 2.4. Let (U,dlb) be a complete r.b.m. space with coefficient b, S:UU, {θn} be a Picard sequence. Suppose that, for some 0<c<1b, we have

    dlb(Sθ,Sν)c(Dlb(θ,ν)) (2.7)

    for all θ,ν{θn}. Then {θn} converges to θU. Also, if (2.7) holds for θ, then S has a fixed point θ in U.

    Ran and Reurings [16] gave an extension to the results in fixed point theory and obtained results in partially ordered metric spaces. Arshad et al. [3] introduced -dominated mappings and established some results in an ordered complete dislocated metric space. We apply our result to obtain results in ordered complete r.b.m. space.

    Definition 2.5. (U,,dlb) is said to be an ordered complete r.b.m. space with coefficient b if

    (ⅰ) (U,) is a partially ordered set.

    (ⅱ) (U,dlb) is an r.b.m. space.

    Definition 2.6. [3] Let U be a nonempty set, is a partial order on θ. A mapping S:UU is said to be -dominated on A if aSa for each aAθ. If A=U, then S:UU is said to be -dominated.

    We have the following result for -dominated mappings in an ordered complete r.b.m. space with coefficient b.

    Theorem 2.7. Let (U,,dlb) be an ordered complete r.b.m. space with coefficient b, S:UU,{θn} be a Picard sequence and S be a -dominated mapping on {θn}. Suppose that, for some δbϖb, we have

    dlb(Sθ,Sν)δb(Dlb(θ,ν)), (2.8)

    for all θ,ν{θn} with θν. Then {θn} converges to θU. Also, if (2.8) holds for θ and θnθ for all nN{0}. Then S has a fixed point θ in U.

    Proof. Let α:U×U[0,+) be a mapping defined by α(θ,ν)=1 for all θ,νU with θν and α(θ,ν)=411 for all other elements θ,νU. As S is the dominated mappings on {θn}, so θSθ for all θ{θn}. This implies that α(θ,Sθ)=1 for all θ{θn}. So S:UU is the α-dominated mapping on {θn}. Moreover, inequality (2.8) can be written as

    dlb(Sθ,Sν)δb(Dlb(θ,ν))

    for all elements θ,ν in {θn} with α(θ,ν)1. Then, as in Theorem 2.1, {θn} converges to θU. Now, θnθ implies α(θn,θ)1. So all the conditions of Theorem 2.1 are satisfied. Hence, by Theorem 2.1, S has a fixed point θ in U.

    Now, we present an example of our main result. Note that the results of George et al. [11] and all other results in rectangular b-metric space are not applicable to ensure the existence of the fixed point of the mapping given in the following example.

    Example 2.8. Let U=AB, where A={1n:n{2,3,4,5}} and B=[1,]. Define dl:U×U[0,) such that dl(θ,ν)=dl(ν,θ) for θ,νU and

    {dl(12,13)=dl(14,15)=0.03dl(12,15)=dl(13,14)=0.02dl(12,14)=dl(15,13)=0.6dl(θ,ν)=|θν|2    otherwise

    be a complete r.b.m. space with coefficient b=4>1 but (U,dl) is neither a metric space nor a rectangular metric space. Take δb(t)=t10, then bδb(t)<t. Let S:UU be defined as

    Sθ={15        ifθA13        ifθ=19θ100+85 otherwise.

    Let θ0=1. Then the Picard sequence {θn} is {1,13,15,15,15,}. Define

    α(θ,ν)={85        ifθ,ν{θn}47            otherwise.

    Then S is an α-dominated mapping on {θn}. Now, S satisfies all the conditions of Theorem 2.1. Here 15 is the fixed point in U.

    Jachymski [13] proved the contraction principle for mappings on a metric space with a graph. Let (U,d) be a metric space and represents the diagonal of the cartesian product U×U. Suppose that G be a directed graph having the vertices set V(G) along with U, and the set E(G) denoted the edges of U included all loops, i.e., E(G)⊇△. If G has no parallel edges, then we can unify G with pair (V(G),E(G)). If l and m are the vertices in a graph G, then a path in G from l to m of length N(NN) is a sequence {θi}Ni=o of N+1 vertices such that lo=l,lN=m and (ln1,ln)E(G) where i=1,2,N (see for detail [7,8,12,14,18,19]). Recently, Younis et al. [20] introduced the notion of graphical rectangular b-metric spaces (see also [5,6,21]). Now, we present our result in this direction.

    Definition 3.1. Let θ be a nonempty set and G=(V(G),E(G)) be a graph such that V(G)=U and AU. A mapping S:UU is said to be graph dominated on A if (θ,Sθ)E(G) for all θA.

    Theorem 3.2. Let (U,dlb) be a complete rectangular b -metric space endowed with a graph G, {θn} be a Picard sequence and S:UU be a graph dominated mapping on {θn}. Suppose that the following hold:

    (i) there exists δbϖb such that

    dlb(Sθ,Sν)δb(Dlb(θ,ν)), (3.1)

    for all θ,ν{θn} and (θn,ν)E(G). Then (θn,θn+1)E(G) and {θn} converges to θ. Also, if (3.1) holds for θ and (θn,θ)E(G) for all nN{0}, then S has a fixed point θ in U.

    Proof. Define α:U×U[0,+) by

    α(θ,ν)={1, ifθ,νU, (θ,ν)E(G)14,                  otherwise.

    Since S is a graph dominated on {θn}, for θ{θn},(θ,Sθ)E(G). This implies that α(θ,Sθ)=1 for all θ{θn}. So S:UU is an α-dominated mapping on {θn}. Moreover, inequality (3.1) can be written as

    dlb(Sθ,Sν)δb(Dlb(θ,ν)),

    for all elements θ,ν in {θn} with α(θ,ν)1. Then, by Theorem 2.1, {θn} converges to θU. Now, (θn,θ)E(G) implies that α(θn,θ)1. So all the conditions of Theorem 2.1 are satisfied. Hence, by Theorem 2.1, S has a fixed point θ in U.

    The authors would like to thank the Editor, the Associate Editor and the anonymous referees for sparing their valuable time for reviewing this article. The thoughtful comments of reviewers are very useful to improve and modify this article.

    The authors declare that they have no competing interests.



    [1] N. A. Logan, M. Rodríguez‐Díaz, Bacillus spp. and related genera, Princ. Pract. of Clini. Bacteriol., (2006), 139–158. https://doi.org/10.1002/9780470017968.ch9
    [2] P. R. Murray, K. S. Rosenthal, M. A. Pfaller, Medical Microbiology, Elsevier Health Sciences, 2021.
    [3] P. C. Hanna, Ireland J A W, Understanding Bacillus anthracis pathogenesis, Trends. Microbiol., (1999), 180–182. https://doi.org/10.1016/S0966-842X(99)01507-3
    [4] M. E. Bales, A. L. Dannenberg, P. S. Brachman, A. F. Kaufmann, P. C. Klatsky, D. A. Ashford, Epidemiologic responses to anthrax outbreaks: a review of field investigations, 1950–2001, Emerging Infect. Dis., 8 (2002), 1163. https://doi.org/10.3201/eid0810.020223 doi: 10.3201/eid0810.020223
    [5] J. R. Ezzel, W. C. L. JW, Bacillus anthracis, Pathog. Bact. Infect. Anim., (1993), 36–43. https://doi.org/10.1137/0149110
    [6] N. A. Suverly, B. Kvasnicka, R. Torrell, Anthrax: a guide for livestock producers, University of Nevada-Reno, 2001. https://doi.org/10.1111/j.1863-2378.2008.01135.x
    [7] C. M. Saad-Roy, P. Van den Driessche, A. A. Yakubu, A mathematical model of anthrax transmission in animal populations, Bull. Math. Biol., 79 (2017), 303–324. https://doi.org/10.1007/s11538-016-0238-1 doi: 10.1007/s11538-016-0238-1
    [8] S. S. Lewerin, M. Elvander, T. Westermark, L. N. Hartzell, A. K. Norström, S. Ehrs, et al., Anthrax outbreak in a Swedish beef cattle herd-1st case in 27 years: Case report, Acta Vet. Scand., 52 (2010), 1–8. https://doi.org/10.1186/1751-0147-52-7 doi: 10.1186/1751-0147-52-7
    [9] P. R. Furniss, B. D. Hahn, A mathematical model of an anthrax epizoötic in the Kruger National Park, Appl. Math. Modell., 5 (1981), 130–136. https://doi.org/10.1016/0307-904X(81)90034-2 doi: 10.1016/0307-904X(81)90034-2
    [10] S. V. Shadomy, A. E. Idrissi, E. Raizman, Anthrax outbreaks: a warning for improved prevention, control and heightened awareness, Rome, 2016.
    [11] S. B. Clegg, P. C. B. Turnbull, C. M. Foggin, P. M. Lindeque, Massive outbreak of anthrax in wildlife in the Malilangwe Wildlife Reserve, Zimbabwe, Vet. Rec., 160 (2007), 113–118. https://doi.org/10.1136/vr.160.4.113 doi: 10.1136/vr.160.4.113
    [12] M. N. Mongoh, N. W. Dyer, C. L. Stoltenow, M. L. Khaitsa, Risk factors associated with anthrax outbreak in animals in North Dakota, 2005: A retrospective case-control study, Public Health Rep., 123 (2008), 352–359. https://doi.org/10.1177/003335490812300315 doi: 10.1177/003335490812300315
    [13] A. Chakraborty, S. U. Khan, M. A. Hasnat, S. Parveen, M. Saiful Islam, A. Mikolon, et al., Anthrax outbreaks in Bangladesh, 2009–2010, Am. J. Trop. Med. Hyg., 86 (2012), 703. https://doi.org/10.4269/ajtmh.2012.11-0234 doi: 10.4269/ajtmh.2012.11-0234
    [14] W. Beyer, P. C. B. Turnbull, Anthrax in animals, Mol. Aspects Med., 30 (2009), 481–489. https://doi.org/10.1016/j.mam.2009.08.004
    [15] B. D. Hahn, P. R. Furniss, A deterministic model of an anthrax epizootic: threshold results, Ecol. Modell., 20 (1983), 233–241. https://doi.org/10.1016/0304-3800(83)90009-1 doi: 10.1016/0304-3800(83)90009-1
    [16] A. Friedman, A. A. Yakubu, Anthrax epizootic and migration: Persistence or extinction, Math. Biosci., 241 (2013), 137–144. https://doi.org/10.1016/j.mbs.2012.10.004 doi: 10.1016/j.mbs.2012.10.004
    [17] S. Mushayabasa, T. Marijani, M. Masocha, Dynamical analysis and control strategies in modeling anthrax, Comput. Appl. Math., 36 (2017), 1333–1348. https://doi.org/10.1007/s40314-015-0297-1 doi: 10.1007/s40314-015-0297-1
    [18] X. Li, G. Song, Y. Xia, C.Yuan, Dynamical behaviors of the tumor-immune system in a stochastic environment, SIAM J. Appl. Math., 79 (2019), 2193–2217. https://doi.org/10.1137/19M1243580 doi: 10.1137/19M1243580
    [19] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14 (2016), 893–910. https://doi.org/10.1186/s13662-018-1925-z doi: 10.1186/s13662-018-1925-z
    [20] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [21] Q. Liu, D. Jiang, T. Hayat, B. Ahmad, Analysis of a delayed vaccinated SIR epidemic model with temporary immunity and Lévy jumps, Nonlinear Anal. Hybrid Syst., 27 (2018), 29–43. https://doi.org/10.1016/j.nahs.2017.08.002 doi: 10.1016/j.nahs.2017.08.002
    [22] B. Zhou, D. Jiang, Y. Dai, T. Hayat, Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity, Nonlinerar. Dyn., 105 (2021), 931–955. https://doi.org/10.1007/s11071-020-06151-y doi: 10.1007/s11071-020-06151-y
    [23] Y. Tan, Y. Cai, X. Sun, K. Wang, R. Yao, W. Wang, A stochastic SICA model for HIV/AIDS transmission, Chaos, Solitons Fractals, 165 (2022), 112768. https://doi.org/10.1016/j.chaos.2022.112768 doi: 10.1016/j.chaos.2022.112768
    [24] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [25] X. Mao, Stationary distribution of stochastic population systems, Syst. Control Lett., 60 (2011), 398–405. https://doi.org/10.1016/j.sysconle.2011.02.013 doi: 10.1016/j.sysconle.2011.02.013
    [26] A. Bahar, X. Mao, Stochastic delay lotka–volterra model, J. Math. Anal. Appl., 292 (2004), 364–380. https://doi.org/10.1016/j.jmaa.2003.12.004 doi: 10.1016/j.jmaa.2003.12.004
    [27] R. Khasminskii, Stochastic stability of differential equations, Springer Science and Business Media, 2011.
    [28] B. Zhou, D. Jiang, Y. Dai, T. Hayat, Ergodic property, extinction, and density function of an SIRI epidemic model with nonlinear incidence rate and high‐order stochastic perturbations, Math. Methods. Appl. Sci., 45 (2022), 1513–1537. https://doi.org/10.1002/mma.7870 doi: 10.1002/mma.7870
    [29] B. Zhou, X. Zhang, D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos, Solitons Fractals, 137 (2020), 109865. https://doi.org/10.1016/j.chaos.2020.109865 doi: 10.1016/j.chaos.2020.109865
    [30] C. Xu, W. Ou, Y. Pang, Q. Cui, M. U. Rahman, M. Farman, et al., Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, Match-Commun. Math. Comput. Chem., 91 (2024), 367–413. https://doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X
    [31] C. Xu, Z. Liu, Y. Pang, A. Akgül, Stochastic analysis of a COVID-19 model with effects of vaccination and different transition rates: Real data approach, Chaos, Solitons Fractals, 170 (2023), 113395. https://doi.org/10.1016/j.chaos.2023.113395 doi: 10.1016/j.chaos.2023.113395
    [32] C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. https://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
    [33] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Mathematical exploration on control of bifurcation for a plankton–oxygen dynamical model owning delay, J. Math. Chem., (2023), 1–31. https://doi.org/10.1007/s10910-023-01543-y
    [34] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [35] Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, et al., Bifurcation behavior and hybrid controller design of a 2D Lotka–Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. https://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [36] C. W. Gardiner, Handbook of stochastic methods, Berlin: springer, 1985.
    [37] X. Tian, C, Ren, Linear equations, superposition principle and complex exponential notation, Coll. Phys., 23 (2004), 23–25
    [38] H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 49 (1989), 1793–1810. https://doi.org/10.1137/0149110 doi: 10.1137/0149110
    [39] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [40] D. C. Dragon, B. T. Elkin, J. S. Nishi, T. R. Ellsworth, A review of anthrax in Canada and implications for research on the disease in northern bison, J. Appl. Microbiol., 87 (1999), 208–213. https://doi.org/10.1046/j.1365-2672.1999.00872.x doi: 10.1046/j.1365-2672.1999.00872.x
    [41] World Health Organization, International Office of Epizootics, Anthrax in humans and animals, World Health Organization, 2008.
    [42] Z. Shi, D. Jiang, X. Zhang, A. Alsaedi, A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function, Appl. Math. Comput., 427 (2022), 127189. https://doi.org/10.1016/j.amc.2022.127189 doi: 10.1016/j.amc.2022.127189
    [43] B. Han, B. Zhou, D. Jiang, T. Hayat, A. Alsaedi, Stationary solution, extinction and density function for a high-dimensional stochastic SEI epidemic model with general distributed delay, Appl. Math. Comput., 405 (2021), 126236. https://doi.org/10.1016/j.amc.2021.126236 doi: 10.1016/j.amc.2021.126236
    [44] H. Yang, F. Wu, P. E. Kloeden, Stationary distribution of stochastic population dynamics with infinite delay, J. Differ. Equations, 340 (2022), 205–226. https://doi.org/10.1016/j.jde.2022.08.035 doi: 10.1016/j.jde.2022.08.035
  • This article has been cited by:

    1. Haydar Akca, Chaouki Aouiti, Farid Touati, Changjin Xu, Finite-time passivity of neutral-type complex-valued neural networks with time-varying delays, 2024, 21, 1551-0018, 6097, 10.3934/mbe.2024268
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1300) PDF downloads(74) Cited by(0)

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog