In this paper, we study the numerical solution of a parabolic complementarity problem which is a widely used model in many fields, such as option pricing, risk measures, etc. Using a power penalty method we represent the complementarity problem as a nonlinear parabolic partial differential equation (PDE). Then, we use the trapezoidal rule as the time discretization, for which we have to solve a nonlinear equation at each time step. We solve such a nonlinear equation by the fixed-point iteration and in this methodology solving a tridiagonal linear system is the major computation. We present an efficient backward substitution algorithm to handle this linear system. Numerical results are given to illustrate the advantage of the proposed algorithm (compared to the built-in command backslash in Matlab) in terms of CPU time.
Citation: Haiyan Song, Fei Sun. A numerical method for parabolic complementarity problem[J]. Electronic Research Archive, 2023, 31(2): 1048-1064. doi: 10.3934/era.2023052
[1] | J. Amador, D. Armesto, A. Gómez-Corral . Extreme values in SIR epidemic models with two strains and cross-immunity. Mathematical Biosciences and Engineering, 2019, 16(4): 1992-2022. doi: 10.3934/mbe.2019098 |
[2] | Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903 |
[3] | Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181 |
[4] | Jianquan Li, Xiaoyu Huo, Yuming Chen . Threshold dynamics of a viral infection model with defectively infected cells. Mathematical Biosciences and Engineering, 2022, 19(7): 6489-6503. doi: 10.3934/mbe.2022305 |
[5] | Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón . A within-host model on the interactions of sensitive and resistant Helicobacter pylori to antibiotic therapy considering immune response. Mathematical Biosciences and Engineering, 2025, 22(1): 185-224. doi: 10.3934/mbe.2025009 |
[6] | Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919 |
[7] | Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286 |
[8] | Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103 |
[9] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[10] | Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547 |
In this paper, we study the numerical solution of a parabolic complementarity problem which is a widely used model in many fields, such as option pricing, risk measures, etc. Using a power penalty method we represent the complementarity problem as a nonlinear parabolic partial differential equation (PDE). Then, we use the trapezoidal rule as the time discretization, for which we have to solve a nonlinear equation at each time step. We solve such a nonlinear equation by the fixed-point iteration and in this methodology solving a tridiagonal linear system is the major computation. We present an efficient backward substitution algorithm to handle this linear system. Numerical results are given to illustrate the advantage of the proposed algorithm (compared to the built-in command backslash in Matlab) in terms of CPU time.
[1] |
L. Angermann, S. Wang, Convergence of a fitted finite volume method for European and American option valuation, Numer. Math., 106 (2007), 1–40. https://doi.org/10.1007/s00211-006-0057-7 doi: 10.1007/s00211-006-0057-7
![]() |
[2] | A. Bensoussan, J. L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland Amsterdam, New York, Oxford, 1978. |
[3] |
T. B. Gyulov, M. N. Koleva, Penalty method for indifference pricing of American option in a liquidity switching market, Appl. Numer. Math., 172 (2022), 525–545. https://doi.org/10.1016/j.apnum.2021.11.002 doi: 10.1016/j.apnum.2021.11.002
![]() |
[4] | J. Haslinger, M. Miettinen, Finite Element Method for Hemivariational Inequalities, Kluwer Academic Publisher, 1999. https://doi.org/10.1007/978-1-4757-5233-5 |
[5] |
L. Scurria, D. Fauconnier, P. Jiranek, T. Tamarozzi, A Galerkin/hyper-reduction technique to reduce steady-state elastohydrodynamic line contact problems, Comput. Methods Appl. Mech. Eng., 386 (2021), 114132. https://doi.org/10.1016/j.cma.2021.114132 doi: 10.1016/j.cma.2021.114132
![]() |
[6] |
W. D. Zhao, Numerical methods for forward backward stochastic differential equations, Math. Numer. Sin., 37 (2015), 337–373. https://doi.org/10.12286/jssx.2015.4.337 doi: 10.12286/jssx.2015.4.337
![]() |
[7] |
L. Jiang, Convexity, translation invariance and subadditivity for g-expectations and related risk measures, Ann. Appl. Probab., 18 (2008), 245–258. https://doi.org/10.1214/105051607000000294 doi: 10.1214/105051607000000294
![]() |
[8] |
I. Penner, A. Reveillac, Risk measures for processes and BSDEs, Finance Stochastics, 19 (2015), 23–66. https://doi.org/10.1007/s00780-014-0243-x doi: 10.1007/s00780-014-0243-x
![]() |
[9] | R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, 1984. https://doi.org/10.1007/978-3-662-12613-4 |
[10] |
S. Wang, X. Q. Yang, K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227–254. https://doi.org/10.1007/s10957-006-9062-3 doi: 10.1007/s10957-006-9062-3
![]() |
[11] |
S. Wang, C. S. Huang, A power penalty method for solving a nonlinear parabolic complementarity problem, Nonlinear Anal. Theory Methods Appl., 69 (2008), 1125–1137. https://doi.org/10.1016/j.na.2007.06.014 doi: 10.1016/j.na.2007.06.014
![]() |
[12] |
M. Chen, C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manage. Optim., 14 (2018), 1381–1396. https://doi.org/10.3934/jimo.2018012 doi: 10.3934/jimo.2018012
![]() |
[13] | A. M. Rubinov, X. Q. Yang, Lagrange-type Functions in Constrained Non-convex Optimization, Kluwer Academic Publishers, Dordrecht, Holland, 2003. |
[14] |
X. Q. Yang, X. X. Huang, Nonlinear lagrangian approach to constrained optimization problems, SIAM J. Optim., 11 (2001), 1119–1144. https://doi.org/10.1137/S1052623400371806 doi: 10.1137/S1052623400371806
![]() |
[15] | M. H. Holmes, Introduction to Mumerical Methods in Differential Equations, Springer New York, 2009. |
[16] |
O. T. Hanna, New explicit and implicit "improved Euler" methods for the integration of ordinary differential equations, Comput. Chem. Eng., 12 (1988), 1083–1086. https://doi.org/10.1016/0098-1354(88)87030-3 doi: 10.1016/0098-1354(88)87030-3
![]() |
[17] |
R. Santos, L. Alves, A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes, Appl. Numer. Math., 159 (2021), 204–220. https://doi.org/10.1016/j.apnum.2020.09.007 doi: 10.1016/j.apnum.2020.09.007
![]() |
[18] | E. Zeidler, Nonlinear Functional Analysis and Its Applications Ⅱ/B: Nonlinear Monotone Operators, Springer-Verlag, New York, 1990. |
[19] |
Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, H. Y. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020), 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1
![]() |
[20] | G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 2012. |
[21] |
C. M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. https://doi.org/10.1016/j.cam.2005.08.047 doi: 10.1016/j.cam.2005.08.047
![]() |
[22] |
A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl., 30 (2008), 639–656. https://doi.org/10.1137/070695411 doi: 10.1137/070695411
![]() |
[23] |
W. Luo, X. M. Gu, B. Carpentieri, A hybrid triangulation method for banded linear systems, Math. Comput. Simul., 194 (2022), 97–108. https://doi.org/10.1016/j.matcom.2021.11.012 doi: 10.1016/j.matcom.2021.11.012
![]() |
1. | József Z. Farkas, A. Morozov, Net reproduction functions for nonlinear structured population models, 2018, 13, 0973-5348, 32, 10.1051/mmnp/2018036 | |
2. | Xi Huo, Modeling Antibiotic Use Strategies in Intensive Care Units: Comparing De-escalation and Continuation, 2020, 82, 0092-8240, 10.1007/s11538-019-00686-x | |
3. | J.M. Cushing, Odo Diekmann, The many guises of R0 (a didactic note), 2016, 404, 00225193, 295, 10.1016/j.jtbi.2016.06.017 | |
4. | Glenn F. Webb, Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units, 2017, 22, 1553-524X, 1145, 10.3934/dcdsb.2017056 | |
5. | Selenne Banuelos, Hayriye Gulbudak, Mary Ann Horn, Qimin Huang, Aadrita Nandi, Hwayeon Ryu, Rebecca Segal, 2021, Chapter 6, 978-3-030-57128-3, 111, 10.1007/978-3-030-57129-0_6 | |
6. | Valentin Leducq, Aude Jary, Antoine Bridier-Nahmias, Lena Daniel, Karen Zafilaza, Florence Damond, Valérie Goldstein, Audrey Duval, François Blanquart, Vincent Calvez, Diane Descamps, Anne-Geneviève Marcelin, Benoit Visseaux, Nosocomial transmission clusters and lineage diversity characterized by SARS-CoV-2 genomes from two large hospitals in Paris, France, in 2020, 2022, 12, 2045-2322, 10.1038/s41598-022-05085-2 | |
7. | Y. A. Terefe, S. M. Kassa, J. B. H. Njagarah, Impact of the WHO Integrated Stewardship Policy on the Control of Methicillin-Resistant Staphyloccus aureus and Third-Generation Cephalosporin-Resistant Escherichia coli: Using a Mathematical Modeling Approach, 2022, 84, 0092-8240, 10.1007/s11538-022-01051-1 | |
8. | Patrick De Leenheer, Zachary Gregg, Jordan McCaslin, Some limitations on the use of the basic reproduction number, 2024, 1023-6198, 1, 10.1080/10236198.2024.2308110 |