[1]

A posteriori error estimators in finite element analysis. Comput. Methods Appl. Mech. Engrg. (1997) 142: 188.

[2]

Error estimates for adaptive finite computations. SIAM J. Numer. Anal. (1978) 15: 736754.

[3]

A convergent noncomforming adaptive finite element method with quasioptimal complexity. SIAM J. Numer. Anal. (2010) 47: 46394659.

[4]

Adaptive finite element methods with convergence rates. Numer. Math. (2004) 97: 219268.

[5]

Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. (2007) 107: 455471.

[6]

Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. (2006) 75: 10331042.

[7]

Error estimations for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. (2002) 8: 345374.

[8]

Quasioptimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. (2008) 46: 25242550.

[9]

An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comput. (2004) 73: 11671193.

[10]

Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv. Appl. Math. Mech. (2011) 3: 493518.

[11]

Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem. Comput. Methods Appl. Mech. Engrg. (2010) 199: 14151423.

[12]

(2015) High Efficient and Accuracy Numerical Methods for Optimal Control Problems.Science Press. 
[13]

Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. math. (2008) 110: 313355.

[14]

Convergence and quasioptimality of an adaptive finite element method for controlling $L^2$ errors. Numer. Math. (2011) 117: 185218.

[15]

A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. (1996) 33: 11061124.

[16]

An adaptive finite element method for linear elliptic problems. Math. Comput. (1988) 50: 361383.

[17]

Convergence analysis of an adaptive finite element method for distributed control problems with control constrains. Inter. Ser. Numer. Math. (2007) 155: 4768.

[18]

$L^2$ norm equivalent a posteriori error for a constraint optimal control problem. Inter. J. Numer. Anal. Model. (2009) 6: 335353. 
[19]

Adaptive finite element approximation for a constrained optimal control problem via multimeshes. J. Sci. Comput. (2009) 41: 238255.

[20]

Adaptive finite element method for elliptic optimal control problems: Convergence and optimality. Numer. Math. (2017) 135: 11211170.

[21]

W. Gong, N. Yan and Z. Zhou, Convergence of $L^2$norm based adaptive finite element method for elliptic optimality control problem, arXiv: 1608.08699.

[22]

Convergence of adaptive finite elements for optimal control problems with control constraints. Inter. Ser. Numer. Math. (2014) 165: 403419.

[23]

Convergence and quasioptimality of an adaptive finite element method for optimal control problems on $L^2$errors. J. Sci. Comput. (2017) 73: 438458.

[24]

Convergence and quasioptimality of an adaptive finite element method for optimal control problems with integral control constraint. Adv. Comput. Math. (2018) 44: 367394.

[25]

Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. (2002) 41: 13211349.

[26]

J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.

[27]

(2008) Adaptive Finite Element Methods for Optimal Control Governed by PDEs.Science Press. 
[28]

A posteriori error estimates for control problems governed by nonlinear elliptic equation. Appl. Numer. Math. (2003) 47: 173187.

[29]

Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. (2005) 43: 18031827.

[30]

Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. (2000) 38: 466488.

[31]

Convergence of adaptive finite element methods. SIAM Rev. (2002) 44: 631658.

[32]

Optimality of a standard adaptive finite element method. Found. Comput. Math. (2007) 7: 245269.
