Review Special Issues

Potential of high entropy alloys in hydrogen storage technologies

  • Published: 09 December 2025
  • The importance of hydrogen in economic development can be attributed to its great potential as a clean and renewable energy source. The structural versatility of metal hydrides has proven to be instrumental in the design of hydrogen storage components. Despite its low volumetric energy density and light in nature, its storage remains challenging due to its high susceptibility to evaporation. However, hydrogen desorption-absorption from a convectional metal hydride can be challenging to gravimetric storage. The lack of effective materials with the potential of reversibility and heat transfer also contribute to these issues. Therefore, researchers continue to explore strategies to mitigate the drawbacks associated with metal hydrides by developing advanced materials such as high-entropy alloys (HEAs) with improved reaction kinetics and finding ways to enhance their practical utility for various applications. HEAs have unique compositional flexibility and diffusion properties, making them efficient for hydrogen storage without high pressure and extremely low-temperature requirements. In this review, we focused on the design and synthesis strategies of HEA alloys, the thermodynamics of HEA for hydrogen storage, the thermal analysis of hydrogenation in HEAs, and the embrittlement of structural alloys in the presence of hydrogen. The review indicated that HEAs have the potential to improve the properties of solid-state storage materials significantly. Their efficiency and compatibility with fuel cells make them a promising candidate for the future of sustainable energy.

    Citation: Adebayo Olutumbi Ogunyinka, Abimbola Patricia Idowu Popoola, Sisa Lesley Pityana, Emmanuel Rotimi Sadiku, Olawale Mohammed Popoola, Modupeola Oluwaseun Dada. Potential of high entropy alloys in hydrogen storage technologies[J]. AIMS Energy, 2025, 13(6): 1463-1517. doi: 10.3934/energy.2025055

    Related Papers:

  • The importance of hydrogen in economic development can be attributed to its great potential as a clean and renewable energy source. The structural versatility of metal hydrides has proven to be instrumental in the design of hydrogen storage components. Despite its low volumetric energy density and light in nature, its storage remains challenging due to its high susceptibility to evaporation. However, hydrogen desorption-absorption from a convectional metal hydride can be challenging to gravimetric storage. The lack of effective materials with the potential of reversibility and heat transfer also contribute to these issues. Therefore, researchers continue to explore strategies to mitigate the drawbacks associated with metal hydrides by developing advanced materials such as high-entropy alloys (HEAs) with improved reaction kinetics and finding ways to enhance their practical utility for various applications. HEAs have unique compositional flexibility and diffusion properties, making them efficient for hydrogen storage without high pressure and extremely low-temperature requirements. In this review, we focused on the design and synthesis strategies of HEA alloys, the thermodynamics of HEA for hydrogen storage, the thermal analysis of hydrogenation in HEAs, and the embrittlement of structural alloys in the presence of hydrogen. The review indicated that HEAs have the potential to improve the properties of solid-state storage materials significantly. Their efficiency and compatibility with fuel cells make them a promising candidate for the future of sustainable energy.



    加载中


    [1] Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications Int J Hydrogen Energy 41: 12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244 doi: 10.1016/j.ijhydene.2016.05.244
    [2] Hirscher M (2010) Handbook of hydrogen storage: New materials for future energy storage. 1 Eds., Wiley. https://doi.org/10.1002/9783527629800
    [3] Yadav SK, Kumar TP, Verma A (2022) High-Entropy alloys for solid hydrogen storage: Potentials and prospects. Trans Indian Natl Acad Eng 7: 147–156. https://doi.org/10.1007/s41403-021-00316-w doi: 10.1007/s41403-021-00316-w
    [4] Yartys VA, Lototskyy MV (2022) Laves type intermetallic compounds as hydrogen storage materials: A review. J Alloys Compd 916: 165219. https://doi.org/10.1016/j.jallcom.2022.165219 doi: 10.1016/j.jallcom.2022.165219
    [5] Hassan IA, Ramadan HS, Saleh MA, et al. (2021) Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable Sustainable Energy Rev 149: 111311. https://doi.org/10.1016/j.rser.2021.111311 doi: 10.1016/j.rser.2021.111311
    [6] Tarasov BP, Fursikov PV, Volodin AA, et al. (2021) Metal hydride hydrogen storage and compression systems for energy storage technologies. Int J Hydrogen Energy 46: 13647–13657. https://doi.org/10.1016/j.ijhydene.2020.07.085 doi: 10.1016/j.ijhydene.2020.07.085
    [7] Kalibek MR, Ospanova AD, Suleimenova B, et al. (2024) Solid-state hydrogen storage materials. Discover Nano 19: 195. https://doi.org/10.1186/s11671-024-04137-y doi: 10.1186/s11671-024-04137-y
    [8] Ge YT (2024) Characterisation of pressure‐concentration‐temperature profiles for metal hydride hydrogen storage alloys with model development. Energy Storage 6: 504. https://doi.org/10.1002/est2.504 doi: 10.1002/est2.504
    [9] Kim H, Faisal M, Lee SI, et al. (2021) Activation of Ti–Fe–Cr alloys containing identical AB2 fractions. J Alloys Compd 864: 158876. https://doi.org/10.1016/j.jallcom.2021.158876 doi: 10.1016/j.jallcom.2021.158876
    [10] Weadock NJ, Voorhees PW, Fultz B (2021) Interface pinning causes the hysteresis of the hydride transformation in binary metal hydrides. Phys Rev Mater 5: 013604. https://doi.org/10.1103/PhysRevMaterials.5.013604 doi: 10.1103/PhysRevMaterials.5.013604
    [11] Qureshi T, Khan MM, Pali HS (2024) The future of hydrogen economy: Role of high entropy alloys in hydrogen storage. J Alloys Compd 1004: 175668. https://doi.org/10.1016/j.jallcom.2024.175668 doi: 10.1016/j.jallcom.2024.175668
    [12] Halpren E, Yao X, Chen ZW, et al. (2024) Machine learning assisted design of BCC high entropy alloys for room temperature hydrogen storage. Acta Mater 270: 119841. https://doi.org/10.1016/j.actamat.2024.119841 doi: 10.1016/j.actamat.2024.119841
    [13] Lu Z, Huang Z, Wang H, et al. (2025) Construction of disordered interfaces in high-entropy alloy multilayer films through atomic-scale interactions to enhance hydrogen storage properties. J Alloys Compd 1037: 182243. https://doi.org/10.1016/j.jallcom.2025.182243 doi: 10.1016/j.jallcom.2025.182243
    [14] Zhang X, Lou Z, Gao M, et al. (2024) Metal hydrides for advanced hydrogen/lithium storage and ionic conduction applications. Acc Mater Res 5: 371–384. https://doi.org/10.1021/accountsmr.3c00267 doi: 10.1021/accountsmr.3c00267
    [15] Gao MC, Miracle DB, Maurice D, et al. (2018) High-entropy functional materials. J Mater Res 33: 3138–3155. https://doi.org/10.1557/jmr.2018.323 doi: 10.1557/jmr.2018.323
    [16] Marques F, Balcerzak M, Winkelmann F, et al. (2021) Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ Sci 14: 5191–5227. https://doi.org/10.1039/D1EE01543E doi: 10.1039/D1EE01543E
    [17] Lototskyy MV, Yartys VA, Pollet BG, et al. (2014) Metal hydride hydrogen compressors: A review. Int J Hydrogen Energy 39: 5818–5851. https://doi.org/10.1016/j.ijhydene.2014.01.158 doi: 10.1016/j.ijhydene.2014.01.158
    [18] Altaf M, Demirci UB, Haldar AK (2025) Review of solid-state hydrogen storage: Materials categorization, recent developments, challenges and industrial perspectives. Energy Rep 13: 5746–5772. https://doi.org/10.1016/j.egyr.2025.05.034 doi: 10.1016/j.egyr.2025.05.034
    [19] Du YL, Sun ZY, Fu BA, et al. (2025) Unleashing the power of hydrogen: Challenges and solutions in solid-state storage. Int J Hydrogen Energy 136: 1112–1123. https://doi.org/10.1016/j.ijhydene.2025.02.445 doi: 10.1016/j.ijhydene.2025.02.445
    [20] Lenis JA, Velandia JA, Ocampo RA, et al. (2025) Challenges and potential future trends on high entropy alloy for solid hydrogen storage: Systematic review. J Power Sources 656: 238011. https://doi.org/10.1016/j.jpowsour.2025.238011 doi: 10.1016/j.jpowsour.2025.238011
    [21] Witman M, Ek G, Ling S, et al. (2021) Data-driven discovery and synthesis of high entropy alloy hydrides with targeted thermodynamic stability. Chem Mater 33: 4067–4076. https://doi.org/10.1021/acs.chemmater.1c00647 doi: 10.1021/acs.chemmater.1c00647
    [22] Abdalla AM, Hossain S, Nisfindy OB, et al. (2018) Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers Manag 165: 602–627. https://doi.org/10.1016/j.enconman.2018.03.088 doi: 10.1016/j.enconman.2018.03.088
    [23] Züttel A, Remhof A, Borgschulte A, et al. (2010) Hydrogen: The future energy carrier. Philos Trans R Soc A 368: 2010. https://doi.org/10.1098/rsta.2010.0113 doi: 10.1098/rsta.2010.0113
    [24] Huang J, Yang W, Gao Z, et al. (2025) Heterostructured multi-principal element alloys prepared by laser-based techniques. Microstructures 5: 1–32. https://doi.org/10.20517/microstructures.2024.86 doi: 10.20517/microstructures.2024.86
    [25] Cantor B (2021) Multicomponent high-entropy Cantor alloys. Prog Mater Sci 120: 100754. https://doi.org/10.1016/j.pmatsci.2020.100754 doi: 10.1016/j.pmatsci.2020.100754
    [26] Körmann F, Kostiuchenko T, Shapeev A, et al. (2021) B2 ordering in body-centered-cubic AlNbTiV refractory high-entropy alloys. Phys Rev Mater 5: 053803. https://doi.org/10.1103/PhysRevMaterials.5.053803 doi: 10.1103/PhysRevMaterials.5.053803
    [27] Wang S (2013) Atomic structure modeling of multi-principal-element alloys by the principle of maximum entropy. Entropy 15: 5536–5548. https://doi.org/10.3390/e15125536 doi: 10.3390/e15125536
    [28] Hong H, Guo H, Cui Z, et al. (2024) Structure modification of magnesium hydride for solid hydrogen storage. Int J Hydrogen Energy 78: 793–804. https://doi.org/10.1016/j.ijhydene.2024.06.327 doi: 10.1016/j.ijhydene.2024.06.327
    [29] Wang L, Liu W, Zhu B, et al. (2021) Influences of strain rate, Al concentration and grain heterogeneity on mechanical behavior of CoNiFeAlxCu1-x high-entropy alloys: A molecular dynamics simulation. J Mater Res Technol 14: 2071–2084https://doi.org/10.1016/j.jmrt.2021.07.116 doi: 10.1016/j.jmrt.2021.07.116
    [30] Zhang Y, Lu ZP, Ma SG, et al. (2014) Guidelines in predicting phase formation of high-entropy alloys. MRS Commun 4: 57–62. https://doi.org/10.1557/mrc.2014.11 doi: 10.1557/mrc.2014.11
    [31] Bulavchenko OA, Vinokurov ZS (2023) In situ X-ray diffraction as a basic tool to study oxide and metal oxide catalysts. Catalysts 13: 1421. https://doi.org/10.3390/catal13111421 doi: 10.3390/catal13111421
    [32] Morin L, Braham C, Tajdary P, et al. (2021) Reconstruction of heterogeneous surface residual-stresses in metallic materials from X-ray diffraction measurements. Mech Mater 158: 103882. https://doi.org/10.1016/j.mechmat.2021.103882 doi: 10.1016/j.mechmat.2021.103882
    [33] Wu Z, Bei H, Otto F, et al. (2014) Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46: 131–140. https://doi.org/10.1016/j.intermet.2013.10.024 doi: 10.1016/j.intermet.2013.10.024
    [34] Bahmani A, Lotfpour M, Taghizadeh M, et al. (2022) Corrosion behavior of severely plastically deformed Mg and Mg alloys. J Magnes Alloy 10: 2607–2648. https://doi.org/10.1016/j.jma.2022.09.007 doi: 10.1016/j.jma.2022.09.007
    [35] Moschetti M, Burr PA, Obbard E, et al. (2022) Design considerations for high entropy alloys in advanced nuclear applications. J Nucl Mater 567: 153814. https://doi.org/10.1016/j.jnucmat.2022.153814 doi: 10.1016/j.jnucmat.2022.153814
    [36] Purdy GR, Kirkaldy JS (1971) Homogenization by diffusion. Springer Metall Trans 2: 371–378. https://doi.org/10.1007/BF02663324 doi: 10.1007/BF02663324
    [37] Murty BS, Yeh JW, Ranganathan S, et al. (2019) 5—Alloy design in the 21st century: ICME, materials genome, and artificial intelligence strategies. High-Entropy Alloys 2019: 81–101. https://doi.org/10.1016/B978-0-12-816067-1.00005-9 doi: 10.1016/B978-0-12-816067-1.00005-9
    [38] Smith RL, Phoenix SL (1981) Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal load-sharing. J Appl Mech 48: 1–8. https://doi.org/10.1115/1.3157595 doi: 10.1115/1.3157595
    [39] Cai J, Chu X, Xu K, et al. (2020) Machine learning-driven new material discovery. Nanoscale Adv 2: 3115–3130. https://doi.org/10.1039/D0NA00388C doi: 10.1039/D0NA00388C
    [40] Kaushik N, Meena A, Mali HS (2022) High entropy alloy synthesis, characterisation, manufacturing & potential applications: A review. Mater Manuf Processes 37: 1085–1109. https://doi.org/10.1080/10426914.2021.2006223 doi: 10.1080/10426914.2021.2006223
    [41] Dangwal S, Ikeda Y, Grabowski B, et al. (2024) Machine learning to explore high-entropy alloys with desired enthalpy for room-temperature hydrogen storage: Prediction of density functional theory and experimental data. Chem Eng J 493: 152606. https://doi.org/10.1016/j.cej.2024.152606 doi: 10.1016/j.cej.2024.152606
    [42] Kumar A, Kumar S, Kumar A, et al. (2023) Structural phase transformation in single-crystal Fe-Cr-Ni alloy during creep deformation using molecular dynamics simulation and regression-based machine learning methodology. Bull Mater Sci 47: 1–11. https://doi.org/10.1007/s12034-023-03075-2 doi: 10.1007/s12034-023-03075-2
    [43] Smith ER, Theodorakis PE (2024) Multiscale simulation of fluids: coupling molecular and continuum. R Soc Chem 26: 724–744. https://doi.org/10.1039/D3CP03579D doi: 10.1039/D3CP03579D
    [44] Komanduri R, Chandrasekaran N, Raff LM (2000) Molecular dynamics simulation of atomic-scale friction. Phys Rev B 61: 14007. https://doi.org/10.1103/PhysRevB.61.14007 doi: 10.1103/PhysRevB.61.14007
    [45] Cheng B, Kong L, Cai H, et al (2024). Pushing the Boundaries of solid-state hydrogen storage: A refined study on TiVNbCrMo high-entropy alloys. Int J Hydrogen Energy 60: 282–292. https://doi.org/10.1016/j.ijhydene.2024.02.192 doi: 10.1016/j.ijhydene.2024.02.192
    [46] Sorkin V, Chen S, Tan TL, et al. (2021) First-principles-based high-throughput computation for high entropy alloys with short range order. J Alloys Compd 882: 160776. https://doi.org/10.1016/j.jallcom.2021.160776 doi: 10.1016/j.jallcom.2021.160776
    [47] Ferrin P, Kandoi S, Nilekar AU, et al. (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf Sci 606: 679–689. https://doi.org/10.1016/j.susc.2011.12.017 doi: 10.1016/j.susc.2011.12.017
    [48] Zhang Z, Mansouri Tehrani A, Oliynyk AO, et al. (2021) Finding the next super hard material through ensemble learning. Adv Mater 33: 2005112. https://doi.org/10.1002/adma.202005112 doi: 10.1002/adma.202005112
    [49] Hu J, Zhang J, Xiao H, et al. (2020) A density functional theory study of the hydrogen absorption in high entropy alloy TiZrHfMoNb. Inorg Chem 59: 9774–9782. https://doi.org/10.1021/acs.inorgchem.0c00989 doi: 10.1021/acs.inorgchem.0c00989
    [50] Hensley AJ, Ghale K, Rieg C, et al. (2017) DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals. J Phys Chem C 121: 4937–4945. https://doi.org/10.1021/acs.jpcc.6b10187 doi: 10.1021/acs.jpcc.6b10187
    [51] Zheng W, Wu L, Shuai Q, et al. (2024) Mechanism for adsorption, dissociation, and diffusion of hydrogen in high-entropy alloy AlCrTiNiV: First-Principles calculation. Nanomaterials 14: 1391. https://doi.org/10.3390/nano14171391 doi: 10.3390/nano14171391
    [52] Ghosh PS, Ali K, Arya A, et al. (2024) Efficient screening of single phase forming low-activation high entropy alloys. J. Alloys Compd 978: 173172. https://doi.org/10.1016/j.jallcom.2023.173172 doi: 10.1016/j.jallcom.2023.173172
    [53] Khan W, Masood MK, et al. (2024) The investigation of rubidium-based hydrides for hydrogen storage application: Density functional theory study. Mater Sci Semicond Process 173: 108149. https://doi.org/10.1016/j.mssp.2024.108149 doi: 10.1016/j.mssp.2024.108149
    [54] Fan Q, Hou H, Yang J, et al. (2024) Effect of pressures on the structural, electronic, optical, elastic, dynamical properties and thermal properties of Mo2C: A study explored by theoretical simulation. Int J Refract Met Hard Mater 119: 106522. https://doi.org/10.1016/j.ijrmhm.2023.106522 doi: 10.1016/j.ijrmhm.2023.106522
    [55] Zhao L, Jiang L, Yang LX, et al. (2022) High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci Technol 110: 269–282. https://doi.org/10.1016/j.jmst.2021.09.031 doi: 10.1016/j.jmst.2021.09.031
    [56] Wan W, Liang K, Zhu P, et al. (2024) Recent advances in the synthesis and fabrication methods of high-entropy alloy nanoparticles. J Mater Sci Technol 178: 226–246. https://doi.org/10.1016/j.jmst.2023.08.051 doi: 10.1016/j.jmst.2023.08.051
    [57] Cortis D, Pilone D, Grazzi F, et al. (2025) Functionally graded material via L-PBF: Characterisation of multi-material junction between steels (AISi316L/16MnCr5), copper (CuCrZr) and aluminium alloys (Al-Sc/AlSi10Mg). Prog Addit Manuf 10: 2455–2472. https://doi.org/10.1007/s40964-024-00761-3 doi: 10.1007/s40964-024-00761-3
    [58] Kim KS, Couillard M, Tang Z, et al, (2024) Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals. Nat Commun 15: 1450. https://doi.org/10.1038/s41467-024-45731-z doi: 10.1038/s41467-024-45731-z
    [59] Ron T, Shirizly A, Aghion E (2023) Additive manufacturing technologies of High Entropy Alloys (HEA): Review and Prospects. Materials 16: 2454. https://doi.org/10.3390/ma16062454 doi: 10.3390/ma16062454
    [60] Jain S, Kumar V, Samal S (2024) Predicting the effect of Ta on the mechanical behaviour and experimental validation of novel six component Fe-Co-Ni-Cr-V-Ta eutectic high entropy alloys. Int J Refract Met Hard Mater 120: 106572. https://doi.org/10.1016/j.ijrmhm.2024.106572 doi: 10.1016/j.ijrmhm.2024.106572
    [61] Shivam V, Basu J, Shadangi Y, et al. (2018) Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J Alloys Compd 757: 87–97. https://doi.org/10.1016/j.jallcom.2018.05.057 doi: 10.1016/j.jallcom.2018.05.057
    [62] Vaidya M, Pradeep KG, Murty BS, et al. (2017) Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci Rep 7: 12293. https://doi.org/10.1038/s41598-017-12551-9 doi: 10.1038/s41598-017-12551-9
    [63] Ikeda Y, Grabowski B, Körmann F (2019) Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater Charact 147: 464–511. https://doi.org/10.1016/j.matchar.2018.06.019 doi: 10.1016/j.matchar.2018.06.019
    [64] Rhode M, Wetzel A, Ozcan O, et al. (2020) Hydrogen diffusion and local Volta potential in high-and medium-entropy alloys. In IOP Conference Series: Materials Science and Engineering 882: 012015. IOP Publishing. https://doi.org/10.1088/1757-899X/882/1/012015
    [65] Qiu J, Yang Y, Wan H, et al. (2025) Interface-Engineered TiV Bimetal catalysts with synergistic effects for enhancing hydrogen storage performance in Mg–Ni-Based material. J Phy Chem Lett 16: 8084–8091. https://doi.org/10.1021/acs.jpclett.5c01248 doi: 10.1021/acs.jpclett.5c01248
    [66] Sharma B, Harini S (2019) A possibility of Pd based high entropy alloy for hydrogen gas sensing applications. Mater Res Express 6: 1165d7. https://doi.org/10.1088/2053-1591/ab4fae. doi: 10.1088/2053-1591/ab4fae
    [67] Hirscher M, Yartys VA, Baricco M, et al. (2020) Materials for hydrogen-based energy storage—past, recent progress and future outlook. J Alloys Compd 827: 153548. https://doi.org/10.1016/j.jallcom.2019.153548 doi: 10.1016/j.jallcom.2019.153548
    [68] Pu Z, Chen Y, Dai LH (2018) Strong resistance to hydrogen embrittlement of high-entropy alloy Mater Sci Eng A 736: 2018. https://doi.org/10.1016/j.msea.2018.08.101 doi: 10.1016/j.msea.2018.08.101
    [69] Duan Y, Li Z, Liu X, et al. (2022) Optimized microwave absorption properties of FeCoCrAlGdx high-entropy alloys by inhibiting nanograin coarsening. J Alloys Compd 921: 166088. https://doi.org/10.1016/j.jallcom.2022.166088 doi: 10.1016/j.jallcom.2022.166088
    [70] Li Y, Feng Z, Hao L, et al. (2020). A review on functionally graded materials and structures via additive manufacturing: from multi‐scale design to versatile functional properties. Adv Mater Technol 5: 1900981. https://doi.org/10.1002/admt.201900981 doi: 10.1002/admt.201900981
    [71] DebRoy T, Mukherjee T, Wei HL, et al. (2021) Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater 6: 48–68. https://doi.org/10.1038/s41578-020-00236-1 doi: 10.1038/s41578-020-00236-1
    [72] Chen B, Zhuo L (2023) Latest progress on refractory high entropy alloys: Composition, fabrication, post processing, performance, simulation and prospect. Int J Refract Met Hard Mater 110: 105993. https://doi.org/10.1016/j.ijrmhm.2022.105993 doi: 10.1016/j.ijrmhm.2022.105993
    [73] Sakaki K, Kim H, Asano K, et al. (2020). Hydrogen storage properties of Nb-based solid solution alloys with a BCC structure. J Alloys Compd 820: 53399. https://doi.org/10.1016/j.jallcom.2019.153399 doi: 10.1016/j.jallcom.2019.153399
    [74] Kong L, Cheng B, Wan D, et al. (2023) A review on BCC-structured high-entropy alloys for hydrogen storage. Front Mater 10: 1135864. https://doi.org/10.3389/fmats.2023.1135864 doi: 10.3389/fmats.2023.1135864
    [75] Floriano R, Zepon G, Edalati K, et al. (2021) Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. Int J Hydrogen Energy 46: 23757–23766. https://doi.org/10.1016/j.ijhydene.2021.04.181 doi: 10.1016/j.ijhydene.2021.04.181
    [76] Gorr B, Azim M, Christ HJ, et al. (2015) Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J Alloys Compd 624: 270–278. https://doi.org/10.1016/j.jallcom.2014.11.012 doi: 10.1016/j.jallcom.2014.11.012
    [77] Melnick AB, Soolshenko VK (2017) Thermodynamic design of high-entropy refractory alloys. J Alloys Compd 694: 223–227. https://doi.org/10.1016/j.jallcom.2016.09.189 doi: 10.1016/j.jallcom.2016.09.189
    [78] Fukai Y (1984) Site preference of interstitial hydrogen in metals. J Less Common Met 101: 1–16. https://doi.org/10.1016/0022-5088(84)90084-5 doi: 10.1016/0022-5088(84)90084-5
    [79] Hu J, Zhang J, Li M, et al. (2022) The origin of anomalous hydrogen occupation in high entropy alloys. J Mater Chem A 10: 7228–7237. https://doi.org/10.1039/D1TA10649J doi: 10.1039/D1TA10649J
    [80] Ghotia S, Kumar P, Srivastava AK (2025) A review on 2D materials: unveiling next-generation hydrogen storage solutions, advancements and prospects. J Mater Sci 60: 1071–1097. https://doi.org/10.1007/s10853-024-10054-3 doi: 10.1007/s10853-024-10054-3
    [81] Hu J, Zhang J, Xiao H, et al. (2021) A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb. Inter J Hydrogen Energy 46: 21050–21058. https://doi.org/10.1016/j.ijhydene.2021.03.200 doi: 10.1016/j.ijhydene.2021.03.200
    [82] Luo H, Li Z, Raabe D (2017) Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci Rep 7: 9892. https://doi.org/10.1038/s41598-017-10774-4 doi: 10.1038/s41598-017-10774-4
    [83] Radhika N, Niketh MS, Akhil UV, et al. (2024) High entropy alloys for hydrogen storage applications: A machine learning-based approach. Results Eng 23: 102780. https://doi.org/10.1016/j.rineng.2024.102780 doi: 10.1016/j.rineng.2024.102780
    [84] Kattner UR (2016) The CALPHAD method and its role in material and process development. Tecnol Metal Mater e Mineração 13: 3–15. https://doi.org/10.4322/2176-1523.1059 doi: 10.4322/2176-1523.1059
    [85] Liu ZK, Wang Y (2016) Computational thermodynamics of materials. Cambridge University Press. https://doi.org/10.1017/cbo9781139018265
    [86] Cho Y, Cho H, Cho ES (2023) Nanointerface engineering of metal hydrides for advanced hydrogen storage. Chem Mater 35: 366–385. https://doi.org/10.1021/acs.chemmater.2c02628 doi: 10.1021/acs.chemmater.2c02628
    [87] Ghassemali E, Conway PLJ (2022) High-throughput CALPHAD: A powerful tool towards accelerated metallurgy. Front Mater 9: 889771. https://doi.org/10.3389/fmats.2022.889771 doi: 10.3389/fmats.2022.889771
    [88] Zhu S, Sarıtürk D, Arróyave R (2025) Accelerating CALPHAD-based phase diagram predictions in complex alloys using universal machine learning potentials: Opportunities and challenges. Acta Mater 286: 120747. https://doi.org/10.1016/j.actamat.2025.120747 doi: 10.1016/j.actamat.2025.120747
    [89] Hasan S, Adhikari P, San S, et al. (2025) Phase stability, electronic, mechanical, lattice distortion, and thermal properties of complex refractory-based high entropy alloys TiVCrZrNbMoHfTaW with varying elemental ratios. RSC Adv 15: 1878–1895. https://doi.org/10.1039/d4ra07460b doi: 10.1039/d4ra07460b
    [90] Wang X, Guo W, Fu Y (2021) High-entropy alloys: Emerging materials for advanced functional applications. J Mater Chem A 9: 663–701. https://doi.org/10.1039/D0TA09601F doi: 10.1039/D0TA09601F
    [91] Moussa M, van Eijck L, Huot J, et al. (2025) Structure analysis (XRD and Neutrons) and hydrogen storage properties of Hf1-xTixNbVZr BCC high entropy alloys. J Alloys Compd 1010: 177103. https://doi.org/10.1016/j.jallcom.2024.17710 doi: 10.1016/j.jallcom.2024.17710
    [92] Lee C, Chou Y, Kim G, et al. (2020) Lattice‐distortion‐enhanced yield strength in a refractory high‐entropy alloy. Adv Mater 32: 2004029. https://doi.org/10.1002/adma.202004029 doi: 10.1002/adma.202004029
    [93] Somo TR, Lototskyy MV, Yartys VA, et al. (2023) Hydrogen storage behaviors of high entropy alloys: a Review. J Energy Storage 73: 108969. https://doi.org/10.1016/j.est.2023.108969 doi: 10.1016/j.est.2023.108969
    [94] Singh A, Kumari P, Sahoo SK, et al. (2025) Studies on hydrogen storage properties of TiVFeNi, (TiVFeNi)95Zr5 and (TiVFeNi)90Zr10 high entropy alloys. Int J Hydrogen Energy 141: 738–749. https://doi.org/10.1016/j.ijhydene.2024.09.064 doi: 10.1016/j.ijhydene.2024.09.064
    [95] Huang C, Ke H, Wang L, et al. (2025) Design and characterization of TiZrNb-M (M = Fe, Co, Ni) eutectic multi-component alloys. Mater Charact 224: 114991. https://doi.org/10.1016/j.matchar.2025.114991 doi: 10.1016/j.matchar.2025.114991
    [96] Zhang J, Zhang H, Xiong J, et al. (2025) Anomalous component-dependent lattice thermal conductivity in MoWTaTiZr refractory high-entropy alloys. iScience 28: 112100https://doi.org/10.1016/j.isci.2025.112100 doi: 10.1016/j.isci.2025.112100
    [97] Sheng GUO, Liu CT (2011) Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21: 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X doi: 10.1016/S1002-0071(12)60080-X
    [98] Keith A, Zlotea C, Szilágyi PÁ (2023) Perspective of interstitial hydrides of high-entropy alloys for vehicular hydrogen storage. Int J Hydrogen Energy 52: 531–546. https://doi.org/10.1016/j.ijhydene.2023.01.141 doi: 10.1016/j.ijhydene.2023.01.141
    [99] Hu HZ, Zhang XX, Li SS, et al. (2025) A review of body-centred cubic-structured alloys for hydrogen storage: composition, structure, and properties: A review of body-centred cubic-structured alloys for hydrogen storage. Rare Metals 44: 1497–1521. https://doi.org/10.1007/s12598-024-02994-1 doi: 10.1007/s12598-024-02994-1
    [100] Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A 534: 83–89. https://doi.org/10.1016/j.msea.2011.11.044 doi: 10.1016/j.msea.2011.11.044
    [101] Singh AK, Subramaniam A (2014) On the formation of disordered solid solutions in multi-component alloys. J Alloys Compd 587: 113–119. https://doi.org/10.1016/j.jallcom.2013.10.133 doi: 10.1016/j.jallcom.2013.10.133
    [102] Yadav YK, Shaz MA, Mukhopadhyay NK, et al. (2025) High entropy alloys synthesized by mechanical alloying: A review. J Alloys Metall Syst 9: 100170. https://doi.org/10.1016/j.jalmes.2025.100170 doi: 10.1016/j.jalmes.2025.100170
    [103] Huot J, Ravnsbæk DB, Zhang J, et al. (2013) Mechanochemical synthesis of hydrogen storage materials. Prog Mater Sci 58: 30–75. https://doi.org/10.1016/j.pmatsci.2012.07.001 doi: 10.1016/j.pmatsci.2012.07.001
    [104] Villaça JC, da Silva LCR, Locatelli FR, et al. (2020) Full-factorial design for statistical planning of attritor milling parameters and evaluation of effects on particle size and structure of sodium-montmorillonite. Eng Res Express 2: 015050. https://doi.org/10.015050.10.1088/2631-8695/ab7d85 doi: 10.015050.10.1088/2631-8695/ab7d85
    [105] Aliyu, A, Srivastava C (2021) Microstructure and electrochemical properties of FeNiCoCu medium entropy alloy-graphene oxide composite coatings. J Alloys Compd 864: 158851. https://doi.org/10.1016/j.jallcom.2021.158851 doi: 10.1016/j.jallcom.2021.158851
    [106] Canakci A, Erdemir F, Varol T, et al. (2013) Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: Measurement and analysis. Measurement 46: 3532–3540. https://doi.org/10.1016/j.measurement.2013.06.035 doi: 10.1016/j.measurement.2013.06.035
    [107] Yadav TP, Kumar A, Verma SK, et al. (2022) High-entropy alloys for solid hydrogen storage: potentials and prospects. Trans Indian Natl Acad Eng 7: 147–156. https://doi.org/10.1007/s41403-021-00316-w doi: 10.1007/s41403-021-00316-w
    [108] Palumbo O, Carboni N, Trequattrini F, et al. (2022) Mechanochemical synthesis and hydrogen sorption properties of a V-Ni alloy. Hydrogen 3: 112–122. https://doi.org/10.3390/hydrogen3010009 doi: 10.3390/hydrogen3010009
    [109] Sleiman S, Huot J (2022) Microstructure and first hydrogenation properties of TiHfZrNb1-xV1+x Alloy for x = 0, 0.1, 0.2, 0.4, 0.6 and 1. Molecules 27: 1054. https://doi.org/10.3390/molecules27031054 doi: 10.3390/molecules27031054
    [110] Xu X, Zhang B, Shi F, et al. (2025) Study on the Influence of hygrothermal aging on the mechanical properties of carbon fabric/poly-etherether-ketone Composites. Polymers 17: 724. https://doi.org/10.3390/polym17060724 doi: 10.3390/polym17060724
    [111] Feng Z, Zhong H, Li D, et al. (2022) Microstructure and hydrogen storage properties of Ti-V-Mn alloy with Zr, Ni, and Zr7 Ni10 addition. J Mater Res 37: 591–1601. https://doi.org/10.1557/s43578-022-00555-9 doi: 10.1557/s43578-022-00555-9
    [112] Balcerzak M (2018) Effect of Ni on electrochemical and hydrogen storage properties of V-rich body-centered-cubic solid solution alloys. Int J Hydrogen Energy 43: 8395–8403. https://doi.org/10.1016/j.ijhydene.2018.03.123 doi: 10.1016/j.ijhydene.2018.03.123
    [113] Zhang Y, Li R, Cong M, et al. (2022) Effect of hypo-stoichiometry on microstructure and hydrogenation behaviours of multiphase ZrTi0.1V2-x alloys. Intermetallic 142: 107464. https://doi.org/10.1016/j.intermet.2022.107464 doi: 10.1016/j.intermet.2022.107464
    [114] Le TH, Kim MP, Park CH, et al. (2024) Recent developments in materials for physical hydrogen storage: a review. Materials 17: 666. https://doi.org/10.3390/ma17030666 doi: 10.3390/ma17030666
    [115] Hou Z, Guo S, Zhang X, et al. (2025) Hydrogen storage and stability of rare earth-doped TiFe alloys under extensive cycling. Int J Hydrogen Energy 136: 469–476. https://doi.org/10.1016/j.ijhydene.2025.05.043 doi: 10.1016/j.ijhydene.2025.05.043
    [116] Shi H, Sun XY, Zeng SP, et al. (2023) Nano-porous nonprecious high‐entropy alloys as multisite electrocatalysts for ampere‐level current‐density hydrogen evolution. Small Struct 4: 2300042. https://doi.org/10.1002/sstr.202300042 doi: 10.1002/sstr.202300042
    [117] Dematteis EM, Berti N, Cuevas F, et al. (2021) Substitutional effects in TiFe for hydrogen storage: A comprehensive review. Mater Adv 8: 2524–2560. https://doi.org/10.1039/D1MA00101A doi: 10.1039/D1MA00101A
    [118] Mohammadi A, Ikeda Y, Edalati P, et al. (2022) High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments. Acta Mater 236: 118117. https://doi.org/10.1016/j.actamat.2022.118117 doi: 10.1016/j.actamat.2022.118117
    [119] Zhang YH, Gong PF, Li LW, et al. (2019) Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met 38: 1144–1152. https://doi.org/10.1007/s12598-016-0842-0 doi: 10.1007/s12598-016-0842-0
    [120] Jeyaraman S, Danilov DL, Notten PH, et al. (2025) Influence of Ni and Nb addition in TiVCr-based high entropy alloys for room-temperature hydrogen storage. Energies 18: 3920. https://doi.org/10.3390/en18153920 doi: 10.3390/en18153920
    [121] Liu Y, Wang F, Cao Y, et al. (2010) Mechanisms for the enhanced hydrogen desorption performance of the TiF4-catalyzed Na2LiAlH6 used for hydrogen storage. Energy Environ Sci 3: 645–653. https://doi.org/10.1039/B920270F doi: 10.1039/B920270F
    [122] Nygård MM, Ek G, Karlsson D, et al. (2019) Counting electrons-a new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater 175: 121–129. https://doi.org/10.1016/j.actamat.2019.06.002 doi: 10.1016/j.actamat.2019.06.002
    [123] Shahi RR, Gupta AK, Kumari P (2022) Perspectives of high entropy alloys as hydrogen storage materials. Int J Hydrogen Energy 48: 21412–21428. https://doi.org/10.1016/j.ijhydene.2022.02.113 doi: 10.1016/j.ijhydene.2022.02.113
    [124] Chen H, Zhao Z, Xiang H, et al. (2020) Effect of reaction routes on the porosity and permeability of porous high entropy (Y0.2Yb0.2Sm0.2Nd0.2Eu0.2) B6 for transpiration cooling. J Mater Sci Technol 38: 80–85. https://doi.org/10.1016/j.jmst.2019.09.006 doi: 10.1016/j.jmst.2019.09.006
    [125] Galey B, Batalha N, Auroux A (2023) Thermal analysis and solid-state hydrogen storage: Mg/MgH2 system case study. Therm Anal Calorim. https://doi.org/10.1515/9783110590449-003 doi: 10.1515/9783110590449-003
    [126] Zafar S, Khan A (2023) Integrated hydrogen fuel cell power system as an alternative to diesel-electric power system for conventional submarines. Int J Hydrogen Energy 51: 1560–1572. https://doi.org/10.1016/j.ijhydene.2023.08.370 doi: 10.1016/j.ijhydene.2023.08.370
    [127] Behera A (2021) Advanced materials: An introduction to modern materials science. 1 Eds, Springer Cham, 748. https://doi.org/10.1007/978-3-030-80359-9
    [128] Kaushal J, Chowdhury SPD (2025) Hydrogen-powered fuel cell integration in low voltage microgrid systems: performance evaluation and power quality analysis. Int J Ambient Energy 46: 2446524. https://doi.org/10.1080/01430750.2024.2446524 doi: 10.1080/01430750.2024.2446524
    [129] Zhou Y, Dan Z (2025) Modern energy resilience studies with artificial intelligence for energy transitions. Cell Rep Phys Sci 6: 102508. https://doi.org/10.1016/j.xcrp.2025.102508 doi: 10.1016/j.xcrp.2025.102508
    [130] Yang F, Wang J, Zhang Y, et al. (2022) Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. Int J Hydrogen Energy 47: 11236–11249. https://doi.org/10.1016/j.ijhydene.2022.01.141 doi: 10.1016/j.ijhydene.2022.01.141
    [131] Yang C, Gao Y, Ma T, et al. (2023) Metal alloys‐structured electrocatalysts: metal-metal interactions, coordination microenvironments, and structural property-reactivity relationships. Adv Mater 35: 2301836. https://doi.org/10.1002/adma.202301836 doi: 10.1002/adma.202301836
    [132] Yi J, Zhang S, Zhu D, et al. (2025) Mitigating hydrogen embrittlement in CoCrNi alloy using a self-refilling nanoscale amorphous oxide layer. Corros Sci 251: 112941. https://doi.org/10.1016/j.corsci.2025.112941 doi: 10.1016/j.corsci.2025.112941
    [133] Amiri A, Shahbazian-Yassar R (2023) Correction: Recent progress of high-entropy materials for energy storage and conversion. J Mater Chem A 11: 1512–1512. https://doi.org/10.1039/D2TA90294J doi: 10.1039/D2TA90294J
    [134] Zlotea C, Bouzidi A, Montero J, et al. (2022) Compositional effects on the hydrogen storage properties in a series of refractory high entropy alloys. Front Energy Res, 10. https://doi.org/10.3389/fenrg.2022.991447 doi: 10.3389/fenrg.2022.991447
    [135] Ma N, Zhao W, Wang W, et al. (2024) Large scale of green hydrogen storage: Opportunities and challenges. Int J Hydrogen Energy 50: 379–396. https://doi.org/10.1016/j.ijhydene.2023.09.021 doi: 10.1016/j.ijhydene.2023.09.021
    [136] Dematteis EM, Amdisen MB, Autrey T, et al. (2022) Hydrogen storage in complex hydrides: Past activities and new trends. Prog Energy 4: 032009. https://doi.org/10.1088/2516-1083/ac7499 doi: 10.1088/2516-1083/ac7499
    [137] Miedema AR, Buschow KHJ, Van Mal HH (1976) Which intermetallic compounds of transition metals form stable hydrides . J Less Common Met 49: 463–472. https://doi.org/10.1016/0022-5088(76)90057-6 doi: 10.1016/0022-5088(76)90057-6
    [138] Afzal M, Gupta N, Mallik A (2021) Experimental analysis of a metal hydride hydrogen storage system with hexagonal honeycomb-based heat transfer enhancements—part B. Int J Hydrogen Energy 46: 13131–13141. https://doi.org/10.1016/j.ijhydene.2020.11.275 doi: 10.1016/j.ijhydene.2020.11.275
    [139] Oi T, Maki K, Sakaki Y (2004) Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger. J Power Sources 125: 52–61. https://doi.org/10.1016/S0378-7753(03)00822-X doi: 10.1016/S0378-7753(03)00822-X
    [140] Mazzucco A, Dornheim M, Sloth M, et al. (2014) Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review. Int J Hydrogen Energy 39: 17054–17074. https://doi.org/10.1016/j.ijhydene.2014.08.047 doi: 10.1016/j.ijhydene.2014.08.047
    [141] Prasad JS, Muthukumar P (2023) Design of metal hydride reactor for medium temperature thermochemical energy storage applications. Therm Sci Eng Prog 37: 101570. https://doi.org/10.1016/j.tsep.2022.101570 doi: 10.1016/j.tsep.2022.101570
    [142] El Mghari H, Huot J, Xiao J (2019) Analysis of hydrogen storage performance of metal hydride reactor with phase change materials. Int J Hydrogen Energy 44: 28893–28908. https://doi.org/10.1016/j.ijhydene.2019.09.090 doi: 10.1016/j.ijhydene.2019.09.090
    [143] Ye Y, Lu J, Ding J, et al. (2020) Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank. Appl Energy 278: 115682. https://doi.org/10.1016/j.apenergy.2020.115682 doi: 10.1016/j.apenergy.2020.115682
    [144] Zhou Y, Dong ZY, Hsieh WP, et al. (2022) Thermal conductivity of materials under pressure. Nat Rev Phys 4: 319–335. https://doi.org/10.1038/s42254-022-00423-9 doi: 10.1038/s42254-022-00423-9
    [145] Holman JP (2010) Heat Transfer, 10th ed. McGraw Hill Higher Education. Available from: https://books.google.co.za/books?id=I4M4TZ0h1FwC
    [146] Calise F, d'Accadia MD, Santarelli M, et al. (2019) Solar Hydrogen Production: Processes, Systems and Technologies. https://doi.org/10.1016/C2017-0-02289-9
    [147] Rana S, Monder DS, Chatterjee A (2024) Thermodynamic calculations using reverse Monte Carlo: A computational workflow for accelerated construction of phase diagrams for metal hydrides. Comput Mater Sci 233: 112727. https://doi.org/10.1016/j.commatsci.2023.112727 doi: 10.1016/j.commatsci.2023.112727
    [148] Ye Y, Yue Y, Lu J, et al. (2021) Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials. Renewable Energy 180: 734–743. https://doi.org/10.1016/j.renene.2021.08.118 doi: 10.1016/j.renene.2021.08.118
    [149] Wei TY, Lim KL, Tseng YS, et al. (2017) A review on the characterization of hydrogen in hydrogen storage materials. Renewable Sustainable Energy Rev 79: 1122–1133. https://doi.org/10.1016/j.rser.2017.05.132 doi: 10.1016/j.rser.2017.05.132
    [150] Darzi AAR, Afrouzi HH, Moshfegh A (2016) Absorption and desorption of hydrogen in long metal hydride tank equipped with phase change material jacket. Int J Hydrogen Energy 41: 9595–9610. https://doi.org/10.1016/j.ijhydene.2016.04.051 doi: 10.1016/j.ijhydene.2016.04.051
    [151] Liu G, Li S, Song C, et al. (2024) High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage. Intermetallic 166: 108177. https://doi.org/10.1016/j.intermet.2023.108177 doi: 10.1016/j.intermet.2023.108177
    [152] Jiang M, Yang Y, Li H, et al. (2024) Theoretical study on the surface poisoning of high-entropy alloys during hydrogen storage cycles: The effect of metal elements and phases. Phys Chem Chem Phys 26: 24384–24394. https://doi.org/10.1039/D4CP02831G doi: 10.1039/D4CP02831G
    [153] Kozhakhmetov Y, Skakov M, Kurbanbekov S, et al. (2025) High-Entropy alloys: Innovative materials with unique properties for hydrogen storage and technologies for their production. Metals 15: 100. https://doi.org/10.3390/met15020100 doi: 10.3390/met15020100
    [154] Liu F, Xiao L, Zhou R, et al. (2025) Evaluation of thermal stress and performance for solid oxide electrolysis cells employing graded fuel electrodes. Energies 18: 2790. https://doi.org/10.3390/en18112790 doi: 10.3390/en18112790
    [155] Kaushik M (2022) Fundamentals of gas dynamics. Singapore: Springer, 375–583. https://doi.org/10.1007/978-981-16-9085-3
    [156] Zhang Y, Wang H, Yang J, et al. (2025) Enhancing the strain-hardening rate and uniform tensile ductility of lightweight refractory high-entropy alloys by tailoring multi-scale heterostructure strategy. Int J Plast 185: 104237. https://doi.org/10.1016/j.ijplas.2024.104237 doi: 10.1016/j.ijplas.2024.104237
    [157] Chang SY, Li CE, Huang YC, et al. (2014) Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci Rep, 4. https://doi.org/10.1038/srep04162 doi: 10.1038/srep04162
    [158] Bouzidi A, Laversenne L, Zepon G, et al. (2021) Hydrogen sorption properties of a novel refractory Ti-V-Zr-Nb-Mo high entropy alloy. Hydrogen 2: 399–413. https://doi.org/10.3390/hydrogen204002 doi: 10.3390/hydrogen204002
    [159] Dornheim M, Ling S, Stavila V (2025) Promising alloys for hydrogen storage in the compositional space of (TiVNb)100–x(Cr, Mo)x high-entropy alloys. ACS Appl Mater Interfaces 17: 41991–42003. https://doi.org/10.1021/acsami.5c08574 doi: 10.1021/acsami.5c08574
    [160] Luo L, Chen L, Li L, et al. (2024) High-entropy alloys for solid hydrogen storage: A review. Int J Hydrogen Energy 50: 406–430. https://doi.org/10.1016/j.ijhydene.2023.07.146 doi: 10.1016/j.ijhydene.2023.07.146
    [161] Babaie Rizvandi O, Frandsen HL, Hendriksen PV (2022) Stack-Scale modeling of ammonia-fueled solid oxide fuel cell. Meet Abstr 241: 1960–1960. https://doi.org/10.1149/MA2022-01461960mtgabs doi: 10.1149/MA2022-01461960mtgabs
    [162] Pineda-Romero N, Perrière L, Elkaim E, et al. (2024) Advancing our understanding of the effect of Al/Mo substitution in the TiVNb alloy on the hydrogen storage properties. J Alloys Compd 1005: 176255. https://doi.org/10.1016/j.jallcom.2024.176255 doi: 10.1016/j.jallcom.2024.176255
    [163] Chen YT, Chang YJ, Murakami H, et al. (2020) Designing high entropy superalloys for elevated temperature application. Scr Mater 187: 177–182. https://doi.org/10.1016/j.scriptamat.2020.06.002 doi: 10.1016/j.scriptamat.2020.06.002
    [164] Zhao AZ, Garay JE (2023) High temperature liquid thermal conductivity: A review of measurement techniques, theoretical understanding, and energy applications. Prog Mater Sci 139: 101180. https://doi.org/10.1016/j.pmatsci.2023.101180 doi: 10.1016/j.pmatsci.2023.101180
    [165] Mehrtash M, Tari I (2013) A correlation for natural convection heat transfer from inclined plate-finned heat sinks. Appl Therm Eng 51: 1067–1075. https://doi.org/10.1016/j.applthermaleng.2012.10.043 doi: 10.1016/j.applthermaleng.2012.10.043
    [166] Wang H, Prasad AK, Advani SG (2012) Hydrogen storage systems based on hydride materials with enhanced thermal conductivity. Int J Hydrogen Energy 37: 290–298. https://doi.org/10.1016/j.ijhydene.2011.04.096 doi: 10.1016/j.ijhydene.2011.04.096
    [167] Shimizu Y, Nomura T (2023) Al–Si–Fe alloy-based phase change material for high-temperature thermal energy storage. High Temp Mater Process, 42. https://doi.org/10.1515/htmp-2022-0280 doi: 10.1515/htmp-2022-0280
    [168] Kukkapalli VK, Kim S, Thomas SA (2023) Thermal management techniques in metal hydrides for hydrogen storage applications: A review. Energies 16: 3444. https://doi.org/10.3390/en16083444 doi: 10.3390/en16083444
    [169] Ding Z, Li Y, Jiang H, et al. (2025) The integral role of high‐entropy alloys in advancing solid‐state hydrogen storage. Interdiscip Mater 4: 75-108. https://doi.org/10.1002/idm2.12216 doi: 10.1002/idm2.12216
    [170] Cavaliere P (2025) Hydrogen embrittlement: The case of high-entropy alloys. Hydrogen Embrittlement Met Alloys, 681–728. https://doi.org/10.1007/978-3-031-83681-7_10 doi: 10.1007/978-3-031-83681-7_10
    [171] Andrade G, Huot J, Floriano R (2025) Microstructural evolution and hydrogen storage performance of TiZrHfVNb1-xCux (for X = 0, 0.6, 0.8 and 1) high-entropy alloys. Mater Chem Phys 343: 131069. https://doi.org/10.1016/j.matchemphys.2025.131069 doi: 10.1016/j.matchemphys.2025.131069
    [172] Luo L, Han H, Feng D, et al. (2024) Nanocrystalline high entropy alloys with ultrafast kinetics and high storage capacity for large-scale room-temperature-applicable hydrogen storage. Renewables 2: 138–149. https://doi.org/10.31635/renewables.024.202300049 doi: 10.31635/renewables.024.202300049
    [173] Sahlberg M, Karlsson D, Zlotea C, et al. (2016) Superior hydrogen storage in high entropy alloys. Sci Rep 6: 36770. https://doi.org/10.1038/srep36770 doi: 10.1038/srep36770
    [174] Ye Y, Zhu H, Cheng H, et al. (2023) Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management. Appl Energy 338: 120923. https://doi.org/10.1016/j.apenergy.2023.120923 doi: 10.1016/j.apenergy.2023.120923
    [175] Wang H, Ma S, Zhao W, et al. (2025) Exceptionally low thermal conductivity in distorted high entropy alloy. Mater Res Lett 13: 24–34. https://doi.org/10.1080/21663831.2024.2413101. doi: 10.1080/21663831.2024.2413101
    [176] Steiner T (2002) The hydrogen bond in the solid state. Angew Chem 41: 48–76. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
    [177] Harrison WA (2012) Electronic structure and the properties of solids: The physics of the chemical bond. Courier Corporation, NY: Dover Publication. Available from: https://openlibrary.org/books/OL21680979M/Electronic_structure_and_theproperties_of_solids.
    [178] Pandey AK, Dixit CK, Srivastava S (2024) Theoretical model for the prediction of lattice energy of diatomic metal halides. Math Chem 62: 269–274. https://doi.org/10.1007/s10910-023-01538-9 doi: 10.1007/s10910-023-01538-9
    [179] Gong J, Li Y, Song X, et al. (2024) Hydrogen storage of high entropy alloy NbTiVZr and its effect on mechanical properties: A first-principles study. Vacuum 219: 112754. https://doi.org/10.1016/j.vacuum.2023.112754 doi: 10.1016/j.vacuum.2023.112754
    [180] Huang LA, Xu Y, Song Y, et al. (2024) Local electronic structure engineering of vanadium-doped nickel phosphide nanosheet arrays for efficient hydrogen evolution. J Colloid Interface Sci 658: 383–391. https://doi.org/10.1016/j.jcis.2023.12.049 doi: 10.1016/j.jcis.2023.12.049
    [181] Müller PC, Ertural C, Hempelmann J, et al. (2021) Crystal orbital bond index: Covalent bond orders in solids. J Phys Chem C 125: 7959–7970. https://doi.org/10.1021/acs.jpcc.1c00718 doi: 10.1021/acs.jpcc.1c00718
    [182] Marqués M, Peña-Alvarez M, Martínez-Canales M, et al. (2023) H2 chemical bond in a high-pressure crystalline environment. J Phys Chem C 127: 15523–15532. https://doi.org/10.1021/acs.jpcc.3c02366 doi: 10.1021/acs.jpcc.3c02366
    [183] Osman AI, Ayati A, Farrokhi M, et al. (2024) Innovations in hydrogen storage materials: synthesis, applications, and prospects. J Energy Storage 95: 112376. https://doi.org/10.1016/j.est.2024.112376 doi: 10.1016/j.est.2024.112376
    [184] Santis GD, Xantheas SS (2025) Extending Badger's rule. Ⅰ. The relationship between energy and structure in hydrogen bonds. J Chem Phys 162: 044106https://doi.org/10.1063/5.0244238 doi: 10.1063/5.0244238
    [185] Yadav YK, Shaz MA, Yadav TP (2025) Solid-state hydrogen storage properties of Al–Cu–Fe–Ni–Ti high entropy alloy. Int J Hydrogen Energy 99: 985–995. https://doi.org/10.1016/j.ijhydene.2024.12.254 doi: 10.1016/j.ijhydene.2024.12.254
    [186] Aghdasi P, Li DY (2025) Electron work function guided tailoring of (W4-x, Mx)C4/doped Ni matrix interfacial bonding: Insights from first-principles calculations. Acta Mater 283: 120511. https://doi.org/10.1016/j.actamat.2024.120511 doi: 10.1016/j.actamat.2024.120511
    [187] Savin A, Nesper R, Wengert S, et al. (1997) ELF: The electron localization function. Angew Chemie 36: 1808–1832. https://doi.org/10.1002/anie.199718081 doi: 10.1002/anie.199718081
    [188] Du Z, Zuo J, Bao N, et al. (2019) Effect of Ta addition on the structural, thermodynamic and mechanical properties of CoCrFeNi high entropy alloys. RSC Adv 9: 16447–16454. https://doi.org/10.1039/C9RA03055G doi: 10.1039/C9RA03055G
    [189] Bao N, Zuo J, Du Z (2019) Computational characterization of the structural and mechanical properties of AlxCoCrFeNiTi1-x high entropy alloys. Mater Res Express 6: 096519. https://doi.org/10.1088/2053-1591/ab2b77 doi: 10.1088/2053-1591/ab2b77
    [190] Zhang A, Zhao R, Wang Y, et al. (2023) Regulating the electronic structure of manganese-based materials to optimize the performance of zinc-ion batteries. Energy Environ Sci 16: 3240–3301. https://doi.org/10.1039/D3EE01344H doi: 10.1039/D3EE01344H
    [191] Cao FH, Wang YJ, Dai LH (2020) Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment. Acta Mater 194: 283–294. https://doi.org/10.1039/D3EE01344H doi: 10.1039/D3EE01344H
    [192] Kumar S, Jain A, Ichikawa T, et al. (2017) Development of vanadium based hydrogen storage material: A review. Renewable Sustainable Energy Rev 72: 791–800. https://doi.org/10.1016/j.rser.2017.01.063 doi: 10.1016/j.rser.2017.01.063
    [193] Anikina EY, Verbetsky VN (2021) Thermodynamic aspects of the reversible absorption of hydrogen by Ti0.9Zr0.1Mn1.4V0.5 alloy. Russ J Phys Chem A 95: 861–867. https://doi.org/10.1134/S0036024421050022 doi: 10.1134/S0036024421050022
    [194] Yu J, Horsfield A (2025) Tight binding simulation of the MgO and Mg(OH)2 hydration and carbonation processes. J Chem Theory Comput 21: 1961–1977. https://doi.org/10.1021/acs.jctc.4c01531 doi: 10.1021/acs.jctc.4c01531
    [195] Hong Z, Wang L, Zhang W, et al. (2022) Hydrogen isotope permeation behavior of AlCrFeTiNb, AlCrMoNbZr and AlCrFeMoTi high-entropy alloys coatings. Coatings 12: 171. https://doi.org/10.3390/coatings12020171 doi: 10.3390/coatings12020171
    [196] Matczak P (2025) Quantum chemical topological analysis of [2Fe2S] core in novel [FeFe]-hydrogenase mimics. Crystals 15: 52. https://doi.org/10.3390/cryst15010052 doi: 10.3390/cryst15010052
    [197] Zhang JW, Zhou PP, Cao ZM, et al. (2023) Composition and temperature influence on hydrogenation performance of TiZrHfMoxNb2-x high entropy alloys. J Mater Chem A 11: 20623–20635. https://doi.org/10.1039/D3TA01990J doi: 10.1039/D3TA01990J
    [198] Muthukumar P, Kumar A, Raju NN, et al. (2018) A critical review on design aspects and developmental status of metal hydride based thermal machines. Int J Hydrogen Energy 43: 17753–17779. https://doi.org/10.1016/j.ijhydene.2018.07.157 doi: 10.1016/j.ijhydene.2018.07.157
    [199] Baranowski B (1993) A simplified quantitative approach to the isothermal hysteresis in metallic hydrides with coherent interphases. J Alloys Compd 200: 87–92. https://doi.org/10.1016/0925-8388(93)90476-4 doi: 10.1016/0925-8388(93)90476-4
    [200] Speer JG, Matlock DK, DeCooman BC, et al. (2005) Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, scripta materialia, 50: 697–9 (2004). Scr Mater 52: 83–85. https://doi.org/10.1016/j.scriptamat.2004.08.029 doi: 10.1016/j.scriptamat.2004.08.029
    [201] Oates WA, Flanagan TB (1983) On the origin of increasing hydrogen pressures in the two solid phase regions of intermetallic compound-hydrogen systems. Scr Metall 17: 983–986. https://doi.org/10.1016/0036-9748(83)90435-0 doi: 10.1016/0036-9748(83)90435-0
    [202] Zepon G, Silva BH, Zlotea C, et al. (2021) Thermodynamic modelling of hydrogen-multicomponent alloy systems: Calculating pressure-composition-temperature diagrams. Acta Mater 215: 117070. https://doi.org/10.1016/j.actamat.2021.117070 doi: 10.1016/j.actamat.2021.117070
    [203] Osman AI, Nasr M, Mohamed AR, et al. (2024) Life cycle assessment of hydrogen production, storage, and utilization toward sustainability. WIREs: Energy Environ 13: 526. https://doi.org/10.1002/wene.526 doi: 10.1002/wene.526
    [204] Yang Z, Meng P, Jiang M, et al. (2024) Intermolecular hydrogen bonding networks stabilized organic supramolecular cathode for ultra‐high capacity and ultra‐long cycle life rechargeable aluminium batteries. Angew Chem Int Ed 63: e202403424. https://doi.org/10.1002/anie.202403424 doi: 10.1002/anie.202403424
    [205] Teng Y, Wang R, Sun X, et al. (2025) Composition screening and cycling degradation mechanisms of long-cycle-life superlattice hydrogen storage alloys. J Alloys Compd 1025: 180349. https://doi.org/10.1016/j.jallcom.2025.180349 doi: 10.1016/j.jallcom.2025.180349
    [206] Chen J, Li Z, Huang H, et al. (2022) Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage. Scr Mater 212: 114548. https://doi.org/10.1016/j.scriptamat.2022.114548 doi: 10.1016/j.scriptamat.2022.114548
    [207] Purdy G, Ågren J, Borgenstam A, et al. (2011) ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces. Metall Mater Trans A 42: 3703–3718. https://doi.org/10.1007/s11661-011-0766-0 doi: 10.1007/s11661-011-0766-0
    [208] Ponsoni JB, Balcerzak M, Botta WJ, et al. (2023) A comprehensive investigation of the (Ti0.5Zr0.5)1(Fe0.33Mn0.33Cr0.33)2 multicomponent alloy for room-temperature hydrogen storage designed by computational thermodynamic tools. J Mater Chem A 11: 14108–14118. https://doi.org/10.1039/D3TA02197A doi: 10.1039/D3TA02197A
    [209] Gill SPA (2022) Thermodynamics, kinetics and microstructure modelling. IOP Publishing. https://doi.org/10.1088/978-0-7503-3147-0
    [210] Pelton AD, Koukkari P, Pajarre R, et al. (2014) Para-equilibrium phase diagrams. J Chem Thermodyn 72: 16–22. https://doi.org/10.1016/j.jct.2013.12.023 doi: 10.1016/j.jct.2013.12.023
    [211] Strozi RB, Silva BH, Leiva DR, et al. (2023) Tuning the hydrogen storage properties of Ti-V-Nb-Cr alloys by controlling the Cr/(TiVNb) ratio. J Alloys Compd 932: 167609. https://doi.org/10.1016/j.jallcom.2022.167609 doi: 10.1016/j.jallcom.2022.167609
    [212] Ling H, Tang Y, Zhong J, et al. (2025) Thermodynamic, diffusion and precipitation behaviors in Cu–Ni–Si–Co alloys: Modeling and experimental validation. J Mater Res Technol 35: 3257–3269. https://doi.org/10.1016/j.jmrt.2025.01.242 doi: 10.1016/j.jmrt.2025.01.242
    [213] Pedroso OA, Botta WJ, Zepon G (2022) An open-source code to calculate pressure-composition-temperature diagrams of multicomponent alloys for hydrogen storage. Int J Hydrogen Energy 47: 32582–32593. https://doi.org/10.1016/j.ijhydene.2022.07.179 doi: 10.1016/j.ijhydene.2022.07.179
    [214] Massimino F (2012) Analysis of inhomogeneities in hydrogen storage alloys: A comparison of different methods. Cryst Struct Theory Appl 1: 100–106. https://doi.org/10.4236/csta.2012.13019 doi: 10.4236/csta.2012.13019
    [215] Lee JH, Ha SV, Seong J, et al. (2025) Development of 3D interconnected nanoporous TiZrHfNbTaNi high-entropy alloy via liquid metal dealloying and subsequent synthesis of (TiZrHfNbTaNi) O high-entropy oxide. J Mater Res Technol 35: 5204–5215https://doi.org/10.1016/j.jmrt.2025.02.152 doi: 10.1016/j.jmrt.2025.02.152
    [216] Al Zoubi W, Putri RAK, Abukhadra MR, et al. (2023) Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy 110: 108362. https://doi.org/10.1016/j.nanoen.2023.108362 doi: 10.1016/j.nanoen.2023.108362
    [217] Nygård MM, Ek G, Karlsson D, et al. (2019) Counting electrons—A new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater 175: 121–129. https://doi.org/10.1016/j.actamat.2019.06.002 doi: 10.1016/j.actamat.2019.06.002
    [218] Kumar A, Yadav TP, Shaz MA, et al. (2024) Hydrogen storage properties in rapidly solidified TiZrVCrNi high‐entropy alloys. Energy Storage 6: e532. https://doi.org/10.1002/est2.532 doi: 10.1002/est2.532
    [219] Strozi RB, Witman M, Stavila V, et al. (2023) Elucidating primary degradation mechanisms in high-cycling-capacity, compositionally tunable high-entropy hydrides. ACS Appl Mater Interfaces 15: 38412–38422. https://doi.org/10.1021/acsami.3c05206 doi: 10.1021/acsami.3c05206
    [220] Ryltsev RE, Estemirova SK, Gaviko VS, et al. (2022) Structural evolution in TiZrHfNb high-entropy alloy. Materialia 21: 101311. https://doi.org/10.1016/j.mtla.2021.101311 doi: 10.1016/j.mtla.2021.101311
    [221] Yan X, Zhang Y (2020) Functional properties and promising applications of high entropy alloys. Scr Mater 187: 188–193. https://doi.org/10.1016/j.scriptamat.2020.06.017 doi: 10.1016/j.scriptamat.2020.06.017
    [222] O'Connell JP, Haile JM (2005) Thermodynamics: Fundamentals for applications. 1 Eds., Cambridge University Press, 1–654. https://doi.org/10.1017/CBO9780511840234
    [223] Alaneme KK, Anaele JU, Kareem SA (2023) Hot deformability, microstructural evolution and processing map assessment of high entropy alloys: A systematic review. J Mater Res Technol 26: 1754–1784. https://doi.org/10.1016/j.jmrt.2023.07.242 doi: 10.1016/j.jmrt.2023.07.242
    [224] Nguyen HQ, Shabani B (2021) Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int J Hydrogen Energy 46: 31699–31726. https://doi.org/10.1016/j.ijhydene.2021.07.057 doi: 10.1016/j.ijhydene.2021.07.057
    [225] Ozawa T (2000) Thermal analysis—Review and prospect. Thermochim Acta 355: 35–42. https://doi.org/10.1016/S0040-6031(00)00435-4 doi: 10.1016/S0040-6031(00)00435-4
    [226] Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29: 1702–1706. https://doi.org/10.1021/ac60131a045 doi: 10.1021/ac60131a045
    [227] Vyazovkin S, Koga N, Schick C (2018) Handbook of thermal analysis and calorimetry recent advances, techniques and applications. 2 Eds, Netherlands, Elsevier Science, 1–842. Available from: https://searchworks.stanford.edu/view/13119808
    [228] Li X, Yin J, Zhang J, et al. (2022) Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review. J Mater Sci Technol 122: 20–32. https://doi.org/10.1016/j.jmst.2022.01.008 doi: 10.1016/j.jmst.2022.01.008
    [229] Kong X, Jiang H, Lv Y, et al. (2025) Research progress on the hydrogen embrittlement resistance performance of high-entropy alloys. Materials 18: 2862. https://doi.org/10.3390/ma18122862 doi: 10.3390/ma18122862
    [230] Balaji V, Jeyapandiarajan P, Joel J, et al. (2024) Mitigating hydrogen embrittlement in high-entropy alloys for next-generation hydrogen storage systems. J Mater Res Technol 33: 7681–7697. https://doi.org/10.1016/j.jmrt.2024.11.139 doi: 10.1016/j.jmrt.2024.11.139
    [231] Tasan CC (2022) New tools & new insights: Unravelling hydrogen effects in structural alloys. Microsc Microanal 28: 1600. https://doi.org/10.1017/S1431927622006407 doi: 10.1017/S1431927622006407
    [232] Chen YS, Huang C, Liu PY, et al. (2025) Hydrogen trapping and embrittlement in metals—A review. Int J Hydrogen Energy 136: 789–821. https://doi.org/10.1016/j.ijhydene.2024.04.076 doi: 10.1016/j.ijhydene.2024.04.076
    [233] Zhou X, Tehranchi A, Curtin WA (2021) Mechanism and prediction of hydrogen embrittlement in FCC stainless steels and high entropy alloys. Phys Rev Lett 127: 175501. https://doi.org/10.1103/PhysRevLett.127.175501 doi: 10.1103/PhysRevLett.127.175501
    [234] Padmanabhan NT, Clarizia L, Ganguly P (2025) Advancing hydrogen storage: critical insights to potentials, challenges, and pathways to sustainability. Curr Opin Chem Eng 48: 101135. https://doi.org/10.1016/j.coche.2025.101135 doi: 10.1016/j.coche.2025.101135
    [235] Duarte MJ, Fang X, Rao J, et al. (2021) In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. J Mater Sci 56: 8732–8744. https://doi.org/10.1007/s10853-020-05749-2 doi: 10.1007/s10853-020-05749-2
    [236] Pandey S, Srivastava R, Narain R (2025) Integrated analysis of energy-process parameters relationship in direct energy deposition of 15–5 PH stainless steel. Int J Interact Des Manuf 19: 3593–3610. https://doi.org/10.1007/s12008-024-01998-6 doi: 10.1007/s12008-024-01998-6
    [237] Jiang W, Zhu Y, Zhao Y (2022) Mechanical properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review. Front Mater 8: 792359. https://doi.org/10.3389/fmats.2021.792359 doi: 10.3389/fmats.2021.792359
    [238] Maier-Kiener V, Ebner AS, Clemens H, et al. (2019) Impact of temperature and hydrogen on the nanomechanical properties of a highly deformed high entropy alloy. Nanomechanical Testing in Materials Research and Development Ⅶ. Jon Molina-Aldareguia, IMDEA-Materials Institute, Spain Eds, ECI Symposium Series. Available from: https://dc.engconfintl.org/nanochemtest_vii/107.
    [239] Feng Z, Li X, Song X, et al. (2022) Hydrogen embrittlement of CoCrFeMnNi high-entropy alloy compared with 304 and IN718 alloys. Metals 12: 998. https://doi.org/10.3390/met12060998 doi: 10.3390/met12060998
    [240] Huskova P, Horník J, Čižmárová E, et al. (2022) Metallic Materials for Hydrogen Storage—A Brief Overview. Coatings 12: 1813. https://doi.org/10.3390/coatings12121813 doi: 10.3390/coatings12121813
    [241] Muradyan G, Dolukhanyan S, Ter-Galstyan O, et al. (2025) The role of hydrogen in the synthesis of High-entropy alloys and their hydrides. J Alloys Compd 1010: 177327. https://doi.org/10.1016/j.jallcom.2024.177327 doi: 10.1016/j.jallcom.2024.177327
    [242] Bansal A, Kumar P, Yadav S, et al. (2023) Accelerated design of high entropy alloys by integrating high throughput calculation and machine learning. J Alloys Compd 960: 170543. https://doi.org/10.1016/j.jallcom.2023.170543 doi: 10.1016/j.jallcom.2023.170543
    [243] Jalali M, Nayebpashaee N (2025) A comprehensive review on the applications of high-entropy alloys in electronics and energy industries. Fifth National and the First International Conference on Applied Research in Electrical Engineering (AREE), 1–5. https://doi.org/10.1109/AREE63378.2025.10880254 doi: 10.1109/AREE63378.2025.10880254
    [244] Bastin A, Robertson T, Durocher A, et al. (2025) Environmental resistance of high entropy alloys: Impact of downstream hydrogen combustion on oxidation resistance. J Eng Gas Turbines Power 148: 021020. https://doi.org/10.1115/1.4069580 doi: 10.1115/1.4069580
    [245] Jiang Y, Jiang W (2024) High entropy alloys: emerging materials for advanced hydrogen storage. Energy Technol 12: 2401061. https://doi.org/10.1002/ente.202401061 doi: 10.1002/ente.202401061
    [246] Ma X, Ding X, Chen R, et al. (2022) Enhanced hydrogen storage properties of ZrTiVAl1-x Fex high-entropy alloys by modifying the Fe content. RSC Adv 12: 11272–11281. https://doi.org/10.1039/D2RA01064J doi: 10.1039/D2RA01064J
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1344) PDF downloads(80) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog