This paper investigated the effect of cobalt on hydrogen storage in the intermetallic compound LaNi₅. Phase composition and hydrogen absorption properties of the LaNi₅–хCoх system were analyzed using X-ray diffraction. The results demonstrated the retention of the hexagonal AB₅-type structure upon substitution of nickel atoms with cobalt atoms, accompanied by minor changes in lattice parameters and the formation of the LaNi₄Co phase. Hydrogen absorption studies revealed an increase in the material's capacity to 1.9% and a reduction in the time required to reach 90% of the equilibrium concentration to 2–3 minutes. These findings indicate that cobalt modification is an effective method to enhance hydrogen storage efficiency.
Citation: Arman Miniyazov, Mazhyn Skakov, Nuriya Mukhamedova, Mikhail Skopchenko, Ospan Oken, Aisara Sabyrtayeva, Igor Sokolov, Anar Nassyrova. Improving the efficiency of hydrogen storage in LaNi₅-based materials through cobalt modification[J]. AIMS Energy, 2025, 13(6): 1417-1431. doi: 10.3934/energy.2025053
This paper investigated the effect of cobalt on hydrogen storage in the intermetallic compound LaNi₅. Phase composition and hydrogen absorption properties of the LaNi₅–хCoх system were analyzed using X-ray diffraction. The results demonstrated the retention of the hexagonal AB₅-type structure upon substitution of nickel atoms with cobalt atoms, accompanied by minor changes in lattice parameters and the formation of the LaNi₄Co phase. Hydrogen absorption studies revealed an increase in the material's capacity to 1.9% and a reduction in the time required to reach 90% of the equilibrium concentration to 2–3 minutes. These findings indicate that cobalt modification is an effective method to enhance hydrogen storage efficiency.
| [1] | Sahak MZM, Shaffee SNA, Thant MMM, et al. (2024) Advancement in green hydrogen production: Integrating Solid Oxide Electrolysis Cells (SOECs) into existing offshore facilities for sustainable energy. Proceedings of the APOGCE 2024, Perth, Australia, 15–17. https://doi.org/10.2118/221154-MS |
| [2] |
Das HS, Chowdhury MFF, Li S, et al. (2021) Fuel cell and hydrogen power plants. Hybrid Renewable Energy Syst Microgrids 2021: 313–349. https://doi.org/10.1016/B978-0-12-821724-5.00009-X doi: 10.1016/B978-0-12-821724-5.00009-X
|
| [3] |
Sikiru S, Oladosu TL, Amosa TI, et al. (2024) Hydrogen-powered horizons: Transformative technologies in clean energy generation, distribution, and storage for sustainable innovation. Int J Hydrogen Energy 56: 1152–1182. https://doi.org/10.1016/j.ijhydene.2023.12.186 doi: 10.1016/j.ijhydene.2023.12.186
|
| [4] |
Moradi R, Growth KM (2019) Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int J Hydrogen Energy 44: 12254–12269. https://doi.org/10.1016/j.ijhydene.2019.03.041 doi: 10.1016/j.ijhydene.2019.03.041
|
| [5] |
Sadeq AM (2024) Advances and challenges in hydrogen energy: A review. Chem Eng Process Tech 9: 1087. https://doi.org/10.47739/2333-6633/1087 doi: 10.47739/2333-6633/1087
|
| [6] |
Kyriakopoulos GL, Aravossis KG (2023) Literature review of hydrogen energy systems and renewable energy sources. Energies 16: 7493. https://doi.org/10.3390/en16227493 doi: 10.3390/en16227493
|
| [7] | Federal Ministry for Economic Affairs and Climate Action (BMWK) (2023) National Hydrogen Strategy Update. Available from: https://www.bundeswirtschaftsministerium.de/Redaktion/EN/Publikationen/Energie/national-hydrogen-strategy-update.pdf?__blob=publicationFile&v=2. |
| [8] | New Energy and Industrial Technology Development Organization (NEDO) (2020) The world's largest-class hydrogen production, Fukushima Hydrogen Energy Research Field (FH2R) now is completed at Namie town in Fukushima. Available from: https://www.nedo.go.jp/english/news/AA5en_100422.html. |
| [9] | Energy Innovation Austria (2020) H2FUTURE, Green hydrogen pilot plant at industrial scal. Available from: https://www.energy-innovation-austria.at/article/h2future-2/?lang=en. |
| [10] |
Kempler PA, Slack JJ, Baker AM (2022) Research priorities for seasonal energy storage using electrolyzers and fuel cells. Joule 6: 280–285. https://doi.org/10.1016/j.joule.2021.12.020 doi: 10.1016/j.joule.2021.12.020
|
| [11] |
Petkov I, Gabrielli P (2020) Power-to-hydrogen as seasonal energy storage: An uncertainty analysis for optimal design of low-carbon multi-energy systems. Appl Energy 274: 115197. https://doi.org/10.1016/j.apenergy.2020.115197 doi: 10.1016/j.apenergy.2020.115197
|
| [12] |
Kwon K, Lee HB, Kim N, et al. (2024) Integrated battery and hydrogen energy storage for enhanced grid power savings and green hydrogen utilization. Appl Sci 14: 7631. https://doi.org/10.3390/app14177631 doi: 10.3390/app14177631
|
| [13] | Sun W, Vasu S, Blais MS (2022) Chapter 2—Fundamentals. Machinery and Energy Systems for the Hydrogen Economy, Elsevier, 11–30. https://doi.org/10.1016/B978-0-323-90394-3.00015-1 |
| [14] |
Ball M, Wietschel M (2009) The future of hydrogen—Opportunities and challenges. Int J Hydrogen Energy 34: 615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014 doi: 10.1016/j.ijhydene.2008.11.014
|
| [15] |
Züttel A (2003) Materials for hydrogen storag. Mat Today 6: 24–33. https://doi.org/10.1016/S1369-7021(03)00922-2 doi: 10.1016/S1369-7021(03)00922-2
|
| [16] |
Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414: 353–358. https://doi.org/10.1038/35104634 doi: 10.1038/35104634
|
| [17] |
Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91: 157–172. https://doi.org/10.1007/s00114-004-0516-x doi: 10.1007/s00114-004-0516-x
|
| [18] |
Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: A most promising material. Int J Hydrogen Energy 35: 5133–5144. https://doi.org/10.1016/j.ijhydene.2009.08.088 doi: 10.1016/j.ijhydene.2009.08.088
|
| [19] |
Nemukula E, Mtshali CB, Nemangwele F (2025) Metal hydrides for sustainable hydrogen storage: A review. Int J Energy Res. https://doi.org/10.1155/er/6300225 doi: 10.1155/er/6300225
|
| [20] |
Bowman RC, Fultz B (2022) Metallic hydrides I: Hydrogen storage and other gas-phase applications. Bulletin Mat Res Soc 27: 688–693. https://doi.org/10.1557/MRS2002.223 doi: 10.1557/MRS2002.223
|
| [21] |
Martin M, Gommel C, Borkhart C, et al. (1996) Absorption and desorption kinetics of hydrogen storage alloys. J Alloys Compd 238: 193–201. https://doi.org/10.1016/0925-8388(96)02217-7 doi: 10.1016/0925-8388(96)02217-7
|
| [22] |
Dematteis EM, Barale J, Corno M, et al. (2021) Solid-state hydrogen storage systems and the relevance of a gender perspective. Energies 14: 6158. https://doi.org/10.3390/en14196158 doi: 10.3390/en14196158
|
| [23] |
Luo S, Clewley JD, Flanagan TB, et al. (1998) Further studies of the isotherms of LaNi₅₋ₓSnₓ–H for x = 0–0.5. J Alloys Compd 267: 171–181. https://doi.org/10.1016/S0925-8388(97)00536-7 doi: 10.1016/S0925-8388(97)00536-7
|
| [24] |
Luo S, Clewley JD, Flanagan TB, et al. (1997) Split plateaux in the LaNi₅–H system and the effect of Sn substitution on splitting. J Alloys Compd 253–254: 226–231. https://doi.org/10.1016/S0925-8388(96)02904-0 doi: 10.1016/S0925-8388(96)02904-0
|
| [25] |
Du H, Zhang W, Wang C, et al. (2003) Neutron powder diffraction study on the structures of LaNi5-xA1xDy compounds. Solid State Commun 128: 157–161. https://doi.org/10.1016/S0038-1098(03)00655-0 doi: 10.1016/S0038-1098(03)00655-0
|
| [26] |
Liu J, Li K, Cheng H, et al. (2017) New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5–xAlx alloys. Int J Hydrogen Energy 42: 24904–24914. https://doi.org/10.1016/j.ijhydene.2017.07.213 doi: 10.1016/j.ijhydene.2017.07.213
|
| [27] |
Zhu S, Chen X, Liu J, et al. (2020). Long-term hydrogen absorption/desorption properties of an AB5-type LaNi4.75Mn0.25 alloy. Mat Sci Eng B 262: 114777. https://doi.org/10.1016/j.mseb.2020.114777 doi: 10.1016/j.mseb.2020.114777
|
| [28] |
Almeida Neto GR de, Gonçalves Beatrice CA, Leiva DR, et al. (2021) Polyetherimide-LaNi5 composite films for hydrogen storage applications. Int J Hydrogen Energy 46: 23767–23778. https://doi.org/10.1016/j.ijhydene.2021.04.191 doi: 10.1016/j.ijhydene.2021.04.191
|
| [29] |
Kodama T (1999) The thermodynamic parameters for the LaNi5–xAlx–H2 and MmNi5–xAlx–H2 systems. J Alloys Compd 289: 207–212. https://doi.org/10.1016/s0925-8388(99)00173-5 doi: 10.1016/s0925-8388(99)00173-5
|
| [30] |
Nakamura Y, Akiba E (2002) Defects formation in LaNi5-based alloys investigated by In-situ X-ray diffraction. MRS Proceed, 753. https://doi.org/10.1557/proc-753-bb5.56 doi: 10.1557/proc-753-bb5.56
|
| [31] |
Huang T, Yu H (1989) An X-ray diffraction study on phase transition lattice gas in LaNi₅Hₓ. J Less-Common Me 153: 253–257. https://doi.org/10.1016/0022-5088(89)90119-7 doi: 10.1016/0022-5088(89)90119-7
|
| [32] |
Chen J, Dou SX, Liu HK (1996) Effect of partial substitution of La with Ce, Pr and Nd on the properties of LaNi5-based alloy electrodes. J Power Sources 63: 267–270. https://doi.org/10.1016/s0378-7753(96)02461-5 doi: 10.1016/s0378-7753(96)02461-5
|
| [33] |
Todorova S, Abrashev B, Rangelova V, et al. (2021) Hydrogen gas phase and electrochemical hydriding of LaNi5–xMx (M = Sn, Co, Al) alloys. Materials 14: 14. https://doi.org/10.3390/ma14010014 doi: 10.3390/ma14010014
|
| [34] |
Souza EC, Ticianelli EA (2003) Effect of partial substitution of nickel by tin, aluminum, manganese and palladium on the properties of LaNi5-type metal hydride alloys. J Braz Chem Soc, 14. https://doi.org/10.1590/S0103-50532003000400009 doi: 10.1590/S0103-50532003000400009
|
| [35] |
Liu J, Zhu S, Zheng Z, et al. (2019) Long-term hydrogen absorption/desorption properties and structural changes of LaNi₄Co alloy with double desorption plateaus. J Alloys Compd 778: 681–690. https://doi.org/10.1016/j.jallcom.2018.11.164 doi: 10.1016/j.jallcom.2018.11.164
|
| [36] |
Zhu Z, Zhu S, Lu H, et al. (2019) Stability of LaNi5–xCox alloys cycled in hydrogen—Part 1 evolution in gaseous hydrogen storage performance. Int J Hydrogen Energ 44: 15159–15172. https://doi.org/10.1016/j.ijhydene.2019.04.111 doi: 10.1016/j.ijhydene.2019.04.111
|
| [37] |
Belkhiria S, Alsawi A, Hraiech I, et al. (2024) Experimental and mathematical investigation of hydrogen absorption in LaNi5 and La0.7Ce0.1Ga0.3Ni5 compounds. Metals 14: 967. https://doi.org/10.3390/met14090967 doi: 10.3390/met14090967
|
| [38] |
Lys A, Fadonougbo JO, Faisal M, et al. (2020) Enhancing the hydrogen storage properties of AxBy intermetallic compounds by partial substitution: A short review. Hydrogen 1: 38–63. https://doi.org/10.3390/hydrogen1010004 doi: 10.3390/hydrogen1010004
|
| [39] |
Sato T, Ikeda K, Honda T, et al. (2022) Effect of Co-substitution on hydrogen absorption and desorption reactions of YMgNi4-based alloy. J Phys Chem 126. https://doi.org/10.1021/acs.jpcc.2c03265 doi: 10.1021/acs.jpcc.2c03265
|
| [40] |
Liang G, Huot J, Schulz R (2001) Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloys Compd 320: 133–139. https://doi.org/10.1016/S0925-8388(01)00929-X doi: 10.1016/S0925-8388(01)00929-X
|
| [41] |
Skakov M, Miniyazov A, Tulenbergenov T, et al. (2024) Hydrogen production by methane pyrolysis in the microwave discharge plasma. AIMS Energy 12: 548–560. https://doi.org/10.3934/energy.2024026 doi: 10.3934/energy.2024026
|
| [42] |
Miniyazov A, Skakov M, Tulenbergenov T, et al. (2025) Structural evolution of carbon from methane pyrolysis in microwave plasma. Carb Trends 21: 100552. https://doi.org/10.1016/j.cartre.2025.100552 doi: 10.1016/j.cartre.2025.100552
|
| [43] |
Skakov M, Kozhakhmetov Ye, Mukhamedova N, et al. (2022) Effect of a High-Temperature Treatment on Structural-Phase State and Mechanical Properties of IMC of the Ti-25Al-25Nb at.% System. Materials 15: 5560. https://doi.org/10.3390/ma15165560 doi: 10.3390/ma15165560
|
| [44] |
Mukhamedova NM, Miniyazov AZ, Zhanbolatova GK, et al. (2025) Evolution of phase transformations in the Mg-Ni-Ce system after mechanical synthesis and spark plasma sintering. Materials 18: 2131. https://doi.org/10.3390/ma18092131 doi: 10.3390/ma18092131
|
| [45] |
Mukhamedova N, Miniyazov A, Sabyrtayeva A, et al. (2025) Dispersion of sintered Mg-Ni-Ce materials for efficient hydrogen storage. Crystals 15: 743. https://doi.org/10.3390/cryst15080743 doi: 10.3390/cryst15080743
|
| [46] |
Miniyazov A, Skakov M, Mukhamedova N, et al. (2025) Structural and phase characteristics of LaNi5-based materials modified with Ti, Mn, and Co. Alloys 4: 25. https://doi.org/10.3390/alloys4040025 doi: 10.3390/alloys4040025
|
| [47] |
Malik S, Zhigalenok Y, Skakov M, et al. (2025) Nano- and micro-sized LaNi5 electrochemical behaviour as anode material for Ni–MH batteries. Eur Chem-Tech J 27: 13–20. https://doi.org/10.18321/ectj1652 doi: 10.18321/ectj1652
|
| [48] |
Malik S, Zhumadil K, Avchukir K, et al. (2025) Enhancing electrochemical performance of LaNi₅ anodes using MXene as a multifunctional additive for Ni-MH batteries. J Electroanal Chem 996: 119409. https://doi.org/10.1016/j.jelechem.2025.119409 doi: 10.1016/j.jelechem.2025.119409
|
| [49] | International Centre for Diffraction Data (ICDD). PDF-4 Axiom, 2025; ICDD: Newtown Square, PA, USA. Available from: https://www.icdd.com/pdf-4-axiom/. |
| [50] |
Olivero JJ, Longbothum RL (1977) Empirical fits to the Voigt line width: A brief review. J Quant Spectrosc Radiat Transfer 17: 233–236. https://doi.org/10.1016/0022-4073(77)90161-3 doi: 10.1016/0022-4073(77)90161-3
|
| [51] |
Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2: 65–71. https://doi.org/10.1107/S0021889869006558 doi: 10.1107/S0021889869006558
|
| [52] |
Williamson GK, Hall WH (1953) X Ray line broadening from filed aluminium and wolfram. Acta Metall 1: 22–31. https://doi.org/10.1016/0001-6160(53)90006-6 doi: 10.1016/0001-6160(53)90006-6
|
| [53] |
Nakamura Y, Akiba E (2000). In-situ X-ray diffraction study on LaNi5 and LaNi4.75Al0.25 in the initial activation process. J Alloys Compd 308: 309–318. https://doi.org/10.1016/s0925-8388(00)01033-1 doi: 10.1016/s0925-8388(00)01033-1
|
| [54] |
Noroozi AH, Safa S, Azimirad R, et al. (2012) Microstructure and hydrogen storage properties of LaNi5-Multi Wall Carbon Nanotubes (MWCNTs) composite. Arabian J Sci Eng 38: 187–194. https://doi.org/10.1007/s13369-012-0414-z doi: 10.1007/s13369-012-0414-z
|
| [55] |
Deb AK, Chatterjee P (2019) Study of deformation microstructure of nickel samples at very short milling times: effects of addition of α-Al2O3 particles. J Theor Appl Phys, 13. https://doi.org/10.1007/s40094-019-0319-2 doi: 10.1007/s40094-019-0319-2
|
| [56] |
Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192: 55–69. https://doi.org/10.1016/0921-4526(93)90108-I doi: 10.1016/0921-4526(93)90108-I
|
| [57] |
Toby BH (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffr 21: 67–70. https://doi.org/10.1154/1.2179804 doi: 10.1154/1.2179804
|
| [58] |
Chartouni D, Meli F, Züttel A, et al. (1996) The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys. J Alloys Compd 241: 160–166. https://doi.org/10.1016/0925-8388(96)02331-6 doi: 10.1016/0925-8388(96)02331-6
|
| [59] |
Khaldi C, Mathlouthi H, Lamloumi J, et al. (2004) Electrochemical study of cobalt-free AB5-type hydrogen storage alloys. Int J Hydrogen Energy 29: 307–311. https://doi.org/10.1016/s0360-3199(03)00157-5 doi: 10.1016/s0360-3199(03)00157-5
|
| [60] |
Akiba E, Iba H (1998) Hydrogen absorption by LaNi₅-based alloys substituted with various transition metals. Intermetallics 6: 461–470 https://doi.org/10.1016/S0966-9795(97)00088-5 doi: 10.1016/S0966-9795(97)00088-5
|
| [61] |
Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy 32: 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022 doi: 10.1016/j.ijhydene.2006.11.022
|
| [62] |
Lototskyy MV, Davids MW, Tolj I, et al. (2015) Metal hydride systems for hydrogen storage and supply for stationary and automotive low temperature PEM fuel cell power modules. Int J Hydrogen Energy 39: 9879–9888. https://doi.org/10.1016/j.ijhydene.2015.01.095 doi: 10.1016/j.ijhydene.2015.01.095
|
| [63] |
Gao ZJ, Luo YC, Lin Z, et al. (2003) Effect of Co substitution for Ni on the microstructure and electrochemical properties of La-R-Mg-Ni-based hydrogen storage alloys. J Solid State Electrochem 17: 727–735. https://doi.org/10.1007/s10008-012-1878-1 doi: 10.1007/s10008-012-1878-1
|
| [64] | Suryanarayana C (2004) Mechanical alloying and milling (1st Edition). CRC Press: Boca Raton, FL, USA. https://doi.org/10.1201/9780203020647 |
| [65] | Whang SH (2011) Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications. Woodhead Publishing: Cambridge, UK. Available from: https://pdfs.semanticscholar.org/f5f4/49e94df44c2f510c5f3f08cd16e0a9f01c42.pdf. |