Citation: Ngo Thai Hung. Interdependence of oil prices and exchange rates: Evidence from copula-based GARCH model[J]. AIMS Energy, 2019, 7(4): 465-482. doi: 10.3934/energy.2019.4.465
[1] | Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900 |
[2] | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335 |
[3] | Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871 |
[4] | Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409 |
[5] | Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179 |
[6] | Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281 |
[7] | Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108 |
[8] | Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171 |
[9] | Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449 |
[10] | Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370 |
[1] |
Reboredo JC (2012) Modelling oil price and exchange rate co-movements. J Policy Model 34: 419–440. doi: 10.1016/j.jpolmod.2011.10.005
![]() |
[2] |
Aloui R, Aïssa MSB, Nguyen DK (2013) Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. J Int Money and Finance 32: 719–738. doi: 10.1016/j.jimonfin.2012.06.006
![]() |
[3] |
Hamilton JD (1983) Oil and the macroeconomy since World War II. J political Econ, 91: 228–248. doi: 10.1086/261140
![]() |
[4] |
Cunado J, De Gracia FP (2005) Oil prices, economic activity and inflation: evidence for some Asian countries. Q Rev Econ Finance, 45: 65–83. doi: 10.1016/j.qref.2004.02.003
![]() |
[5] |
Zhang D (2008) Oil shock and economic growth in Japan: A nonlinear approach. Energy Econ, 30: 2374-2390. doi: 10.1016/j.eneco.2008.01.006
![]() |
[6] |
Beckmann J, Czudaj R (2013) Oil prices and effective dollar exchange rates. Int Rev Econ Finance, 27: 621–636. doi: 10.1016/j.iref.2012.12.002
![]() |
[7] |
Wu CC, Chung H, Chang YH (2012) The economic value of co-movement between oil price and exchange rate using copula-based GARCH models. Energy Econ 34: 270–282. doi: 10.1016/j.eneco.2011.07.007
![]() |
[8] | Krugman P (1983) Oil and the dollar in Economic interdependence and flexible exchange rates. MIT Press. Cambridge. |
[9] |
Golub S (1983) Oil prices and exchange rates. Econ J 93: 576–593. doi: 10.2307/2232396
![]() |
[10] | Bloomberg SB, Harris ES (1995) The commodity-consumer price connection: Fact or fable? Econ Policy Rev 1: 21–38. |
[11] |
Brewster D (2010) India's developing relationship with South Korea: A useful friend in East Asia. Asian Surv 50: 402–425. doi: 10.1525/as.2010.50.2.402
![]() |
[12] |
Hammoudeh S, Li H (2008) Sudden changes in volatility in emerging markets: the case of Gulf Arab stock markets. Int Rev Financ Anal 17: 47–63. doi: 10.1016/j.irfa.2005.01.002
![]() |
[13] |
Brayek AB, Sebai S, Naoui K (2015) A study of the interactive relationship between oil price and exchange rate: A copula approach and a DCC-MGARCH model. J Econ Asymmetries 12: 173–189. doi: 10.1016/j.jeca.2015.09.002
![]() |
[14] |
Bai X, Lam JSL (2019) A copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price. Energy Econ, 78: 412–427. doi: 10.1016/j.eneco.2018.10.032
![]() |
[15] |
Nusair SA, Kisswani KM (2015) Asian real exchange rates and oil prices: A cointegration analysis under structural breaks. Bull Econ Res 67: S1–S25. doi: 10.1111/boer.12027
![]() |
[16] |
Hussain M, Zebende GF, Bashir U, et al. (2017) Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach. Phys A: Stat Mech Appl 465: 338–346. doi: 10.1016/j.physa.2016.08.056
![]() |
[17] |
Chen H, Liu L, Wang Y, et al. (2016) Oil price shocks and US dollar exchange rates. Energy 112: 1036–1048. doi: 10.1016/j.energy.2016.07.012
![]() |
[18] |
Genest C (1987) Frank's family of bivariate distributions. Biometrika 74: 549–555. doi: 10.1093/biomet/74.3.549
![]() |
[19] |
Turhan I, Hacihasanoglu E, Soytas U (2013) Oil prices and emerging market exchange rates. Emerging Mark Finance Trade 49: 21–36. doi: 10.2753/REE1540-496X4901S102
![]() |
[20] |
Basher SA, Haug A, Sadorsky P (2012) Oil prices, exchange rates and emerging stock markets. Energy Econ 34: 227–240. doi: 10.1016/j.eneco.2011.10.005
![]() |
[21] |
Lizardo RA, Mollick AV (2010) Oil price fluctuations and US dollar exchange rates. Energy Econ 32: 399–408. doi: 10.1016/j.eneco.2009.10.005
![]() |
[22] |
Bénassy-Quéré A, Mignon V, Penot A (2007) China and the relationship between the oil price and the dollar. Energy policy 35: 5795–5805. doi: 10.1016/j.enpol.2007.05.035
![]() |
[23] |
Chen SS, Chen HC (2007) Oil prices and real exchange rates. Energy Econ 29: 390–404. doi: 10.1016/j.eneco.2006.08.003
![]() |
[24] | Nelson RB (2006) An introduction to Copulas. Springer: Verlag, New York. |
[25] | Sklar M (1959) Functions de repartition an dimensions et leurs marges. Publ inst statist univ Paris 8: 229–231. |
[26] |
Tang J, Sriboonchitta S, Ramos V, et al. (2016) Modelling dependence between tourism demand and exchange rate using the copula-based GARCH model. Curr Issues Tourism 19: 876–894. doi: 10.1080/13683500.2014.932336
![]() |
[27] |
Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141–151. doi: 10.1093/biomet/65.1.141
![]() |
[28] |
Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55: 698–707. doi: 10.1080/01621459.1960.10483368
![]() |
[29] |
Genest C (1987) Frank's family of bivariate distributions. Biometrika 74: 549–555. doi: 10.1093/biomet/74.3.549
![]() |
[30] |
Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46: 262–282. doi: 10.1006/jmva.1993.1061
![]() |
[31] |
Joe H, Hu T (1996) Multivariate distributions from mixtures of max-infinitely divisible distributions. J Multivar Anal 57: 240–265. doi: 10.1006/jmva.1996.0032
![]() |
[32] | Cech C (2006) Copula-based top-down approaches in financial risk aggregation. |
[33] |
Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51: 1384–1399. doi: 10.2307/2533269
![]() |
[34] |
Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur: Math Econ 44: 199–213. doi: 10.1016/j.insmatheco.2007.10.005
![]() |
[35] |
Patton A (2013) Copula methods for forecasting multivariate time series. Handb Econ Forecasting 2: 899–960. doi: 10.1016/B978-0-444-62731-5.00016-6
![]() |
1. | Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013 | |
2. | John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014 | |
3. | Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005 | |
4. | Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006 | |
5. | Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z | |
6. | Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435 | |
7. | Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432 | |
8. | Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8 | |
9. | Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767 | |
10. | Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791 | |
11. | Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038 | |
12. | Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026 | |
13. | Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304 | |
14. | Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015 | |
15. | John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1 | |
16. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145 | |
17. | Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254 | |
18. | Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w | |
19. | Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699 | |
20. | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335 | |
21. | Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7 | |
22. | Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934 | |
23. | Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845 | |
24. | Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002 | |
25. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726 | |
26. | Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900 | |
27. | J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762 | |
28. | Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003 | |
29. | Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070 | |
30. | Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428 |