Loading [Contrib]/a11y/accessibility-menu.js
Research article Topical Sections

Interdependence of oil prices and exchange rates: Evidence from copula-based GARCH model

  • Received: 22 April 2019 Accepted: 30 July 2019 Published: 13 August 2019
  • This paper aims to investigate the conditional dependence structure between crude oil prices and three US dollar exchange rates (China, India and South Korea) from a new perspective using a copula-GARCH approach. Various kinds of copulas both time-invariant and time-varying dependence dynamics are fitted. Over the 2008–2018 period, the findings provide evidence of significant dependence in terms of symmetric structure between the oil prices and the exchange rate returns. Further, the tail dependence and dynamic dependence between two variables add a supplement to the explanatory ability of the model. Empirical results indicate the intercorrelation between crude oil and exchange rate movements, and provide benefits in risk diversification and inflation targeting. The findings also have significant implications for risk management, monetary policies to determine the behavior of fiscal policy in oil-exporting countries.

    Citation: Ngo Thai Hung. Interdependence of oil prices and exchange rates: Evidence from copula-based GARCH model[J]. AIMS Energy, 2019, 7(4): 465-482. doi: 10.3934/energy.2019.4.465

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409
    [5] Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
    [6] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [7] Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108
    [8] Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171
    [9] Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449
    [10] Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370
  • This paper aims to investigate the conditional dependence structure between crude oil prices and three US dollar exchange rates (China, India and South Korea) from a new perspective using a copula-GARCH approach. Various kinds of copulas both time-invariant and time-varying dependence dynamics are fitted. Over the 2008–2018 period, the findings provide evidence of significant dependence in terms of symmetric structure between the oil prices and the exchange rate returns. Further, the tail dependence and dynamic dependence between two variables add a supplement to the explanatory ability of the model. Empirical results indicate the intercorrelation between crude oil and exchange rate movements, and provide benefits in risk diversification and inflation targeting. The findings also have significant implications for risk management, monetary policies to determine the behavior of fiscal policy in oil-exporting countries.




    [1] Reboredo JC (2012) Modelling oil price and exchange rate co-movements. J Policy Model 34: 419–440. doi: 10.1016/j.jpolmod.2011.10.005
    [2] Aloui R, Aïssa MSB, Nguyen DK (2013) Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. J Int Money and Finance 32: 719–738. doi: 10.1016/j.jimonfin.2012.06.006
    [3] Hamilton JD (1983) Oil and the macroeconomy since World War II. J political Econ, 91: 228–248. doi: 10.1086/261140
    [4] Cunado J, De Gracia FP (2005) Oil prices, economic activity and inflation: evidence for some Asian countries. Q Rev Econ Finance, 45: 65–83. doi: 10.1016/j.qref.2004.02.003
    [5] Zhang D (2008) Oil shock and economic growth in Japan: A nonlinear approach. Energy Econ, 30: 2374-2390. doi: 10.1016/j.eneco.2008.01.006
    [6] Beckmann J, Czudaj R (2013) Oil prices and effective dollar exchange rates. Int Rev Econ Finance, 27: 621–636. doi: 10.1016/j.iref.2012.12.002
    [7] Wu CC, Chung H, Chang YH (2012) The economic value of co-movement between oil price and exchange rate using copula-based GARCH models. Energy Econ 34: 270–282. doi: 10.1016/j.eneco.2011.07.007
    [8] Krugman P (1983) Oil and the dollar in Economic interdependence and flexible exchange rates. MIT Press. Cambridge.
    [9] Golub S (1983) Oil prices and exchange rates. Econ J 93: 576–593. doi: 10.2307/2232396
    [10] Bloomberg SB, Harris ES (1995) The commodity-consumer price connection: Fact or fable? Econ Policy Rev 1: 21–38.
    [11] Brewster D (2010) India's developing relationship with South Korea: A useful friend in East Asia. Asian Surv 50: 402–425. doi: 10.1525/as.2010.50.2.402
    [12] Hammoudeh S, Li H (2008) Sudden changes in volatility in emerging markets: the case of Gulf Arab stock markets. Int Rev Financ Anal 17: 47–63. doi: 10.1016/j.irfa.2005.01.002
    [13] Brayek AB, Sebai S, Naoui K (2015) A study of the interactive relationship between oil price and exchange rate: A copula approach and a DCC-MGARCH model. J Econ Asymmetries 12: 173–189. doi: 10.1016/j.jeca.2015.09.002
    [14] Bai X, Lam JSL (2019) A copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price. Energy Econ, 78: 412–427. doi: 10.1016/j.eneco.2018.10.032
    [15] Nusair SA, Kisswani KM (2015) Asian real exchange rates and oil prices: A cointegration analysis under structural breaks. Bull Econ Res 67: S1–S25. doi: 10.1111/boer.12027
    [16] Hussain M, Zebende GF, Bashir U, et al. (2017) Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach. Phys A: Stat Mech Appl 465: 338–346. doi: 10.1016/j.physa.2016.08.056
    [17] Chen H, Liu L, Wang Y, et al. (2016) Oil price shocks and US dollar exchange rates. Energy 112: 1036–1048. doi: 10.1016/j.energy.2016.07.012
    [18] Genest C (1987) Frank's family of bivariate distributions. Biometrika 74: 549–555. doi: 10.1093/biomet/74.3.549
    [19] Turhan I, Hacihasanoglu E, Soytas U (2013) Oil prices and emerging market exchange rates. Emerging Mark Finance Trade 49: 21–36. doi: 10.2753/REE1540-496X4901S102
    [20] Basher SA, Haug A, Sadorsky P (2012) Oil prices, exchange rates and emerging stock markets. Energy Econ 34: 227–240. doi: 10.1016/j.eneco.2011.10.005
    [21] Lizardo RA, Mollick AV (2010) Oil price fluctuations and US dollar exchange rates. Energy Econ 32: 399–408. doi: 10.1016/j.eneco.2009.10.005
    [22] Bénassy-Quéré A, Mignon V, Penot A (2007) China and the relationship between the oil price and the dollar. Energy policy 35: 5795–5805. doi: 10.1016/j.enpol.2007.05.035
    [23] Chen SS, Chen HC (2007) Oil prices and real exchange rates. Energy Econ 29: 390–404. doi: 10.1016/j.eneco.2006.08.003
    [24] Nelson RB (2006) An introduction to Copulas. Springer: Verlag, New York.
    [25] Sklar M (1959) Functions de repartition an dimensions et leurs marges. Publ inst statist univ Paris 8: 229–231.
    [26] Tang J, Sriboonchitta S, Ramos V, et al. (2016) Modelling dependence between tourism demand and exchange rate using the copula-based GARCH model. Curr Issues Tourism 19: 876–894. doi: 10.1080/13683500.2014.932336
    [27] Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141–151. doi: 10.1093/biomet/65.1.141
    [28] Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55: 698–707. doi: 10.1080/01621459.1960.10483368
    [29] Genest C (1987) Frank's family of bivariate distributions. Biometrika 74: 549–555. doi: 10.1093/biomet/74.3.549
    [30] Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46: 262–282. doi: 10.1006/jmva.1993.1061
    [31] Joe H, Hu T (1996) Multivariate distributions from mixtures of max-infinitely divisible distributions. J Multivar Anal 57: 240–265. doi: 10.1006/jmva.1996.0032
    [32] Cech C (2006) Copula-based top-down approaches in financial risk aggregation.
    [33] Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51: 1384–1399. doi: 10.2307/2533269
    [34] Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur: Math Econ 44: 199–213. doi: 10.1016/j.insmatheco.2007.10.005
    [35] Patton A (2013) Copula methods for forecasting multivariate time series. Handb Econ Forecasting 2: 899–960. doi: 10.1016/B978-0-444-62731-5.00016-6
  • This article has been cited by:

    1. Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013
    2. John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014
    3. Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005
    4. Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006
    5. Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z
    6. Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435
    7. Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432
    8. Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8
    9. Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767
    10. Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791
    11. Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038
    12. Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026
    13. Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304
    14. Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015
    15. John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1
    16. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145
    17. Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254
    18. Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w
    19. Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699
    20. Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335
    21. Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7
    22. Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934
    23. Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845
    24. Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002
    25. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726
    26. Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900
    27. J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762
    28. Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003
    29. Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070
    30. Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5150) PDF downloads(570) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog