Review Topical Sections

Novel materials for fuel cells operating on liquid fuels

  • Received: 31 March 2017 Accepted: 07 May 2017 Published: 15 May 2017
  • Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs) are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.

    Citation: César A. C. Sequeira, David S. P. Cardoso, Marta Martins, Luís Amaral. Novel materials for fuel cells operating on liquid fuels[J]. AIMS Energy, 2017, 5(3): 458-481. doi: 10.3934/energy.2017.3.458

    Related Papers:

  • Towards commercialization of fuel cell products in the coming years, the fuel cell systems are being redefined by means of lowering costs of basic elements, such as electrolytes and membranes, electrode and catalyst materials, as well as of increasing power density and long-term stability. Among different kinds of fuel cells, low-temperature polymer electrolyte membrane fuel cells (PEMFCs) are of major importance, but their problems related to hydrogen storage and distribution are forcing the development of liquid fuels such as methanol, ethanol, sodium borohydride and ammonia. In respect to hydrogen, methanol is cheaper, easier to handle, transport and store, and has a high theoretical energy density. The second most studied liquid fuel is ethanol, but it is necessary to note that the highest theoretically energy conversion efficiency should be reached in a cell operating on sodium borohydride alkaline solution. It is clear that proper solutions need to be developed, by using novel catalysts, namely nanostructured single phase and composite materials, oxidant enrichment technologies and catalytic activity increasing. In this paper these main directions will be considered.


    加载中
    [1] Gasik M (2008) Materials for fuel cells. Mater Today 6: 24–29.
    [2] Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109: 71–75. doi: 10.1016/S0378-7753(02)00062-9
    [3] Sammes N (2007) Fuel cell technology-reaching towards commercialization. Springer 109: 36–44.
    [4] Wu G, Zelenay P (2013) Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Accounts Chem Res 46: 1878–1889. doi: 10.1021/ar400011z
    [5] Sebastián D, Serov A, Artyushkova K, et al. (2016) High performance and cost-effective direct methanol fuel cells: Fe-N-C methanol-tolerant oxygen reduction reaction catalysts. Chem Sus Chem 9: 1986–1995. doi: 10.1002/cssc.201600583
    [6] Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44: 2168–2201. doi: 10.1039/C4CS00484A
    [7] Hector R, Colón-Mercado R, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155: 253–263. doi: 10.1016/j.jpowsour.2005.05.011
    [8] Meeker WQ, Escobar LA (1998) Statistical methods for reliability data, John Wiley and Sans, New York.
    [9] Sorensen B (2005) Hydrogen and fuel cells, Academic Press, New York.
    [10] Cohen D (2007) Earth audit. New Scientist 194: 34–41.
    [11] Demirci U (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 159: 239–246.
    [12] Serov A, Padilla M, Roy AJ, et al. (2014) Anode catalysts for direct hydrazine fuel cells: from laboratory tests to an electric vehicle. Angew Chem 53: 10336–10339. doi: 10.1002/anie.201404734
    [13] Wojcik A, Middleton H, Damopoulos I, et al. (2003) Ammonia as a fuel in solid oxide fuel cells. J Power Sources 118: 342–348. doi: 10.1016/S0378-7753(03)00083-1
    [14] Takasu Y, Fujiwara T, Murakami Y, et al. (2000) Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol. J Electrochem Soc 147: 4421–4427. doi: 10.1149/1.1394080
    [15] Gasteiger HA, Markovic N, Ross PN, et al. (1994) Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141: 1795–1803. doi: 10.1149/1.2055007
    [16] Aricò AS, Baglio V, Blasi AD, et al. (2003) Analysis of the high-temperature methanol oxidation behavior at carbon-supported Pt-Ru catalysts. J Electroanal Chem 557: 167–176. doi: 10.1016/S0022-0728(03)00369-3
    [17] Maillard F, Lu GQ, Wieckowski A, et al. (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109: 16230–16243. doi: 10.1021/jp052277x
    [18] Aricò AS, Baglio V, Modica E, et al. (2004) Performance of DMFC anodes with ultra-low Pt loading. Electrochem Commun 6: 164–169. doi: 10.1016/j.elecom.2003.11.007
    [19] Ravikumar MK, Shukla AK (1996) Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell. J Electrochem Soc 143: 2601–2606. doi: 10.1149/1.1837054
    [20] Mallik RK, Thombre SB, Shrivastava NK (2016) Vapor feed direct methanol fuel cells (DMFCs): a review. Renew Sust Energ Rev 56: 51–74. doi: 10.1016/j.rser.2015.11.039
    [21] Joghee P, Malik JP, Pylypenko S, et al. (2015) A review on direct methanol fuel cells–in the perspective of energy and sustainability. MRS Energ Sust 2: 1–31.
    [22] Wang Y, Li L, Hu L, et al. (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5: 662–666. doi: 10.1016/S1388-2481(03)00148-6
    [23] Yu EH, Scott K (2004) Direct methanol alkaline fuel cell with catalyzed metal mesh anodes. Electrochem Commun 6: 361–365. doi: 10.1016/j.elecom.2004.02.002
    [24] Yuan W, Yan Z, Tan Z, et al. (2016) Anode optimization based on gradient porous control medium for passive liquid-feed direct methanol fuel cells. Renew Energ 89: 71–79. doi: 10.1016/j.renene.2015.11.074
    [25] Jurzinsky T, Kammerer P, Cremers C, et al. (2016) Investigation of ruthenium promoted palladium catalyst for methanol electrooxidation in alkaline media. J Power Sources 303: 182–193. doi: 10.1016/j.jpowsour.2015.11.004
    [26] Shang T, Lin X, Chen ZY, et al. (2015) Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study. Phys Chem Chem Phys 17: 25235–25243 doi: 10.1039/C5CP02072G
    [27] Das S, Dutta K, Kundu PP (2015) Nickel nanocatalysts supported on sulphonated polyaniline: Potential toward methanol oxidation and as anode materials for DMFCs. J Mat Chem A 3: 11349–11357. doi: 10.1039/C5TA01837D
    [28] Zhao G, Zhao TS, Yan XH, et al. (2015) A high catalyst-utilization electrode for direct methanol fuel cells. Electrochim Acta 164: 337–343. doi: 10.1016/j.electacta.2015.02.181
    [29] Alonso-Vante N, Tributsch H (1986) Energy conversion electrocatalysis via semiconducting transition metal cluster compounds. Nature 323: 431–432. doi: 10.1038/323431a0
    [30] Sun GQ, Wang JT, Savinell RF (1998) Iron (III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells. J Appl Electrochem 28: 1087–1093. doi: 10.1023/A:1003413226041
    [31] Imaizunii S, Shimanse K, Teraoka Y, et al. (2005) Oxygen reduction property of ultrafine LaMnO3 dispersed on carbon support. Electrochem Solid St 8: A270–A272. doi: 10.1149/1.1896465
    [32] Neergat M, Shukla AK, Ganolhi KS (2001) Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J Appl Electrochem 31: 373–378. doi: 10.1023/A:1017575918643
    [33] Koffi RC, Coutanciau C, Garnier E, et al. (2005) Synthesis, characterization and electrocatalytic behaviour of non-alloyed PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction reaction (ORR). Electrochim Acta 50: 4117–4127. doi: 10.1016/j.electacta.2005.01.028
    [34] Zinola CF, Luna AMC, Triaca WE, et al. (1194) Electroreduction of molecular oxygen on preferentially oriented platinum electrodes in acid solution. J Appl Electrochem 24: 119–125.
    [35] Faubert G, Lalande G, Coté R, et al. (1996) Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41: 1689–1701. doi: 10.1016/0013-4686(95)00423-8
    [36] Baglio V, Stassi A, Blasi AD, et al. (2007) Investigation of bimetallic Pt-M/C as DMFC cathode catalysts. Electrochim Acta 53: 1360–1364. doi: 10.1016/j.electacta.2007.04.099
    [37] Zignani SC, Baglio V, Sebastián D, et al. (2016) Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction. J Electroanal Chem 763: 10–17. doi: 10.1016/j.jelechem.2015.12.044
    [38] Park IS, Kim OH, Kim JW, et al. (2015) Synthesis of Pt and bimetallic PtPd nanostructures on Au nanoparticles for use as methanol tolerant oxygen reduction reaction catalyst. New J Chem 39: 6034–6039 doi: 10.1039/C5NJ00998G
    [39] Duan H, Xu C (2016) Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Phys Chem Chem Phys 18: 4166–4173. doi: 10.1039/C5CP07184D
    [40] Yang Z, Nakashima N (2015) A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell: based on polymer-coated carbon nanotube/platinum. Sci Rep 5: 12236–12244. doi: 10.1038/srep12236
    [41] Choi B, Nam WH, Chung DY, et al. (2015) Enhanced methanol tolerance of highly Pd rich Pd-Pt cathode electrocatalysts in direct methanol fuel cells. Electrochim Acta 164: 235–242. doi: 10.1016/j.electacta.2015.02.203
    [42] Sun J, Shi J, Xu J, et al. (2015) Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation. J Power Sources 279: 334–344. doi: 10.1016/j.jpowsour.2015.01.025
    [43] Pu L, Zhang H, Yuan T, et al. (2014) High performance platinum nanorod assemblies based double-layered cathode for passive direct methanol fuel cells. J Power Sources 276: 95–101.
    [44] Asteazaran M, Cespedes G, Moreno MS, et al. (2015) Searching for suitable catalyst for a passive direct methanol fuel cell cathode. Int J Hydrogen Energy 40: 14632–14639. doi: 10.1016/j.ijhydene.2015.05.134
    [45] Lin L, Zhu Q, Xu A (2015) Anode catalysts and cathode catalysts of direct methanol fuel cells. Prog Chem 27: 1147–1157.
    [46] Neburchilov V, Martin J, Wang H, et al. (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169: 221–238. doi: 10.1016/j.jpowsour.2007.03.044
    [47] Mecerreyes D, Grande H, Miguel O, et al. (2004) Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes. Chem Mater 16: 604–607. doi: 10.1021/cm034398k
    [48] Zhou Z, Li S, Zhang Y, et al. (2005) Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. J Am Chem Soc 127: 10824–10825. doi: 10.1021/ja052280u
    [49] Badwal SPS, Giddey S, Kulkarni A, et al. (2015) Direct ethanol fuel cells for transport and stationary applications–a comprehensive review. Appl Energ 145: 80–103. doi: 10.1016/j.apenergy.2015.02.002
    [50] Bianchini C, Chen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109: 4183–4206. doi: 10.1021/cr9000995
    [51] Day H (2002) Carbon nanotubes: Synthesis, integration, and properties. Accounts Chem Res 35: 1035–1044. doi: 10.1021/ar0101640
    [52] Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170: 1–12. doi: 10.1016/j.jpowsour.2007.04.009
    [53] Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt-Sn/C, Pt-Ir/C, Pt-Ir-Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrogen Energy 36: 14884–14897. doi: 10.1016/j.ijhydene.2011.03.035
    [54] Goeland J, Basu S (2012) Pt-Re-Sn as metal catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Fuel Cells Sci Technol 28: 66–77.
    [55] Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183–191. doi: 10.1038/nmat1849
    [56] Che AF, Germain V, Cretin M, et al. (2011) Fabrication of free-standing electrospun carbon nanofibers as efficient electrode materials for bioelectrocatalysis. New J Chem 35: 2848–2853. doi: 10.1039/c1nj20651f
    [57] Andersen SM, Borghei M, Luand P, et al. (2013) Durability of carbon nanofiber (CNF) and carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells. Solid State Ionics 231: 94–101. doi: 10.1016/j.ssi.2012.11.020
    [58] Guo DJ (2011) Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum–antimony tin oxide nanoparticle catalysts. J Power Sources 196: 679–682. doi: 10.1016/j.jpowsour.2010.07.075
    [59] Zhu Z, Wang J, Munir A, et al. (2010) Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation. Electrochim Acta 55: 8517–8520. doi: 10.1016/j.electacta.2010.07.058
    [60] Xu CW, Cheng LQ, Shen PK, et al. (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9: 997–1001. doi: 10.1016/j.elecom.2006.12.003
    [61] Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41: 4214–4228. doi: 10.1016/j.ijhydene.2015.12.145
    [62] Xu CW, Zeng R, Shen PK, et al. (2005) Synergistic effect of CeO2 modified Pt/C catalysts on the alcohols oxidation. Electrochim Acta 51: 1031–1035. doi: 10.1016/j.electacta.2005.05.041
    [63] Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysts at nanoparticle surfaces, Marcel Dekker Inc, New York.
    [64] Engel AB, Cherifi A, Tingry S, et al. (2013) Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: Promising electrodes for enzymatic biofuel cells. Nanotechnology 24: 245402. doi: 10.1088/0957-4484/24/24/245402
    [65] Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Composite 20: 124–131. doi: 10.1002/pc.10340
    [66] Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental apllications. Energ Environ Sci 1: 205–221. doi: 10.1039/b809074m
    [67] Persano L, Composeo A, Tekmen C, et al. (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298: 504–520. doi: 10.1002/mame.201200290
    [68] Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stabil 92: 1421–1432. doi: 10.1016/j.polymdegradstab.2007.03.023
    [69] Al-Saleh MH, Sundararaj U (2009) A review of vapour grown carbon nanofiber/polymer conductive composites. Carbon 47: 2–22. doi: 10.1016/j.carbon.2008.09.039
    [70] Edie DD, Dunham MG (1989) Melt spinning pitch-based carbon fibers. Carbon 27: 647–655 doi: 10.1016/0008-6223(89)90198-X
    [71] Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28: 325–347. doi: 10.1016/j.biotechadv.2010.01.004
    [72] Edie DD (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36: 345–362. doi: 10.1016/S0008-6223(97)00185-1
    [73] Caillard A, Coutanceau C, Brault P, et al. (2006) Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). J Power Sources 162: 66–73. doi: 10.1016/j.jpowsour.2006.07.009
    [74] Mougenot M, Caillard A, Brault P, et al. (2011) High performance plasma sputtered PdPt fuel cell electrodes with ultra low loading. Int J Hydrogen Energy 36: 5429–5434.
    [75] Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109: 4183–4206. doi: 10.1021/cr9000995
    [76] Andreazza P, AndreazzaVC, Rozenbaum JP, et al. (2002) Nucleation and initial growth of platinum islands by plasma sputter deposition. Surf Coat Tech s151–s152: 122–127.
    [77] Brault P, Caillard A, Thomann AL, et al. (2004) Plasma sputtering deposition of platinum into porous fuel cell electrodes. J Phys D Appl Phys 37: 3419–3423. doi: 10.1088/0022-3727/37/24/010
    [78] Caillard A, Charles C, Boswell R (2007) Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency. Appl Phys Lett 90: 223119–223121. doi: 10.1063/1.2745210
    [79] Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties and applications. Chem Rev 110: 3767–3804. doi: 10.1021/cr9003902
    [80] Hou H, Wang S, Jin W, et al. (2011) KOH modified Nafion 112 membrane for high performance alkaline direct ethanol fuel cell. Int J Hydrogen Energy 36: 5104–5109. doi: 10.1016/j.ijhydene.2010.12.093
    [81] Kamarudin MZF, Kamarudim SK, Masdar MS, et al. (2013) Review: Direct ethanol fuel cells. Int J Hydrogen Energy 38: 9438–9453. doi: 10.1016/j.ijhydene.2012.07.059
    [82] Pereira JP, Falcão DS, Oliveira VB, et al. (2014) Performance of a passive direct ethanol fuel cell. J Power Sources 256: 14–19. doi: 10.1016/j.jpowsour.2013.12.036
    [83] Varela FJR, Savadogo O (2008) Catalytic of carbon-supported electrocatalysis for direct ethanol fuel cell applications. J Electrochem Soc 155: B618–B624. doi: 10.1149/1.2904463
    [84] Shen SY, Zhao TS, Xuvy JB, et al. (2010) Synthesis of PdNi catalysts for the oxidation in alkaline direct ethanol fuel cells. J Power Sources 195: 1001–1006. doi: 10.1016/j.jpowsour.2009.08.079
    [85] Cui GF, Song SQ, Shen PK, et al. (2009) First principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C 113: 15639–15642.
    [86] Barbaro P, Bianchini C, (2009) Catalysis for Sustainable Energy Production, Wiley-UCH, Weinheim, Germany.
    [87] Fang J, Qiao J, Wilkinson DP, et al. (2015) Electrochemical Polymer Electrolyte Membranes, CRR Press, Boca Raton, FL, USA.
    [88] Ladewig B, Jiang SP, Yan Y (2015) Materials for Low-Temperature Fuel Cells, Wiley-UCH, Weinheim, Germany.
    [89] Li ZP, Liu BH, Arai K, et al. (2004) Evaluation of alkaline borohydride solutions as the fuel for fuel cell. J Power Sources 126: 28–33. doi: 10.1016/j.jpowsour.2003.08.017
    [90] Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sust Energy Rev 15: 3980–4001. doi: 10.1016/j.rser.2011.07.018
    [91] Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55: 6775–6781. doi: 10.1016/j.electacta.2010.05.091
    [92] Merino-Jimenez I, Ponce de LC, Shah AA, et al. (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sources 219: 339–357. doi: 10.1016/j.jpowsour.2012.06.091
    [93] Santos DMF, Sequeira CAC (2009) Zinc negative electrode for direct borohydride fuel cells. ECS Trans 16: 123–137.
    [94] Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sust Energy Rev 14: 183–199. doi: 10.1016/j.rser.2009.08.002
    [95] Merino-Jimenez I, Ponce de LC, Walsh FC (2014) The effect of surfactants on the kinetics of borohydride oxidation and hydrolysis in the DBFC. Electrochim Acta 133: 539–545. doi: 10.1016/j.electacta.2014.04.061
    [96] Merino-Jimenez I, Janik MJ, Ponce de LC, et al. (2014) Pd-Ir alloy as an anode material for borohydride oxidation. J Power Sources 269: 498–508. doi: 10.1016/j.jpowsour.2014.06.140
    [97] Sequeira CAC, Hooper A (1985) Solid State Batteries, Martinus Nijhoff, Publishers, Dordrecht, Netherlands.
    [98] Sequeira CAC, Santos DMF (2010) Polymer Electrolytes: fundamentals and applications, Woodhead publishing, Cambridge, UK.
    [99] Sequeira CAC (1990) Chemical sensors involving polymer films, in R. G. Linford, Electrochemical Science and Technology of Polymers-2, Elsevier Applied Science, London, UK.
    [100] Çelikkan H, Şahin M, Aksu ML, et al. (2007) The investigation of the electrooxidation of sodium borohydride on various metal electrodes in aqueous basic solutions. Int J Hydrogen Energy 32: 588–593. doi: 10.1016/j.ijhydene.2006.06.065
    [101] Chatenet M, Micoud F, Roche I, et al. (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte–Part I: BH4– electrooxidation on Au and Ag catalysts. Electrochim Acta 51: 5459–5467. doi: 10.1016/j.electacta.2006.02.015
    [102] Amendola SC, Onnerud P, Kelly MT, et al. (1999) A novel high power density borohydride-air cell. J Power Sources 84: 130–133. doi: 10.1016/S0378-7753(99)00259-1
    [103] Gyenge E, Atwan M, Northwood D (2006) Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni and Pt-Au) and application for direct borohydride fuel cell anodes. J Electrochem Soc 153: A150–A158. doi: 10.1149/1.2131831
    [104] Chatenet M, Lima FHB, Ticianelli EA (2010) Gold is not a faradaic–efficient borohydride oxidation electrocatalyst: an online electrochemical mass spectrometry study. J Electrochem Soc 157: B697–B704. doi: 10.1149/1.3328179
    [105] Ma J, Sahai Y, Buchleit RG (2010) Direct borohydride fuel cell using Ni-based composite anodes. J Power Sources 195: 4709–4713. doi: 10.1016/j.jpowsour.2010.02.034
    [106] Behmenyar G, Akın AN (2014) Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J Power Sources 249: 239–246. doi: 10.1016/j.jpowsour.2013.10.063
    [107] Santos DMF, Sequeira CAC (2010) Zinc negative electrode for direct borohydride fuel cells. J Electrochem Soc 157: B13–B19. doi: 10.1149/1.3247540
    [108] Miley GH, Luo N, Mather J, et al. (2007) Direct NaBH4/H2O2 fuel cells. J Power Sources 165: 509–516. doi: 10.1016/j.jpowsour.2006.10.062
    [109] Zhi FJ, Dong HD, Yan PS (2008) The electrochemical behaviors of alkaline BH4– on copper anode. Battery Biomonth 5: 133.
    [110] Santos DMF, Sljukić B, Amaral L, et al. (2014) Investigation of nickel-rare earth electrodes for sodium borohydride electrooxidation. ECS Trans 64: 1095–1102. doi: 10.1149/06403.1095ecst
    [111] Santos DMF, Saturnino PG, Macció D, et al. (2011) Platinum-rare earth intermetallic alloys as anode electrocatalysts for borohydride oxidation. Catal Today 170: 134–140. doi: 10.1016/j.cattod.2011.03.037
    [112] Sljukić B, Milikić J, Santos DMF, et al. (2014) Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells. J Power Sources 272: 335–343. doi: 10.1016/j.jpowsour.2014.08.080
    [113] Hampton MD, Shur DV, Zaginaichenko SY, et al. (2002) Hydrogen Materials Science and chemistry of Metal Hydrides, Kluwer Academic Publishers, Dordrecht.
    [114] Kiehne HA (2003) Battery Technology Handbook, 2nd ed., Expert Verlag Gmb H, Renningeen-malsheim, Germany.
    [115] Choudhury NA, Raman RK, Sampath S, et al. (2005) An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J Power Sources 143: 1–8. doi: 10.1016/j.jpowsour.2004.08.059
    [116] Wang L, Ma C, Mao X (2005) LmNi4.78Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells. J Alloy Compd 397: 313–316.
    [117] Tentorio A, Casolo-Ginelli U (1978) Characterization of reticulate, three-dimensional electrodes, J Appl Electrochem 8: 195–205.
    [118] Friedrich JM, Ponce-de LC, Reade GW, et al. (2004) Reticulated vitreous carbon as an electrode material. J Electroanal Chem 561: 203–217. doi: 10.1016/j.jelechem.2003.07.019
    [119] Ponce de LC, Kulak A, Williams S, et al. (2011) Improvements in direct borohydride fuel cells using three-dimensional electrodes. Catal Today 170: 148–154. doi: 10.1016/j.cattod.2011.03.010
    [120] Demirci UB (2007) Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions. J Power Sources 172: 676–687. doi: 10.1016/j.jpowsour.2007.05.009
    [121] Cheng H, Scott K, Lovell K (2006) Material aspects of the design and operation of direct borohydride fuel cells. Fuel Cells 6: 367–375. doi: 10.1002/fuce.200500260
    [122] Morais AL, Salgado JRC, Sljukić B, et al. (2012) Electrochemical behaviour of carbon supported Pt electrocatalysts for H2O2 reduction. Int J Hydrogen Energy 37: 14143–14151. doi: 10.1016/j.ijhydene.2012.07.092
    [123] Wang YG, Xia YY (2006) A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. Electrochem Commun 8: 1775–1778. doi: 10.1016/j.elecom.2006.08.018
    [124] Sljukić B, Santos DMF, Sequeira CAC (2013) Manganese dioxide electrocatalysts for borohydride fuel cell cathodes? J Electroanal Chem 694: 77–83. doi: 10.1016/j.jelechem.2013.01.044
    [125] Ma J, Liu Y, Yan Y, et al. (2008) A membraneless direct borohydride de fuel cell using LaNiO3 -catalysed cathode. Fuel Cells 8: 394–398. doi: 10.1002/fuce.200800048
    [126] Santos DMF, Sousa N, Sljukić B, et al. (2014) La2NiO4 ceramic electrodes for hydrogen peroxide electroreduction. ECS Trans 64: 1049–1057. doi: 10.1149/06403.1049ecst
    [127] Santos DMF, Saturnino PG, Lobo RFM, et al. (2012) Direct borohydride/peroxide fuel cells using Prussian Blue cathodes. J Power Sources 208: 131–137. doi: 10.1016/j.jpowsour.2012.02.016
    [128] Selvarani G, Prashant SK, Sahu AK, et al. (2008) A direct borohydride fuel cell employing Prussian Blue as mediated electron-transfer hydrogen peroxide reduction catalyst. J Power Sources 178: 86–91. doi: 10.1016/j.jpowsour.2007.11.115
    [129] Kim JH, Kim HS, Kang YM, et al. (2004) Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc 151: A1039–A1043. doi: 10.1149/1.1756351
    [130] Gu L, Luo N, Miley GH (2007) Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell. J Power Sources 173: 77–85. doi: 10.1016/j.jpowsour.2007.05.005
    [131] Sljukić B, Milikić J, Santos DMF, et al. (2013) Carbon-supported Pt0.75 M0.25 (M = Ni or Co) electrocatalysts for borohydride oxidation. Electrochim Acta 103: 577–583.
    [132] Yang X, Wei X, Liu C, et al. (2014) The electrocatalytic application of RuO2 in direct borohydride fuel cells. Mater Chem Phys 145: 269–273. doi: 10.1016/j.matchemphys.2014.01.044
    [133] Sljukić B, Morais AL, Santos DMF, et al. (2012) Anion-or cation-exchange membranes for NaBH4/H2O2 fuel cells? Membranes 2: 478–492. doi: 10.3390/membranes2030478
    [134] Santos DMF, Sequeira CAC (2012) Effect of membrane separators on the performance of direct borohydride fuel cells. J Electrochem Soc 159: B126–B132. doi: 10.1149/2.024202jes
    [135] Cheng H, Scott K (2006) Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. J Appl Electrochem 36: 1361–1366. doi: 10.1007/s10800-006-9199-7
    [136] Raman RK, Prashant SK, Shukla AK (2006) A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack. J Power Sources 162: 1073–1076. doi: 10.1016/j.jpowsour.2006.07.059
    [137] Choudhury NA, Prashant SK, Pitchumani S, et al. (2009) Poly(vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells. J Chem Sci 121: 647–654. doi: 10.1007/s12039-009-0078-8
    [138] Huang CC, Liu YL, Pan WH, et al. (2013) Direct borohydride fuel cell performance using hydroxide-conducting polymeric nanocomposite electrolytes. J Polym Sci Pol Phys 51: 1779–1789. doi: 10.1002/polb.23250
    [139] Yang X, Liu Y, Li S, et al. (2012) A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts. Sci Rep 2: 567–571.
    [140] Cheng H, Scott K (2006) Investigation of non-platinum cathode catalysts for direct borohydride fuel cells. J Electroanal Chem 596: 117–123. doi: 10.1016/j.jelechem.2006.07.031
    [141] Ma J, Wang J, Liu Y (2007) Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell. J Power Sources 172: 220–224. doi: 10.1016/j.jpowsour.2007.07.031
    [142] Ma J, Liu Y, Zhang P, et al. (2008) A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode. Electrochem Commun 10: 100–102. doi: 10.1016/j.elecom.2007.11.006
    [143] Feng RX, Dong H, Wang YD, et al. (2005) A simple and high efficient direct borohydride fuel cell with MnO2-catalysed cathode. Electrochem Commun 7: 449–452. doi: 10.1016/j.elecom.2005.02.023
    [144] Verma A, Jha AK, Basu S (2005) Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J Power Sources 141: 30–34. doi: 10.1016/j.jpowsour.2004.09.005
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8111) PDF downloads(1519) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog