Review Topical Sections

Manufacture of complex heart tissues: technological advancements and future directions

  • Received: 02 December 2020 Accepted: 05 January 2021 Published: 20 January 2021
  • The latest technological advances in stem cell biology and mechanical engineering provide new opportunities for cardiac tissue engineering, enabling the production of highly efficient differentiated cells and the manufacture of high-resolution complex cardiac tissues. In this review, we summarize the progress of stem cell technology in 3D bioprinting of heart tissue and the latest technological breakthroughs. The main topics discussed include somatic cell reprogramming, differentiation of induced pluripotent stem cells (iPSCs), 3D bioprinting strategies, bioinks, and in vitro vascularization methods. The objective of this review is to explore the possibility of interdisciplinary research to solve the existing challenges in tissue engineering by summarizing the existing work and progress and pointing their current limitations.

    Citation: Yihan Zhang. Manufacture of complex heart tissues: technological advancements and future directions[J]. AIMS Bioengineering, 2021, 8(1): 73-92. doi: 10.3934/bioeng.2021008

    Related Papers:

  • The latest technological advances in stem cell biology and mechanical engineering provide new opportunities for cardiac tissue engineering, enabling the production of highly efficient differentiated cells and the manufacture of high-resolution complex cardiac tissues. In this review, we summarize the progress of stem cell technology in 3D bioprinting of heart tissue and the latest technological breakthroughs. The main topics discussed include somatic cell reprogramming, differentiation of induced pluripotent stem cells (iPSCs), 3D bioprinting strategies, bioinks, and in vitro vascularization methods. The objective of this review is to explore the possibility of interdisciplinary research to solve the existing challenges in tissue engineering by summarizing the existing work and progress and pointing their current limitations.



    The author thanks Merlene Mo for providing assistance in drawing illustrations.

    Conflict of interest

    The author declare no conflict of interest.

    [1]  Cardiovascular diseases (CVDs), World Health Organization Available from:
    [2] Fuchs M, Schibilsky D, Zeh W, et al. (2019) Does the heart transplant have a future? Eur J Cardio-thorac 55: i38-i48. doi: 10.1093/ejcts/ezz107
    [3] Qasim M, Haq F, Kang M, et al. (2019) 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed 14: 1311-1333. doi: 10.2147/IJN.S189587
    [4] Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. doi: 10.1016/j.cell.2006.07.024
    [5] Smith Z, Sindhu C, Meissner A (2016) Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol 17: 139-154. doi: 10.1038/nrm.2016.6
    [6] Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. doi: 10.1038/nature05934
    [7] Yoshida Y, Yamanaka S (2017) Induced pluripotent stem cells 10 years later. Circ Res 120: 1958-1968. doi: 10.1161/CIRCRESAHA.117.311080
    [8] Maherali N, Sridharan R, Xie W, et al. (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55-70. doi: 10.1016/j.stem.2007.05.014
    [9] Somers A, Jean JC, Sommer CA, et al. (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem cells 28: 1728-1740. doi: 10.1002/stem.495
    [10] Fusaki N, Ban H, Nishiyama A, et al. (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. P Jpn Acad B Phys 85: 348-362.
    [11] Carey BW, Markoulaki S, Hanna J, et al. (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 106: 157-162. doi: 10.1073/pnas.0811426106
    [12] Stadtfeld M, Nagaya M, Utikal J, et al. (2008) Induced pluripotent stem cells generated without viral integration. Science 322: 945-949. doi: 10.1126/science.1162494
    [13] McLenachan S, Sarsero J, Ioannou P (2007) Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs. Genomics 89: 708-720. doi: 10.1016/j.ygeno.2007.02.006
    [14] Subramanyam D, Lamouille S, Judson R, et al. (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29: 443-448. doi: 10.1038/nbt.1862
    [15] Kim D, Kim CH, Moon JI, et al. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472-476. doi: 10.1016/j.stem.2009.05.005
    [16] Warren L, Manos PD, Ahfeldt T, et al. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618-630. doi: 10.1016/j.stem.2010.08.012
    [17] Malik N, Rao MS (2013) A review of the methods for human iPSC derivation. Pluripotent Stem Cells: Methods and Protocols Totowa: Humana Press, 23-33. doi: 10.1007/978-1-62703-348-0_3
    [18] Hong H, Takahashi K, Ichisaka T, et al. (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460: 1132-1135. doi: 10.1038/nature08235
    [19] Zhao S, Jiang E, Chen S, et al. (2016) PiggyBac transposon vectors: the tools of the human gene encoding. Transl Lung Cancer Res 5: 120-125. doi: 10.21037/tcr.2016.04.02
    [20] Al Abbar A, Ngai SC, Nograles N, et al. (2020) Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores Open Access 9: 121-136. doi: 10.1089/biores.2019.0046
    [21] Gouveia C, Huyser C, Egli D, et al. (2020) Lessons learned from somatic cell nuclear transfer. Int J Mol Sci 21: 2314. doi: 10.3390/ijms21072314
    [22] Tsuji Y, Kato Y, Tsunoda Y (2009) The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2′-deoxycytidine. Zygote 17: 109-115. doi: 10.1017/S0967199408005133
    [23] Polstein LR, Perez-Pinera P, Kocak DD, et al. (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 25: 1158-1169. doi: 10.1101/gr.179044.114
    [24] Weltner J, Balboa D, Katayama S, et al. (2018) Human pluripotent reprogramming with CRISPR activators. Nat Commun 9: 2643. doi: 10.1038/s41467-018-05067-x
    [25] Liu P, Chen M, Liu Y, et al. (2017) CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22: 252-261.e4. doi: 10.1016/j.stem.2017.12.001
    [26] Ben JR, Shemer Y, Binah O (2018) Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev Rep 14: 323-336. doi: 10.1007/s12015-018-9811-3
    [27] Brodehl A, Ebbinghaus H, Deutsch MA, et al. (2019) Human induced pluripotent stem-cell-derived cardiomyocytes as models for genetic cardiomyopathies. Int J Mol Sci 20: 4381. doi: 10.3390/ijms20184381
    [28] Kempf H, Zweigerdt R (2017) Scalable cardiac differentiation of pluripotent stem cells using specific growth factors and small molecules. Engineering and Application of Pluripotent Stem Cells Cham: Springer, 39-69. doi: 10.1007/10_2017_30
    [29] Wu S, Cheng CM, Lanz RB, et al. (2013) Atrial identity is determined by a COUP-TFII regulatory network. Dev Cell 25: 417-426. doi: 10.1016/j.devcel.2013.04.017
    [30] Prowse AB, Timmins NE, Yau TM, et al. (2014) Transforming the promise of pluripotent stem cell-derived cardiomyocytes to a therapy: challenges and solutions for clinical trials. Can J Cardiol 30: 1335-1349. doi: 10.1016/j.cjca.2014.08.005
    [31] Evans SM, Yelon D, Conlon FL, et al. (2010) Myocardial lineage development. Circ Res 107: 1428-1444. doi: 10.1161/CIRCRESAHA.110.227405
    [32] Mahmood T, Nasser A, Hossein B (2015) Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Life Sciences 145: 98-113.
    [33] Guo NN, Liu LP, Zheng YW, et al. (2020) Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. J Stem Cells 12: 25-34. doi: 10.4252/wjsc.v12.i1.25
    [34] Brickman JM, Serup P (2017) Properties of embryoid bodies. WIREs Dev Biol 6: e259. doi: 10.1002/wdev.259
    [35] Yang L, Soonpaa MH, Adler ED, et al. (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453: 524-528. doi: 10.1038/nature06894
    [36] Kattman J, Witty AD, Gagliardi M, et al. (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8: 228-240. doi: 10.1016/j.stem.2010.12.008
    [37] Besser RR, Ishahak M, Mayo V, et al. (2018) Engineered microenvironments for maturation of stem cell derived cardiac myocytes. Theranostics 8: 124-140. doi: 10.7150/thno.19441
    [38] Tohyama S, Hattori F, Sano M, et al. (2012) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12: 127-137. doi: 10.1016/j.stem.2012.09.013
    [39] Mummery CL, Zhang J, Elliott DA, et al. (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111: 344-358. doi: 10.1161/CIRCRESAHA.110.227512
    [40] Graichen R, Xu X, Braam SR, et al. (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76: 357-370. doi: 10.1111/j.1432-0436.2007.00236.x
    [41] Vlahos CJ, Matter WF, Hui KY, et al. (1994) A specific inhibitor of phosphatidylinositol3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269: 5241-5248. doi: 10.1016/S0021-9258(17)37680-9
    [42] Ieda M, Fu JD, Delgado P, et al. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375-386. doi: 10.1016/j.cell.2010.07.002
    [43] Jayawardena TM, Egemnazarov B, Finch EA, et al. (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110: 1465-1473. doi: 10.1161/CIRCRESAHA.112.269035
    [44] Burridge PW, Matsa E, Shukla P, et al. (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11: 855-860. doi: 10.1038/nmeth.2999
    [45] Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166: 1386-1396. doi: 10.1016/j.cell.2016.08.055
    [46] Chen Y, Yang Z, Zhao ZA, et al. (2017) Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther 8: 118. doi: 10.1186/s13287-017-0569-3
    [47] Wang J, Jiang X, Zhao L, et al. (2019) Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharm Sin B 10: 313-326. doi: 10.1016/j.apsb.2019.09.003
    [48] Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32: 773-785. doi: 10.1038/nbt.2958
    [49] Cui X, Boland T, DLima DD, et al. (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6: 149-155. doi: 10.2174/187221112800672949
    [50] Cui X, Dean D, Ruggeri ZM, et al. (2010) Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol Bioeng 106: 963-969. doi: 10.1002/bit.22762
    [51] Fang Y, Frampton JP, Raghavan S, et al. (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C-Me 18: 647-657. doi: 10.1089/ten.tec.2011.0709
    [52] Jones N (2012) Science in three dimensions: the print revolution. Nature 487: 22-23. doi: 10.1038/487022a
    [53] Mironov V, Visconti RP, Kasyanov V, et al. (2008) Organ printing: tissue spheroids as building blocks. Biomaterials 30: 2164-2174. doi: 10.1016/j.biomaterials.2008.12.084
    [54] Zhang YS, Pi Q, van Genderen AM Microfluidic bioprinting for engineering vascularized tissues and organoids (2017) . doi: 10.3791/55957
    [55] Bohandy J, Kim B, Adrian F (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60: 1538-1539. doi: 10.1063/1.337287
    [56] Guillemot F, Souquet A, Catros S, et al. (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5: 507-515. doi: 10.2217/nnm.10.14
    [57] Guillotin B, Souquet A, Catros S, et al. (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31: 7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
    [58] Kattamis NT, Purnick PE, Weiss R, et al. (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91: 171120-171123. doi: 10.1063/1.2799877
    [59] Gauvin R, Chen YC, Lee JW, et al. (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33: 3824-3834. doi: 10.1016/j.biomaterials.2012.01.048
    [60] Alonzo M, AnilKumar S, Roman B, et al. (2019) 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res 211: 64-83. doi: 10.1016/j.trsl.2019.04.004
    [61] Bishop ES, Mostafa S, Pakvasa M, et al. (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis 4: 185-195. doi: 10.1016/j.gendis.2017.10.002
    [62] Morris VB, Nimbalkar S, Younesi M, et al. (2017) Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Ann Biomed Eng 45: 286-296. doi: 10.1007/s10439-016-1643-1
    [63] Lu Y, Mapili G, Suhali G, et al. (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77: 396-405. doi: 10.1002/jbm.a.30601
    [64] Zhang J, Hu Q, Wang S, et al. (2019) Digital light processing based three-dimensional printing for medical applications. Int J Bioprint 6: 242. doi: 10.18063/ijb.v6i1.242
    [65] Kelly BE, Bhattacharya I, Heidari H, et al. (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363: 1075-1079. doi: 10.1126/science.aau7114
    [66] Türker E, Demirçak N, Arslan YA (2018) Scaffold-free three-dimensional cell culturing using magnetic levitation. Biomater Sci 6: 1745-1753. doi: 10.1039/C8BM00122G
    [67] Matai I, Kaur G, Seyedsalehi A, et al. (2019) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226: 119536. doi: 10.1016/j.biomaterials.2019.119536
    [68] Tseng H, Gage JA, Haisler WL, et al. (2016) A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting. Sci Rep 6: 30640. doi: 10.1038/srep30640
    [69] Bowser DA, Moore MJ (2019) Biofabrication of neural microphysiological systems using magnetic spheroid bioprinting. Biofabrication 12: 015002. doi: 10.1088/1758-5090/ab41b4
    [70] Wang X (2019) Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines 10: 814. doi: 10.3390/mi10120814
    [71] Axpe E, Oyen ML (2016) Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci 17: E1976. doi: 10.3390/ijms17121976
    [72] Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym 59: 129-140. doi: 10.1016/j.reactfunctpolym.2004.01.002
    [73] Gao T, Gillispie GJ, Copus JS, et al. (2018) Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication 10: 034106. doi: 10.1088/1758-5090/aacdc7
    [74] Giuseppe MD, Law N, Webb BA, et al. (2018) Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater 79: 150-157. doi: 10.1016/j.jmbbm.2017.12.018
    [75] Markstedt K, Mantas A, Tournier I, et al. (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16: 1489-1496. doi: 10.1021/acs.biomac.5b00188
    [76] Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123: 4195-4200. doi: 10.1242/jcs.023820
    [77] Drzewiecki KE, Parmar AS, Gaudet ID, et al. (2014) Methacrylation induces rapid, temperature-dependent, reversible self-assembly of type-I collagen. Langmuir 30: 11204-11211. doi: 10.1021/la502418s
    [78] Lee A, Hudson AR, Shiwarski DJ, et al. (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365: 482-487. doi: 10.1126/science.aav9051
    [79] Wang X, Yu X, Yan Y, et al. (2008) Liver tissue responses to gelatin and gelatin/chitosan gels. J Biomed Mater Res A 87: 62-68. doi: 10.1002/jbm.a.31712
    [80] Skardal A, Zhang J, McCoard L, et al. (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16: 2675-2685. doi: 10.1089/ten.tea.2009.0798
    [81] Zhu H, Yang H, Ma Y, et al. (2020) Spatiotemporally controlled photoresponsive hydrogels: design and predictive modeling from processing through application. Adv Funct Mater 30: 2000639. doi: 10.1002/adfm.202000639
    [82] Xiao S, Zhao T, Wang J, et al. (2019) Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep 15: 664-679. doi: 10.1007/s12015-019-09893-4
    [83] Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54: 3-12. doi: 10.1016/S0169-409X(01)00239-3
    [84] Jungst T, Smolan W, Schacht K, et al. (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116: 1496-1539. doi: 10.1021/acs.chemrev.5b00303
    [85] Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17: 247-289. doi: 10.1163/156856206775997322
    [86] Samadi N, Abbadessa A, Di Stefano A, et al. (2013) The effect of lauryl capping group on protein release and degradation of poly (D, L-lactic-co-glycolic acid) particles. J Control Release 172: 436-443. doi: 10.1016/j.jconrel.2013.05.034
    [87] Mazzola M, Pasquale E (2020) Toward cardiac regeneration: Combination of pluripotent stem cell-based therapies and bioengineering strategies. Front Bioeng Biotechnol 8: 455. doi: 10.3389/fbioe.2020.00455
    [88] Homma J, Shimizu S, Sekine H, et al. (2020) A novel method to align cells in a cardiac tissue-like construct fabricated by cell sheet-based tissue engineering. J Tissue Eng Regen Med 14: 944-954. doi: 10.1002/term.3074
    [89] Wang Z, Lee SJ, Cheng HJ, et al. (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70: 48-56. doi: 10.1016/j.actbio.2018.02.007
    [90] Redd MA, Zeinstra N, Qin W, et al. (2019) Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nat Commun 10: 584. doi: 10.1038/s41467-019-08388-7
    [91] Shimizu A, Goh WH, Itai S, et al. (2020) ECM-based microchannel for culturing in vitro vascular tissues with simultaneous perfusion and stretch. Lab Chip 20: 1917-1927. doi: 10.1039/D0LC00254B
    [92] Ma X, Qu X, Zhu W, et al. (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci 113: 2206-2211. doi: 10.1073/pnas.1524510113
    [93] Taylor DA, Sampaio LC, Ferdous Z, et al. (2018) Decellularized matrices in regenerative medicine. Acta Biomater 74: 74-89. doi: 10.1016/j.actbio.2018.04.044
    [94] Ott HC, Matthiesen TS, Goh SK, et al. (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14: 213-219. doi: 10.1038/nm1684
    [95] Jovic TH, Kungwengwe G, Mills AC, et al. (2019) Plant-derived biomaterials: A review of 3D bioprinting and biomedical applications. Front Mech Eng 5: 19. doi: 10.3389/fmech.2019.00019
    [96] Marga F, Jakab K, Khatiwala C, et al. (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4: 022001. doi: 10.1088/1758-5082/4/2/022001
    [97] Hockaday LA, Kang KH, Colangelo NW, et al. (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4: 035005. doi: 10.1088/1758-5082/4/3/035005
    [98] Madden LR, Mortisen DJ, Sussman EM, et al. (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci 107: 15211-15216. doi: 10.1073/pnas.1006442107
    [99] Zhang YS, Arneri A, Bersini S, et al. (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110: 45-59. doi: 10.1016/j.biomaterials.2016.09.003
    [100] Hann SY, Cui H, Esworthy T, et al. (2019) Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res 211: 46-63. doi: 10.1016/j.trsl.2019.04.002
    [101] Duan B, Hockaday LA, Kang KH, et al. (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101: 1255-1264. doi: 10.1002/jbm.a.34420
    [102] Grigoryan B, Paulsen SJ, Corbett DC, et al. (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364: 458-464. doi: 10.1126/science.aav9750
    [103] Esther C, Claudia K, Petra J (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63: 300-311. doi: 10.1016/j.addr.2011.03.004
    [104] Kobayashi J, Akiyama Y, Yamato M, et al. (2018) Design of temperature-responsive cell culture surfaces for cell sheet-based regenerative therapy and 3D tissue fabrication. Adv Exp Med Biol 1078: 371-393. doi: 10.1007/978-981-13-0950-2_19
    [105] Inui A, Sekine H, Sano K, et al. (2019) Generation of a large-scale vascular bed for the in vitro creation of three-dimensional cardiac tissue. Regen Ther 11: 316-323. doi: 10.1016/j.reth.2019.10.001
    [106] Masuda S, Shimizu T (2015) Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev 96: 103-109. doi: 10.1016/j.addr.2015.05.002
    [107] Daley MC, Fenn SL, Black LD (2018) Applications of cardiac extracellular matrix in tissue engineering and regenerative medicine. Cardiac Extracellular Matrix Cham: Springer, 59-83. doi: 10.1007/978-3-319-97421-7_4
    [108] Seignez C, Phillipson M (2017) The multitasking neutrophils and their involvement in angiogenesis. Curr Opin Hematol 24: 3-8. doi: 10.1097/MOH.0000000000000300
    [109] Miller JS (2014) The billion cells construct: will three-dimensional printing get us there? PLoS Biol 12: e1001882. doi: 10.1371/journal.pbio.1001882
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(712) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables


Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint