Pru av 1, Pru av 3, and Pru av 4 are main allergenic proteins present in sweet cherry (Prunus avium L.). In this study, an analytical method was developed for these proteins based on a protein absolute quantification (AQUA) strategy. This method involves performing liquid chromatography/tandem mass spectrometry (LC/MS/MS) using stable isotope-labeled internal standard (SIIS) peptides, LVASPSGGSIIK[13C6, 15N2], ISPSTNC[CAM]ATVK[13C6, 15N2] (C[CAM]: carbamidomethyl-modified C), and LGDYLIEQGL[13C6, 15N], for the analysis of Pru av 1, Pru av 3, and Pru av 4, respectively. This method showed linear relationships (r2 > 0.99) in concentration ranges of 0.4–200, 0.2–200, and 1.6–200 fmol/μL of LVASPSGGSIIK[13C6, 15N2], ISPSTNC[CAM]ATVK[13C6, 15N2], and LGDYLIEQGL[13C6, 15N], respectively, spiked into the matrix of a tryptic digest from sweet cherry. However, the overall coefficients of variation for inter-day tests were unsatisfactory. Pru av 1, Pru av 3, and Pru av 4 present in four cultivars of sweet cherry could be detected using this method. This method is expected to detect and semi-quantify allergenic proteins in sweet cherry fruits as an alternative to western blotting.
Citation: Katsunari Ippoushi. Analysis of allergenic proteins in sweet cherry by liquid chromatography/tandem mass spectrometry using stable isotope-labeled peptides[J]. AIMS Agriculture and Food, 2025, 10(3): 564-576. doi: 10.3934/agrfood.2025028
Pru av 1, Pru av 3, and Pru av 4 are main allergenic proteins present in sweet cherry (Prunus avium L.). In this study, an analytical method was developed for these proteins based on a protein absolute quantification (AQUA) strategy. This method involves performing liquid chromatography/tandem mass spectrometry (LC/MS/MS) using stable isotope-labeled internal standard (SIIS) peptides, LVASPSGGSIIK[13C6, 15N2], ISPSTNC[CAM]ATVK[13C6, 15N2] (C[CAM]: carbamidomethyl-modified C), and LGDYLIEQGL[13C6, 15N], for the analysis of Pru av 1, Pru av 3, and Pru av 4, respectively. This method showed linear relationships (r2 > 0.99) in concentration ranges of 0.4–200, 0.2–200, and 1.6–200 fmol/μL of LVASPSGGSIIK[13C6, 15N2], ISPSTNC[CAM]ATVK[13C6, 15N2], and LGDYLIEQGL[13C6, 15N], respectively, spiked into the matrix of a tryptic digest from sweet cherry. However, the overall coefficients of variation for inter-day tests were unsatisfactory. Pru av 1, Pru av 3, and Pru av 4 present in four cultivars of sweet cherry could be detected using this method. This method is expected to detect and semi-quantify allergenic proteins in sweet cherry fruits as an alternative to western blotting.
| [1] |
Price A, Ramachandran S, Smith GP, et al. (2015) Oral allergy syndrome (pollen-food allergy syndrome). Dermatitis 26: 78–88. https://doi.org/10.1097/DER.0000000000000087 doi: 10.1097/DER.0000000000000087
|
| [2] |
Andersen MBS, Hall S, Dragsted LO (2011) Identification of European allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin Rev Allergy Immunol 41: 4–19. https://doi.org/10.1007/s12016-009-8177-3 doi: 10.1007/s12016-009-8177-3
|
| [3] |
Worm M, Reese I, Ballmer-Weber B, et al. (2015) Guidelines on the management of IgE-mediated food allergies. Allergo J Int 24: 256–293. https://doi.org/10.1007/s40629-015-0074-0 doi: 10.1007/s40629-015-0074-0
|
| [4] |
Bohle B (2006) T-cell epitopes of food allergens. Clin Rev Allergy Immunol 30: 97–108. https://doi.org/10.1385/CRIAI:30:2:97 doi: 10.1385/CRIAI:30:2:97
|
| [5] |
Sinha M, Singh RP, Kushwaha GS, et al. (2014) Current overview of allergens of plant pathogenesis related protein families. Sci World J 2014: 543195. https://doi.org/10.1155/2014/543195 doi: 10.1155/2014/543195
|
| [6] |
Pastorello EA, Robino, AM (2004) Clinical role of lipid transfer proteins in food allergy. Mol Nutr Food Res 48: 356–362. https://doi.org/10.1002/mnfr.200400047 doi: 10.1002/mnfr.200400047
|
| [7] |
Vieths S, Scheurer S, Ballmer-Weber B (2002) Current understanding of cross-reactivity of food allergens and pollen. Ann NY Acad Sci 964: 47–68. https://doi.org/10.1111/j.1749-6632.2002.tb04132.x doi: 10.1111/j.1749-6632.2002.tb04132.x
|
| [8] |
Ippoushi K, Sasanuma M, Oike H, et al. (2016) Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide. Food Chem 204: 129–134. https://doi.org/10.1016/j.foodchem.2016.02.115 doi: 10.1016/j.foodchem.2016.02.115
|
| [9] |
Kettenbach AN, Rush J, Gerber SA (2011) Absolute quantification of protein and post-translational modification abundance with stable isotope-labeled synthetic peptides. Nat Protoc 6: 175–186. https://doi.org/10.1038/nprot.2010.196 doi: 10.1038/nprot.2010.196
|
| [10] |
Uchida Y, Tachikawa M, Obuchi W, et al. (2013) A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS 10: 21. https://doi.org/10.1186/2045-8118-10-21 doi: 10.1186/2045-8118-10-21
|
| [11] |
Ippoushi K, Tanaka Y, Wakagi M, et al. (2019) Assessment of Pru p 1 and Pru p 3 in peach fruit by liquid chromatography–tandem mass spectrometry. J Food Compos Anal 80: 10–15. https://doi.org/10.1016/j.jfca.2019.03.010 doi: 10.1016/j.jfca.2019.03.010
|
| [12] |
Fallon JK, Neubert H, Goosen TC, et al. (2013) Targeted precise quantification of 12 human recombinant uridine-diphosphate glucuronosyl transferase 1A and 2B isoforms using nano-ultra-high-performance liquid chromatography/tandem mass spectrometry with selected reaction monitoring. Drug Metab Dispos 41: 2076–2080. https://doi.org/10.1124/dmd.113.053801 doi: 10.1124/dmd.113.053801
|
| [13] |
Franc V, Řehulka P, Raus M, et al. (2013) Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics 92: 299–312. https://doi.org/10.1016/j.jprot.2013.07.013 doi: 10.1016/j.jprot.2013.07.013
|
| [14] |
Dong NP, Zhang LX, Liang YZ (2011) A comprehensive investigation of proline fragmentation behavior in low-energy collision-induced dissociation peptide mass spectra. Int J Mass Spectrom 308: 89–97. https://doi.org/10.1016/j.ijms.2011.08.005 doi: 10.1016/j.ijms.2011.08.005
|
| [15] |
Kuchibhotla B, Kola SR, Medicherla JV, et al. (2017) Combinatorial labeling method for improving peptide fragmentation in mass spectrometry. J Am Soc Mass Spectrom 28: 1216–1226. https://doi.org/10.1007/s13361-017-1606-2 doi: 10.1007/s13361-017-1606-2
|
| [16] |
Chen Q, Li Y, Dong L, et al. (2022) Quantitative determination of Nε-(carboxymethyl)lysine in sterilized milk by isotope dilution UPLC-MS/MS method without derivatization and ion pair reagents. Food Chem 385: 132697. https://doi.org/10.1016/j.foodchem.2022.132697 doi: 10.1016/j.foodchem.2022.132697
|
| [17] |
Zhang J, Chen Q, Zhou Y, et al. (2022) Characterization and determination of bovine immunoglobulin G subtypes in milk and dairy products by UPLC-MS. Food Chem 390: 133170. https://doi.org/10.1016/j.foodchem.2022.133170 doi: 10.1016/j.foodchem.2022.133170
|