Research article

Effect of convective and vacuum drying on some physicochemical and phytochemical characteristics of peppermint leaves

  • Received: 12 August 2024 Revised: 10 November 2024 Accepted: 16 December 2024 Published: 08 February 2025
  • This study examines the effects of convective air and vacuum drying at 40, 50, and 60 ℃ on the drying behavior, color, pigments, phenolic content, and antioxidant capacity of peppermint leaves. The drying data were modeled using eight drying models, with the Midilli model being the best fit for both drying methods with the highest R2 (>0.99) and lowest values of χ2 (<0.003) and root mean square error (RMSE) (<0.035). Results showed that convective drying at 60 ℃ had the highest drying rate (0.62 d.b./h) compared to vacuum drying (0.25 d.b./h) at the same drying temperature. Effective moisture diffusivity increased with the increase in drying temperature and ranged from 1.00 × 10−13 to 5.16 × 10−13 (m2 s−1). Activation energy ranged from 39.72 to 41.46 (kJ mol−1). Furthermore, vacuum drying resulted in higher lightness and lower redness (a*) values than convective drying at higher temperatures. Both methods increased chlorophyll a and b contents, while β-carotene and phenolic contents significantly decreased, particularly at higher temperatures. This study highlights that both convective and vacuum drying methods affect the drying behavior and quality of peppermint leaves, with lower temperatures being more effective in preserving color and antioxidant properties. Future studies should focus on optimizing drying conditions to further enhance the retention of key bioactive compounds and explore the potential of other drying techniques for improved peppermint preservation.

    Citation: Ramadan ElGamal, Omar A. Hamed, Ahmed M. Rayan, Chuanping Liu, Sameh Kishk, Salim Al-Rejaie, Gamal ElMasry. Effect of convective and vacuum drying on some physicochemical and phytochemical characteristics of peppermint leaves[J]. AIMS Agriculture and Food, 2025, 10(1): 17-39. doi: 10.3934/agrfood.2025002

    Related Papers:

  • This study examines the effects of convective air and vacuum drying at 40, 50, and 60 ℃ on the drying behavior, color, pigments, phenolic content, and antioxidant capacity of peppermint leaves. The drying data were modeled using eight drying models, with the Midilli model being the best fit for both drying methods with the highest R2 (>0.99) and lowest values of χ2 (<0.003) and root mean square error (RMSE) (<0.035). Results showed that convective drying at 60 ℃ had the highest drying rate (0.62 d.b./h) compared to vacuum drying (0.25 d.b./h) at the same drying temperature. Effective moisture diffusivity increased with the increase in drying temperature and ranged from 1.00 × 10−13 to 5.16 × 10−13 (m2 s−1). Activation energy ranged from 39.72 to 41.46 (kJ mol−1). Furthermore, vacuum drying resulted in higher lightness and lower redness (a*) values than convective drying at higher temperatures. Both methods increased chlorophyll a and b contents, while β-carotene and phenolic contents significantly decreased, particularly at higher temperatures. This study highlights that both convective and vacuum drying methods affect the drying behavior and quality of peppermint leaves, with lower temperatures being more effective in preserving color and antioxidant properties. Future studies should focus on optimizing drying conditions to further enhance the retention of key bioactive compounds and explore the potential of other drying techniques for improved peppermint preservation.



    加载中


    [1] Kant R, Kushwah A, Kumar A, et al. (2023) Solar drying of peppermint leave: thermal characteristics, drying kinetics, and quality assessment. J Stored Prod Res100: 102068. https://doi.org/10.1016/j.jspr.2022.102068 doi: 10.1016/j.jspr.2022.102068
    [2] FAOSTAT (2023) FAOSTAT Database (Food and Agriculture Organization Statistics). Available from: https://wwwfaoorg/faostat/en/#data.
    [3] Filgueira-Garro I, González-Ferrero C, Mendiola D, et al. (2022) Effect of cultivar and drying methods on phenolic compounds and antioxidant capacity in olive (Olea europaea L.) leaves. AIMS Agric Food 7: 250–264. https://doi.org/10.3934/agrfood.2022016 doi: 10.3934/agrfood.2022016
    [4] Ulewicz-Magulska B, Wesolowski M (2019) Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum Nutr 74: 61–67. https://doi.org/10.1007/s11130-018-0699-5 doi: 10.1007/s11130-018-0699-5
    [5] Akram S, Mushtaq M, Waheed A (2021) β-Carotene: beyond provitamin A. In: A Centum of Valuable Plant Bioactives, Elsevier, 1–31. https://doi.org/10.1016/B978-0-12-822923-1.00008-X
    [6] Martins T, Barros AN, Rosa E, et al. (2023) Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules 28: 5344. https://doi.org/10.3390/molecules28145344 doi: 10.3390/molecules28145344
    [7] Alsaraf S, Hadi Z, Akhtar MJ, et al. (2021) Chemical profiling, cytotoxic and antioxidant activity of volatile oil isolated from the mint (Mentha spicata L.) grown in Oman. Biocatal Agric Biotechnol 34: 102034. https://doi.org/10.1016/j.bcab.2021.102034 doi: 10.1016/j.bcab.2021.102034
    [8] Mucciarelli M, Camusso W, Bertea CM, et al. (2001) Effect of (+)-pulegone and other oil components of Mentha piperita on cucumber respiration. Phytochemistry 57: 91–98. https://doi.org/10.1016/S0031-9422(00)00393-9 doi: 10.1016/S0031-9422(00)00393-9
    [9] Kadam DM, Goyal R, Singh K, et al. (2011) Thin layer convective drying of mint leaves. J Med Plants Res 5: 164–170.
    [10] ElGamal R, Kishk S, Al-Rejaie S, et al. (2021) Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices. Renewable Energy 167: 676–684. https://doi.org/10.1016/j.renene.2020.11.137 doi: 10.1016/j.renene.2020.11.137
    [11] Guiné R (2018) The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int J Food Eng 2: 93–100. https://doi.org/10.18178/ijfe.4.2.93-100 doi: 10.18178/ijfe.4.2.93-100
    [12] ElGamal R, Song C, Rayan AM, et al. (2023) Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy 13: 1580. https://doi.org/10.3390/agronomy13061580 doi: 10.3390/agronomy13061580
    [13] Kurniasari H, David W, Cempaka L (2022) Effects of drying techniques on bioactivity of ginger (Zingiber officinale): A meta-analysis investigation. AIMS Agric Food 7: 197–211. https://doi.org/10.3934/agrfood.2022013 doi: 10.3934/agrfood.2022013
    [14] ElGamal R, Liu C (2021) Experimental and simulation study on shrinkage of Radix Paeoniae Alba slices during drying process. Drying Technol 40: 1994–2005. https://doi.org/10.1080/07373937.2021.1904411 doi: 10.1080/07373937.2021.1904411
    [15] Parikh DM (2015) Vacuum drying: Basics and application. Chem Eng 122: 48–54.
    [16] Viji P, Mokam S, Jesmi D, et al. (2019) Effects of microwave vacuum drying and conventional drying methods on the physicochemical and microstructural properties of squid shreds. J Sci Food Agric 99: 5778–5783. https://doi.org/10.1002/jsfa.9846 doi: 10.1002/jsfa.9846
    [17] Richter Reis F (2014) Introduction to low pressure processes. In: Vacuum Drying for Extending Food Shelf-Life, 1–6. https://doi.org/10.1007/978-3-319-08207-3_1
    [18] Menon A, Stojceska V, Tassou SA (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol 100: 67–76. https://doi.org/10.1016/j.tifs.2020.03.014 doi: 10.1016/j.tifs.2020.03.014
    [19] Hu C, Li J, Yang Q, et al. (2022) Experimental characterization and mathematical modelling of natural drying of apricots at low temperatures. Agriculture 12: 1960. https://doi.org/10.3390/agriculture12111960 doi: 10.3390/agriculture12111960
    [20] Doymaz I (2006) Thin-layer drying behaviour of mint leaves. J Food Eng 74: 370–375. https://doi.org/10.1016/j.jfoodeng.2005.03.009 doi: 10.1016/j.jfoodeng.2005.03.009
    [21] Therdthai N, Zhou W (2009) Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J Food Eng 91: 482–489. https://doi.org/10.1016/j.jfoodeng.2008.09.031 doi: 10.1016/j.jfoodeng.2008.09.031
    [22] Ertekin C, Heybeli N (2014) Thin‐layer infrared drying of mint leaves. J Food Proc Preserv 38: 1480–1490. https://doi.org/10.1111/jfpp.12107 doi: 10.1111/jfpp.12107
    [23] Akpinar EK (2010) Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers Manag 51: 2407–2418. https://doi.org/10.1016/j.enconman.2010.05.005 doi: 10.1016/j.enconman.2010.05.005
    [24] Sallam Y, Aly M, Nassar A, et al. (2015) Solar drying of whole mint plant under natural and forced convection. J Adv Res 6: 171–178. https://doi.org/10.1016/j.jare.2013.12.001 doi: 10.1016/j.jare.2013.12.001
    [25] Kovacı T, Dikmen E, Şahin AŞ (2020) Drying behaviors of mint leaves in vacuum freeze drying. El-Cezeri 7: 371–380.
    [26] Arslan D, Özcan MM, Mengeş HO (2010) Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha piperita L.). Energy Convers Manag 51: 2769–2775. https://doi.org/10.1016/j.enconman.2010.06.013 doi: 10.1016/j.enconman.2010.06.013
    [27] Antal T, Figiel A, Kerekes B, et al. (2011) Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Drying Technol 29: 1836–1844. https://doi.org/10.1080/07373937.2011.606519 doi: 10.1080/07373937.2011.606519
    [28] Rubinskienė M, Viškelis P, Dambrauskienė E, et al. (2015) Effect of drying methods on the chemical composition and colour of peppermint (Mentha piperita L.) leaves. Zemdirbyste-Agriculture 102: 223‒228. https://doi.org/10.13080/z-a.2015.102.029 doi: 10.13080/z-a.2015.102.029
    [29] Bahmanpour H, Sajadiye S, Sheikhdavoodi M, et al. (2017) The effect of temperature and drying method on drying time and color quality of mint. J Agric Mach 7: 415–426.
    [30] Park KJ, Vohnikova Z, Brod FPR (2002) Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J Food Eng 51: 193–199. https://doi.org/10.1016/S0260-8774(01)00055-3 doi: 10.1016/S0260-8774(01)00055-3
    [31] Eltawil MA, Azam MM, Alghannam AO (2018) Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha Viridis). J Cleaner Prod 181: 352–364. https://doi.org/10.1016/j.jclepro.2018.01.229 doi: 10.1016/j.jclepro.2018.01.229
    [32] AOAC (1990) Official method of analysis. Association of Official Analytical Chemists (No. 934.06). Washington, DC.
    [33] Yang Q, Hu C, Li J, et al. (2024) Effects of Different natural drying methods on drying characteristics and quality of Diaogan apricots. Agriculture 14: 660. https://doi.org/10.3390/agriculture14050660 doi: 10.3390/agriculture14050660
    [34] Kishk SS, ElGamal RA, ElMasry GM (2019) Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. Renewable Energy 133: 307–316. https://doi.org/10.1016/j.renene.2018.10.028 doi: 10.1016/j.renene.2018.10.028
    [35] Erbay Z, Icier F (2010) A review of thin layer drying of foods: Theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50: 441–464. https://doi.org/10.1080/10408390802437063 doi: 10.1080/10408390802437063
    [36] Gürlek G, Özbalta N, Güngör A (2009) Solar tunnel drying characteristics and mathematical modelling of tomato. J Therm Sci Technol 29: 15–23.
    [37] Henderson S (1961) Grain drying theory, Ⅰ. Temperature effect on drying coefficient. J Agr Eng Res 6: 169–173.
    [38] Wang C, Singh R (1978) A single layer drying equation for rough rice. ASAE paper.
    [39] Hacihafizoglu O, Cihan A, Kahveci K (2008) Mathematical modelling of drying of thin layer rough rice. Food Bioprod Proc 86: 268–275. https://doi.org/10.1016/j.fbp.2008.01.002 doi: 10.1016/j.fbp.2008.01.002
    [40] Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Drying Technol 20: 1503–1513. https://doi.org/10.1081/DRT-120005864 doi: 10.1081/DRT-120005864
    [41] Ertekin O, Yaldiz C (2001) Thin layer solar drying of some different vegetables. Drying Technol 19: 583–596. https://doi.org/10.1081/DRT-100103936 doi: 10.1081/DRT-100103936
    [42] Barros L, Cabrita L, Boas MV, et al. (2011) Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem 127: 1600–1608. https://doi.org/10.1016/j.foodchem.2011.02.024 doi: 10.1016/j.foodchem.2011.02.024
    [43] Meften MT, Abdel-Razik A, Ibrahim S, et al. (2023) The impact of carbon-nano tubes on morphological, photosynthetic pigments, protein content and enzyme activity of in-vitro multiplication of cucumber. J Pharm Negat Results 1361–1366.
    [44] Ravichandran K, Saw NMMT, Mohdaly AA, et al. (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50: 670–675. https://doi.org/10.1016/j.foodres.2011.07.002 doi: 10.1016/j.foodres.2011.07.002
    [45] Maria do Socorro MR, Alves RE, de Brito ES, et al. (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121: 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037 doi: 10.1016/j.foodchem.2010.01.037
    [46] Tzempelikos DA, Mitrakos D, Vouros AP, et al. (2015) Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. J Food Eng 156: 10–21. https://doi.org/10.1016/j.jfoodeng.2015.01.017 doi: 10.1016/j.jfoodeng.2015.01.017
    [47] Doymaz I (2007) The kinetics of forced convective air-drying of pumpkin slices. J Food Eng 79: 243–248. https://doi.org/10.1016/j.jfoodeng.2006.01.049 doi: 10.1016/j.jfoodeng.2006.01.049
    [48] Elgamal R, Ronsse F, Radwan SM, et al. (2014) Coupling CFD and diffusion models for analyzing the convective drying behavior of a single rice kernel. Drying Technol 32: 311–320. https://doi.org/10.1080/07373937.2013.829088 doi: 10.1080/07373937.2013.829088
    [49] Largo-Avila E, Suarez-Rodríguez CH, Montero JL, et al. (2023) The influence of hot-air mechanical drying on the sensory quality of specialty Colombian coffee. AIMS Agric Food 8: 789–803. https://doi.org/10.3934/agrfood.2023042 doi: 10.3934/agrfood.2023042
    [50] Kishk SS, El-Reheem A, Solaf S, et al. (2018) Experimental and mathematical modeling study for solar drying of mint. Misr J Agric Eng 35: 1327–1344. https://doi.org/10.21608/mjae.2018.95279 doi: 10.21608/mjae.2018.95279
    [51] Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—A review. Food Res Int 52: 243–261. https://doi.org/10.1016/j.foodres.2013.02.033 doi: 10.1016/j.foodres.2013.02.033
    [52] Rudra SG, Singh H, Basu S, et al. (2008) Enthalpy entropy compensation during thermal degradation of chlorophyll in mint and coriander puree. J Food Eng 86: 379–387. https://doi.org/10.1016/j.jfoodeng.2007.10.020 doi: 10.1016/j.jfoodeng.2007.10.020
    [53] Buchaillot A, Caffin N, Bhandari B (2009) Drying of lemon myrtle (Backhousia citriodora) leaves: Retention of volatiles and color. Drying Technol 27: 445–450. https://doi.org/10.1080/07373930802683740 doi: 10.1080/07373930802683740
    [54] Dwivedy S, Rayaguru K, Sahoo G (2013) Mathematical modeling and quality characteristics of microwave dried medicinal borage leaves. Int Food Res J 20: 769–774.
    [55] Mrad ND, Boudhrioua N, Kechaou N, et al. (2012) Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food Bioprod Proc 90: 433–441. https://doi.org/10.1016/j.fbp.2011.11.009 doi: 10.1016/j.fbp.2011.11.009
    [56] Cakmak H, Kumcuoglu S, Tavman S (2013) Thin layer drying of bay leaves Laurus nobilis L. in conventional and microwave oven. Akademik Gıda 11: 20–26.
    [57] Demir V, Gunhan T, Yagcioglu A, et al. (2004) Mathematical modelling and the determination of some quality parameters of air-dried bay leaves. Biosyst Eng 88: 325–335. https://doi.org/10.1016/j.biosystemseng.2004.04.005 doi: 10.1016/j.biosystemseng.2004.04.005
    [58] Chemat F, Vian MA, Fabiano-Tixier AS, et al. (2020) A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem 22: 2325–2353. https://doi.org/10.1039/C9GC03878G doi: 10.1039/C9GC03878G
    [59] Rocha T, Marty-Audouin C, Lebert A (1993) Effect of drying temperature and blanching on the degradation of chlorophyll a and b in mint (Mentha spicata Huds.) and basil (Ocimum basilicum): Analysis by high performance liquid chromatography with photodiode array detection. Chromatographia 36: 152–156. https://doi.org/10.1007/BF02263853 doi: 10.1007/BF02263853
    [60] Dadali G, Demirhan E, Özbek B (2007) Color change kinetics of spinach undergoing microwave drying. Drying Technol 25: 1713–1723. https://doi.org/10.1080/07373930701590988 doi: 10.1080/07373930701590988
    [61] Kamel SM, Thabet HA, Algadi EA (2013) Influence of drying process on the functional properties of some plants. Chem Mater Res 3: 1–8.
    [62] Thamkaew G, Sjöholm I, Galindo FG (2021) A review of drying methods for improving the quality of dried herbs. Crit Rev Food Sci Nutr 61: 1763–1786. https://doi.org/10.1080/10408398.2020.1765309 doi: 10.1080/10408398.2020.1765309
    [63] Bialik M, Wiktor A, Rybak K, et al. (2020) The impact of vacuum and convective drying parameters on kinetics, total phenolic content, carotenoid content and antioxidant capacity of kiwiberry (Actinidia arguta). Appl Sci 10: 6914. https://doi.org/10.3390/app10196914 doi: 10.3390/app10196914
    [64] Komes D, Belščak‐Cvitanović A, Horžić D, et al. (2011) Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochem Anal 22: 172–180. https://doi.org/10.1002/pca.1264 doi: 10.1002/pca.1264
    [65] Garcìa LM, Ceccanti C, Negro C, et al. (2021) Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae 7: 10. https://doi.org/10.3390/horticulturae7010010 doi: 10.3390/horticulturae7010010
    [66] Martínez-Las Heras R, Heredia A, Castelló M, et al. (2014) Influence of drying method and extraction variables on the antioxidant properties of persimmon leaves. Food Biosci 6: 1–8. https://doi.org/10.1016/j.fbio.2014.01.002 doi: 10.1016/j.fbio.2014.01.002
    [67] Al-Farsi M, Alasalvar C, Morris A, et al. (2005) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53: 7592–7599. https://doi.org/10.1021/jf050579q doi: 10.1021/jf050579q
    [68] Chang C-H, Lin H-Y, Chang C-Y, et al. (2006) Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77: 478–485. https://doi.org/10.1016/j.jfoodeng.2005.06.061 doi: 10.1016/j.jfoodeng.2005.06.061
    [69] Valadez-Carmona L, Cortez-García RM, Plazola-Jacinto CP, et al. (2016) Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.). J Food Sci Technol 53: 3495–3501. https://doi.org/10.1007/s13197-016-2324-7 doi: 10.1007/s13197-016-2324-7
    [70] Cassol L, Rodrigues E, Noreña CPZ (2019) Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Ind Crops Prod 133: 168–177. https://doi.org/10.1016/j.indcrop.2019.03.023 doi: 10.1016/j.indcrop.2019.03.023
    [71] Benjamin MAZ, Ng SY, Saikim FH, et al. (2022) The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules 27: 6458. https://doi.org/10.3390/molecules27196458 doi: 10.3390/molecules27196458
    [72] Capecka E, Mareczek A, Leja M (2005) Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem 93: 223–226. https://doi.org/10.1016/j.foodchem.2004.09.020 doi: 10.1016/j.foodchem.2004.09.020
    [73] Lutz M, Hernández J, Henríquez C (2015) Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CyTA-J Food 13: 541–547.
    [74] Di Scala K, Vega‐Gálvez A, Uribe E, et al. (2011) Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int J Food Sci Technol 46: 746–753. https://doi.org/10.1111/j.1365-2621.2011.02555.x doi: 10.1111/j.1365-2621.2011.02555.x
    [75] Magalhães LM, Segundo MA, Reis S, et al. (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613: 1–19. https://doi.org/10.1016/j.aca.2008.02.047 doi: 10.1016/j.aca.2008.02.047
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1684) PDF downloads(175) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog