Research article

Callogenesis and somatic embryogenesis of Oryza sativa L. (cv. MARDI Siraj 297) under the influence of 2, 4-dichlorophenoxyacetic acid and kinetin

  • Received: 22 February 2022 Revised: 08 May 2022 Accepted: 10 May 2022 Published: 14 July 2022
  • Callogenesis and embryogenesis are integral parts of many tissue culture procedures for genetic manipulation in rice. However, the efficiency of both processes is largely dependent on the media constituent especially the plant growth regulators (PGRs) due to the genotype-dependent nature of in vitro culture protocols. Therefore, this study investigates the effect of two PGRs; 2, 4-dichlorophenoxyacetic acid (2, 4-D) and kinetin (Kin) on callus growth and somatic embryogenesis of an important Malaysian rice cultivar (Oryza sativa L. cv. MARDI Siraj 297). Mature rice seeds explants were inoculated in Murashige & Skoog (MS) medium supplemented with different combinations of 2, 4-D (0 to 3.5 mg/L) and Kin (0 to 0.5 mg/L) to induce callogenesis. Parameters for callus growth such as fresh weight (FW), callus induction frequency (CIF), embryogenic callus frequency (ECF), regeneration frequency (RF), number of plantlets per callus (PPC), callus texture and callus color were observed after 35 days of inoculation. The results show that the maximum callus growth was achieved in MS medium supplemented with combination of 2.0 mg/L 2, 4-D and 0.2 mg/L Kin, represented by the highest FW (211 mg), CIF (95%), ECF (90%), RF (100%) and PPC (22 plantlets); along with friable callus texture. Low concentration of 2, 4-D (0 to 0.5 mg/L) in the presence or absence of Kin promotes root growth instead of callus, while high concentrations (above 3.0 mg/L) retard the callus formation. The embryogenic calli from this optimized PGRs combination were successfully formed shoots in MS medium supplemented with 2 mg/L BAP and 1 mg/L NAA, followed by rooting in PGRs-free MS medium. This finding provides an efficient protocol for callogenesis and somatic embryogenesis of MARDI Siraj 297, since this is the first published report regarding somatic embryogenesis induction of this cultivar.

    Citation: Noorhazira Sidek, Rosimah Nulit, Yap Chee Kong, Christina Yong Seok Yien, Rogayah Sekeli, Mariam F. EL-Barghathi. Callogenesis and somatic embryogenesis of Oryza sativa L. (cv. MARDI Siraj 297) under the influence of 2, 4-dichlorophenoxyacetic acid and kinetin[J]. AIMS Agriculture and Food, 2022, 7(3): 536-552. doi: 10.3934/agrfood.2022033

    Related Papers:

  • Callogenesis and embryogenesis are integral parts of many tissue culture procedures for genetic manipulation in rice. However, the efficiency of both processes is largely dependent on the media constituent especially the plant growth regulators (PGRs) due to the genotype-dependent nature of in vitro culture protocols. Therefore, this study investigates the effect of two PGRs; 2, 4-dichlorophenoxyacetic acid (2, 4-D) and kinetin (Kin) on callus growth and somatic embryogenesis of an important Malaysian rice cultivar (Oryza sativa L. cv. MARDI Siraj 297). Mature rice seeds explants were inoculated in Murashige & Skoog (MS) medium supplemented with different combinations of 2, 4-D (0 to 3.5 mg/L) and Kin (0 to 0.5 mg/L) to induce callogenesis. Parameters for callus growth such as fresh weight (FW), callus induction frequency (CIF), embryogenic callus frequency (ECF), regeneration frequency (RF), number of plantlets per callus (PPC), callus texture and callus color were observed after 35 days of inoculation. The results show that the maximum callus growth was achieved in MS medium supplemented with combination of 2.0 mg/L 2, 4-D and 0.2 mg/L Kin, represented by the highest FW (211 mg), CIF (95%), ECF (90%), RF (100%) and PPC (22 plantlets); along with friable callus texture. Low concentration of 2, 4-D (0 to 0.5 mg/L) in the presence or absence of Kin promotes root growth instead of callus, while high concentrations (above 3.0 mg/L) retard the callus formation. The embryogenic calli from this optimized PGRs combination were successfully formed shoots in MS medium supplemented with 2 mg/L BAP and 1 mg/L NAA, followed by rooting in PGRs-free MS medium. This finding provides an efficient protocol for callogenesis and somatic embryogenesis of MARDI Siraj 297, since this is the first published report regarding somatic embryogenesis induction of this cultivar.



    加载中


    [1] A Aiman (2020) Enough rice to last up to 6 months, says Khazanah researcher. FMT News. Available from: https://www.freemalaysiatoday.com/category/nation/2020/04/03/enough-rice-to-last-up-to-6-months-says-khazanah-researcher/
    [2] Bernama (2021) Malaysia to raise rice buffer stock to 290,000 metric tonnes by 2023. Malay Mail. Available from: https://www.malaymail.com/news/malaysia/2021/09/04/malaysia-to-raise-rice-buffer-stock-to-290000-metric-tonnes-by-2023/2002982
    [3] Department of Statistics Malaysia (2021) Selected agricultural indicators, Malaysia, 2021. Available from: https://www.dosm.gov.my/v1/index.php?r=column/pdfPrev&id=TDV1YU4yc1Z0dUVyZ0xPV0ptRlhWQT09
    [4] Che Omar S, Shaharudin A, Tumin SA (2019) The status of the paddy and rice industry in Malaysia. Khazanah Research Institute. Available from: http://www.krinstitute.org/assets/contentMS/img/template/editor/20190409_RiceReport_Full Report_Final.pdf
    [5] Ministry of Agriculture and Food Industries (2021) MAFI mengalu-alukan pembangunan benih padi baharu IS21 oleh Agensi Nuklear Malaysia, MOSTI. Available from: https://www.mafi.gov.my/documents/20182/269754/SIARAN+MEDIA+MAFI+VARIETI+BENIH+PADI+%2820+NOVEMBER+2021%29-min.pdf/48681d83-e1c5-425f-9901-6dae0a537b7d
    [6] Malaysian Agriculture Research and Development Institute (2021) Varieti padi MARDI Seri Waja dan Kembangsari serta Teknologi kadar boleh ubah bagi tanaman padi bantu petani tingkat hasil padi negara (Press release). Available from: https://www.mafi.gov.my/documents/20182/269754/Siaran+Media+-+Varieti+Padi+MARDI+MR+315+dan+MRQ+104+serta+%E2%80%98Teknologi+Kadar+Boleh+Ubah+Bagi+Tanaman+Padi%E2%80%99+Bantu+Petani+Tingkat+Hasil+Padi+Negara.pdf/5ac21320-cfde-455c-ad8d-ad7a3e438e9e
    [7] Ratjens S, Mortensen S, Kumpf A, et al. (2018) Embryogenic callus as target for efficient transformation of Cyclamen persicum enabling gene function studies. Front Plant Sci 9: 1035. https://doi.org/10.3389/fpls.2018.01035 doi: 10.3389/fpls.2018.01035
    [8] Nguyen THN, Winkelmann T, Debener T (2020) Genetic analysis of callus formation in a diversity panel of 96 rose genotypes. Plant Cell Tiss Organ Cult 142: 505-517. https://doi.org/10.1007/s11240-020-01875-6 doi: 10.1007/s11240-020-01875-6
    [9] Li CJ, Li XJ, Lin XQ, et al. (2021) Genotypic variation in the response to embryogenic callus induction and regeneration in Saccharum spontaneum. Plant Genet Resour 19: 153-158. https://doi.org/10.1017/S1479262121000198 doi: 10.1017/S1479262121000198
    [10] Slimani C, El Goumi Y, Rais C, et al. (2022) Optimization of callogenesis/caulogenesis induction protocol in saffron plant (Crocus sativus L.) using response surface methodology. Biointerface Res Appl Chem 12: 4731-4746. https://doi.org/10.33263/BRIAC124.47314746 doi: 10.33263/BRIAC124.47314746
    [11] Hameg R, Arteta TA, Landin M, et al. (2020) Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Front Plant Sci 11: 554905. https://doi.org/10.3389/fpls.2020.554905 doi: 10.3389/fpls.2020.554905
    [12] Hesami M, Jones AMP (2021) Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl Microbiol Biotechnol 105: 5201-5212. https://doi.org/10.1007/s00253-021-11375-y doi: 10.1007/s00253-021-11375-y
    [13] Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x doi: 10.1111/j.1399-3054.1962.tb08052.x
    [14] Niedz RP, Evens TJ (2007) Regulating plant tissue growth by mineral nutrition. In Vitro Cell Dev Biol-Plant 43: 370-381. https://doi.org/10.1007/s11627-007-9062-5 doi: 10.1007/s11627-007-9062-5
    [15] Gao F, Peng CX, Wang H, et al. (2021). Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. J For Res 32: 483-491. https://doi.org/10.1007/s11676-020-01147-1 doi: 10.1007/s11676-020-01147-1
    [16] Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118-130.
    [17] Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: Mechanisms of induction and repression. Plant Cell 25: 3159-3173. https://doi.org/10.1105/tpc.113.116053 doi: 10.1105/tpc.113.116053
    [18] Garcia C, de Almeida AF, Costa M, et al. (2019) Abnormalities in somatic embryogenesis caused by 2, 4-D: An overview. Plant Cell Tiss Organ Cult 137: 193-212. https://doi.org/10.1007/s11240-019-01569-8 doi: 10.1007/s11240-019-01569-8
    [19] Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, et al. (2019) Signaling overview of plant somatic embryogenesis. Front Plant Sci 10: 77. https://doi.org/10.3389/fpls.2019.00077 doi: 10.3389/fpls.2019.00077
    [20] Barman HN, Hoque ME, Roy RK, et al. (2016) Mature embryo-based in vitro regeneration of indica rice cultivars for high frequency plantlets production. Bangladesh Rice J 20: 81-87. https://doi.org/10.3329/brj.v20i2.34132 doi: 10.3329/brj.v20i2.34132
    [21] Mostafiz SB, Wagiran A (2018) Efficient callus induction and regeneration in selected indica rice. Agronomy 8: 77. https://doi.org/10.3390/agronomy8050077 doi: 10.3390/agronomy8050077
    [22] Singh S, Kumar A, Rana V, et al. (2018) In Vitro callus induction and plant regeneration in basmati rice (Oryza sativa L.) varieties. J Pharmacogn Phytochem 7: 65-69.
    [23] Trunjaruen A, Raso S, Maneerattanarungroj P, et al. (2020) Effects of cultivation media on in vitro callus induction and regeneration capabilities of pakaumpuel rice (Oryza sativa L.), Thai rice landrace. Walailak J Sci Tech 17: 37-46. https://doi.org/10.48048/wjst.2020.5349 doi: 10.48048/wjst.2020.5349
    [24] Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Organ Cult 74: 201-228. https://doi.org/10.1023/A:1024033216561 doi: 10.1023/A:1024033216561
    [25] Zavattieri MA, Frederico AM, Lima M, et al. (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechn 13: 1-9. https://doi.org/10.2225/vol13-issue1-fulltext-4 doi: 10.2225/vol13-issue1-fulltext-4
    [26] Pěnčík A, Turečková V, PaulišicPaulišic, et al. (2015) Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tiss Organ Cult 122: 89-100. https://doi.org/10.1007/s11240-015-0752-0 doi: 10.1007/s11240-015-0752-0
    [27] Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. An overview. In: Somatic embryogenesis: Fundamental aspects and applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_1
    [28] Rizwan HM, Irshad M, He BZ, et al. (2020) Role of reduced nitrogen for induction of embryogenic callus induction and regeneration of plantlets in Abelmoschus esculentus L. S Afr J Bot 130: 300-307. https://doi.org/10.1016/j.sajb.2020.01.016 doi: 10.1016/j.sajb.2020.01.016
    [29] Pasternak TP, Prinsen E, Ayaydin F, et al. (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129: 1807-1819. https://doi.org/10.1104/pp.000810 doi: 10.1104/pp.000810
    [30] Vondrakova Z, Eliasova K, Fischerova L, et al. (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6: 587-596. https://doi.org/10.2478/s11535-011-0035-7 doi: 10.2478/s11535-011-0035-7
    [31] Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Somatic embryogenesis: Fundamental aspects and applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_10
    [32] Michalczuk L, Ribnicky DM, Cooke TJ, et al. (1992) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100: 1346-1353. https://doi.org/10.1104/pp.100.3.1346 doi: 10.1104/pp.100.3.1346
    [33] Mostafiz S (2019) Analysis of embryogenic callus induction and regeneration of indica rice variety of Malaysia. PhD Thesis, Universiti Teknologi Malaysia. Available from: http://eprints.utm.my/id/eprint/81396
    [34] Kalhori N, Nulit R, Go R, et al. (2017) Selection, characterizations and somatic embryogenesis of Malaysian salt-tolerant rice (Oryza sativa cv. MR219) through callogenesis. Int J Agric Biol 19: 157-163. https://doi.org/10.17957/IJAB/15.0258 doi: 10.17957/IJAB/15.0258
    [35] Dalila ZD, Jaafar H, Manaf AA (2013) Effects of 2, 4-D and kinetin on callus induction of Barringtonia racemosa leaf and endosperm explants in different types of basal media. Asian J Plant Sci 12: 21-27. https://doi.org/10.3923/ajps.2013.21.27 doi: 10.3923/ajps.2013.21.27
    [36] Karimian R, Lahouti M, Davarpanah SJ (2014) Effects of different concentrations of 2, 4-D and kinetin on callogenesis of Taxus revifolia Nutt. J Appl Biotechnol Rep 1: 167-170.
    [37] Konar S, Karmakar J, Ray A, et al. (2018) Regeneration of plantlets through somatic embryogenesis from root derived calli of Hibiscus sabdariffa L. (roselle) and assessment of genetic stability by flow cytometry and ISSR analysis. PLoS One 13: e0202324. https://doi.org/10.1371/journal.pone.0202324 doi: 10.1371/journal.pone.0202324
    [38] Shekar S, Sankepally R, Singh B (2016) Optimization of regeneration using differential growth regulators in indica rice cultivars. 3 Biotech 6: 19. https://doi.org/10.1007/s13205-015-0343-0 doi: 10.1007/s13205-015-0343-0
    [39] Verma D, Joshi R, Shukla A, et al. (2011) Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.). Indian J Exp Biol 49: 958-963.
    [40] Le Bris M (2017). Hormones in growth and development. In: Reference module in life sciences. Elsevier. 364-369. https://doi.org/10.1016/B978-0-12-809633-8.05058-5
    [41] Sagare AP, Lee YL, Lin TC, et al. (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)-A medicinal plant. Plant Sci 160: 139-147. https://doi.org/10.1016/S0168-9452(00)00377-0 doi: 10.1016/S0168-9452(00)00377-0
    [42] Naranjo EJ, Betin OF, Trujillo AIU, et al. (2016) Effect of genotype on the in vitro regeneration of Stevia rebaudiana via somatic embryogenesis. Acta Biol Colomb 21: 87-98. https://doi.org/10.15446/abc.v21n1.47382 doi: 10.15446/abc.v21n1.47382
    [43] Mangena P (2018) The role of plant genotype, culture medium and Agrobacterium on soybean plantlets regeneration during genetic transformation. In: Transgenic crops: Emerging trends and future perspectives. https://doi.org/10.5772/intechopen.78773
    [44] Sabbadini S, Capriotti L, Molesini B, et al. (2019) Comparison of regeneration capacity and Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of Vitis spp. via organogenesis. Sci Rep 9: 582. https://doi.org/10.1038/s41598-018-37335-7 doi: 10.1038/s41598-018-37335-7
    [45] Konôpková J, Košútová D, Ferus P (2020) Genotype-specific requirements for in vitro culture initiation and multiplication of Magnolia taxa. Folia Oecologica 47: 34-44. https://doi.org/10.2478/foecol-2020-0005 doi: 10.2478/foecol-2020-0005
    [46] Lin YJ, Zhang QF (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23: 540-547. https://doi.org/10.1007/s00299-004-0843-6 doi: 10.1007/s00299-004-0843-6
    [47] Rahim H, Amin EEEA, Mat MZ (2021) Penilaian tahap penggunaan teknologi padi MARDI di Muda Agricultural Development Authority (MADA). Available from: http://ebuletin.mardi.gov.my/buletin/23/Hairazi.pdf
    [48] Bernama (2021) MARDI henti jual benih padi MR 219. Berita Harian. Available from: https://www.bharian.com.my/berita/nasional/2021/10/876638/mardi-henti-jual-benih-padi-mr-219
    [49] Karthikeyan A, Pandian STK, Ramesh M (2009) High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.). Physiol Mol Biol Plants 15: 371-375. https://doi.org/10.1007/s12298-009-0042-6 doi: 10.1007/s12298-009-0042-6
    [50] Sah SK, Kaur A, Sandhu JS (2014) High frequency embryogenic callus induction and whole plant regeneration in japonica rice cv. Kitaake. J Rice Res 2: 125. https://doi.org/0.4172/jrr.1000125
    [51] Abiri R, Maziah M, Shaharuddin NA, et al. (2017) Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. Int J Environ Sci Technol 14: 1091-1108. https://doi.org/10.1007/s13762-016-1221-y doi: 10.1007/s13762-016-1221-y
    [52] Sahoo KK, Tripathi AK, Pareek A, et al. (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7: 49. https://doi.org/10.1186/1746-4811-7-49 doi: 10.1186/1746-4811-7-49
    [53] Carsono N, Yoshida T (2006) Identification of callus induction potential of 15 Indonesian rice genotypes. Plant Prod Sci 9: 65-70. https://doi.org/10.1626/pps.9.65 doi: 10.1626/pps.9.65
    [54] Bhatia S (2015) Plant tissue culture. In: Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press. https://doi.org/10.1016/C2014-0-02123-5
    [55] Mastuti R, Munawarti A, Firdiana ER (2017) The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L.-A medicinal plant. AIP Conf Proc 1908: 040007. https://doi.org/10.1063/1.5012721 doi: 10.1063/1.5012721
    [56] Vennapusa AR, Vemanna RS, Reddy BHR, et al. (2015) An efficient callus induction and regeneration protocol for a drought tolerant rice indica genotype AC39020. J Plant Sci 3: 248-254. https://doi.org/10.11648/j.jps.20150305.11 doi: 10.11648/j.jps.20150305.11
    [57] Ramakrishna D, Shasthree T (2016) High efficient somatic embryogenesis development from leaf cultures of Citrullus colocynthis (L.) Schrad for generating true type clones. Physiol Mol Biol Plants 22: 279-285. https://doi.org/10.1007/s12298-016-0357-z doi: 10.1007/s12298-016-0357-z
    [58] Krishnan SRS, Siril EA (2017) Auxin and nutritional stress coupled somatic embryogenesis in Oldenlandia umbellata L. Physiol Mol Biol Plants 23: 471-475. https://doi.org/10.1007/s12298-017-0425-z doi: 10.1007/s12298-017-0425-z
    [59] Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biologia Plantarum 45: 495-502. https://doi.org/10.1023/A:1022323221513 doi: 10.1023/A:1022323221513
    [60] Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation 43: 27-47. https://doi.org/10.1023/B:GROW.0000038275.29262.fb doi: 10.1023/B:GROW.0000038275.29262.fb
    [61] Mohd Din ARJ, Ahmad FI, Wagiran A, et al. (2016) Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J Biol Sci 23: S69-S77. https://doi.org/10.1016/j.sjbs.2015.10.022 doi: 10.1016/j.sjbs.2015.10.022
    [62] Rizwan HM, Irshad M, He BZ, et al. (2018) Silver nitrate (AgNO3) boosted high-frequency multiple shoot regeneration from cotyledonary node explants of okra (Abelmoschus esculentus L.). Appl Ecol Env Res 16: 3421-3435. http://doi.org/10.15666/aeer/1603_34213435 doi: 10.15666/aeer/1603_34213435
    [63] Rizwan HM, Yang Q, Yousef AF, et al. (2021) Establishment of a novel and efficient Agrobacterium-mediated in planta transformation system for passion fruit (Passiflora edulis). Plants 10: 2549. https://doi.org/10.3390/plants10112459 doi: 10.3390/plants10112459
    [64] Poeaim A, Poeaim S, Poraha R, et al. (2016) Optimization for callus induction and plant regeneration from mature seeds of Thai rice variety: Nam Roo (Oryza sativa L.). Bioeng Biosci 4: 95-99. https://doi.org/10.13189/bb.2016.040504 doi: 10.13189/bb.2016.040504
    [65] Wani SH, Sanghera GS, Gosal SS (2011) An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding indica rice (Oryza sativa L.) variety PAU 201. New Biotechnol 28: 418-422. https://doi.org/10.1016/j.nbt.2011.02.006 doi: 10.1016/j.nbt.2011.02.006
    [66] Colomba EL, Grunberg K, Griffa S, et al. (2006) The effect of genotype and culture medium on somatic embryogenesis and plant regeneration from mature embryos of fourteen apomictic cultivars of buffel grass (Cenchrus ciliaris L.). Grass Forage Sci 61: 2-8. https://doi.org/10.1111/j.1365-2494.2006.00499.x doi: 10.1111/j.1365-2494.2006.00499.x
    [67] Hofmann N (2014) Getting to the root of regeneration: Adventitious rooting and callus formation. Plant Cell 26: 845. https://doi.org/10.1105/tpc.114.125096 doi: 10.1105/tpc.114.125096
    [68] Yu J, Liu W, Liu J, et al. (2017) Auxin control of root organogenesis from callus in tissue culture. Front Plant Sci 8: 1385. https://doi.org/10.3389/fpls.2017.01385 doi: 10.3389/fpls.2017.01385
    [69] Hiei Y, Ohta S, Komari T, et al. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271-282. https://doi.org/10.1046/j.1365-313x.1994.6020271.x doi: 10.1046/j.1365-313x.1994.6020271.x
    [70] Al-Forkan M, Rahim MA, Chowdhury T, et al. (2005). Development of highly in vitro callogenesis and regeneration system for some salt tolerant rice (Oryza sativa L.) cultivars of Bangladesh. Biotechnology 4: 230-234. https://doi.org/10.3923/biotech.2005.230.234 doi: 10.3923/biotech.2005.230.234
    [71] Sahoo KK, Tripathi AK, Pareek A, et al. (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7: 49. https://doi.org/10.1186/1746-4811-7-49 doi: 10.1186/1746-4811-7-49
    [72] Jimenez VM, Thomas C (2005) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Somatic embryogenesis. Berlin, Heidelberg: Springer, 2: 103-118. https://doi.org/10.1007/7089_034
    [73] Jimenez VM, Bangerth F (2001) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111: 389-395. https://doi.org/10.1034/j.1399-3054.2001.1110317.x doi: 10.1034/j.1399-3054.2001.1110317.x
    [74] Mariani TS, Miyake H, Takeoka Y (1998) Changes in surface structure during direct somatic embryogenesis in rice scutellum observed by scanning electron microscopy. Plant Prod Sci 1: 223-231. https://doi.org/10.1626/pps.1.223 doi: 10.1626/pps.1.223
    [75] Poraha R, Poeaim A, Pongjaroenkit S (2016) Callus induction and plant regeneration on optimization of the culture conditions in Jow Haw rice (Oryza sativa L.). J Agric Technol 12: 241-248.
    [76] Remme RN, Snigdha SS, Islam MM, et al. (2017). In vitro morphogenesis in two indigenous rice (Oryza sativa L.) cultivars through dehusked seed culture. Khulna Univ Stud 14: 15-26.
    [77] Roly ZY, Islam MM, Shaekh MPE, et al. (2014) In vitro callus induction and regeneration potentiality of aromatic rice (Oryza sativa L.) cultivars in differential growth regulators. Int J Appl Sci Biotechnol 2: 160-167. https://doi.org/10.3126/ijasbt.v2i2.10313 doi: 10.3126/ijasbt.v2i2.10313
    [78] Meneses A, Flores D, Muñoz M, et al. (2005) Effect of 2, 4-D, hydric stress and light on indica rice (Oryza sativa) somatic embryogenesis. Rev Biol Trop 53: 361-368.
    [79] Mostafiz SB, Wagiran A, Johan NS, et al. (2018) The effects of temperature on callus induction and regeneration in selected Malaysian rice cultivar indica. Sains Malaysiana 47: 2647-2655. https://doi.org/10.17576/jsm-2018-4711-07 doi: 10.17576/jsm-2018-4711-07
    [80] Zaidi MA, Narayanan M, Sardana R, et al. (2006) Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agron Res 4: 563-575.
    [81] Pérez-Bernal M, Rigo MD, Díaz CAH, et al. (2009) Callus induction and plant regeneration of two Cuban rice cultivars using different seed explants and amino acid supplements. Ann Trop Res 15: 1-15. https://doi.org/10.32945/atr3121.2009 doi: 10.32945/atr3121.2009
    [82] Vennapusa AR, Vemanna RS, Reddy BHR, et al. (2015) An efficient callus induction and regeneration protocol for a drought tolerant rice indica genotype AC39020. J Plant Sci 3: 248-254. https://doi.org/10.11648/j.jps.20150305.11 doi: 10.11648/j.jps.20150305.11
    [83] Barman HN, Hoque ME, Roy RK, et al. (2017) Mature embryo-based in vitro regeneration of indica rice cultivars for high frequency plantlets production. Bangladesh Rice J 20: 81-87. https://doi.org/10.3329/brj.v20i2.34132 doi: 10.3329/brj.v20i2.34132
    [84] Dhamangaonkar SN, Shukla L (2013) Identification of callus induction potential of nine different genotypes of indica rice. J Environ Nanotechnol 2: 45-52. https://doi.org/10.13074/jent.2013.06.132013 doi: 10.13074/jent.2013.06.132013
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2371) PDF downloads(190) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog