\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 0.0068, j=6 | 0.0032, j=6 | 0.0016, j=6 |
m=2 | 0.0071, j=6 | 0.0033, j=6 | 0.0016, j=6 |
m=3 | 0.0073, j=6 | 0.0034, j=6 | 0.0017, j=6 |
Biodiversity loss is a pressing challenge. This is particularly so in regions where the pressure on ecosystems is high such as in the Sahel region. This pressure is due, inter alia, to different land uses such as pastoralism. In this context, the present systematic review analyses the state of research on the nexus between pastoralism and biodiversity in West Africa. In particular, it explores the relationships between pastoralism (cf. agro-pastoralism, sylvo-pastoralism, agro-sylvo-pastoralism), on the one hand, and plant diversity, animal diversity, and ecosystem diversity, on the other hand. The paper also analyses the bibliometrics of the research field. A search performed in March 2021 on the Web of Science yielded 205 documents and 73 of them were included in the systematic review. The bibliometric analysis suggests an increasing interest in the research field, especially in Burkina Faso and Benin, but also the weakness of the domestic research system as a large share of the selected documents is authored by researchers based outside West Africa. In general, the scholarly literature shows a negative impact of pastoralism on plant diversity (cf. richness, abundance, composition) and animal diversity (cf. wild herbivorous mammals, predators, birds, insects) in West Africa. However, the literature analysis suggests that the effects of pastoralism are rather mixed. They are context-specific and depend on many factors such as grazing intensity and livestock species. The effects on plant diversity differ between woody (trees and shrubs) and herbaceous species. There is a general trend towards the erosion of indigenous livestock genetic diversity due to uncontrolled mating and cross-breeding. The impacts of pastoralism on ecosystem diversity are mainly due to changes in land use and habitat fragmentation. Further multi-country, comparative studies are needed to better qualify the interactions, complementarities and possible conflicts between the different pastoralism-related land uses and biodiversity conservation in West Africa.
Citation: Hamid El Bilali, Lawali Dambo, Jacques Nanema, Imaël Henri Nestor Bassole, Generosa Calabrese. Biodiversity-pastoralism nexus in West Africa[J]. AIMS Agriculture and Food, 2022, 7(1): 73-95. doi: 10.3934/agrfood.2022005
[1] | Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729 |
[2] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[3] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[4] | Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120 |
[5] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[6] | Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang . Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences and Engineering, 2017, 14(2): 407-420. doi: 10.3934/mbe.2017025 |
[7] | Shouying Huang, Jifa Jiang . Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2016, 13(4): 723-739. doi: 10.3934/mbe.2016016 |
[8] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[9] | Edward J. Allen . Derivation and computation of discrete-delayand continuous-delay SDEs in mathematical biology. Mathematical Biosciences and Engineering, 2014, 11(3): 403-425. doi: 10.3934/mbe.2014.11.403 |
[10] | Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239 |
Biodiversity loss is a pressing challenge. This is particularly so in regions where the pressure on ecosystems is high such as in the Sahel region. This pressure is due, inter alia, to different land uses such as pastoralism. In this context, the present systematic review analyses the state of research on the nexus between pastoralism and biodiversity in West Africa. In particular, it explores the relationships between pastoralism (cf. agro-pastoralism, sylvo-pastoralism, agro-sylvo-pastoralism), on the one hand, and plant diversity, animal diversity, and ecosystem diversity, on the other hand. The paper also analyses the bibliometrics of the research field. A search performed in March 2021 on the Web of Science yielded 205 documents and 73 of them were included in the systematic review. The bibliometric analysis suggests an increasing interest in the research field, especially in Burkina Faso and Benin, but also the weakness of the domestic research system as a large share of the selected documents is authored by researchers based outside West Africa. In general, the scholarly literature shows a negative impact of pastoralism on plant diversity (cf. richness, abundance, composition) and animal diversity (cf. wild herbivorous mammals, predators, birds, insects) in West Africa. However, the literature analysis suggests that the effects of pastoralism are rather mixed. They are context-specific and depend on many factors such as grazing intensity and livestock species. The effects on plant diversity differ between woody (trees and shrubs) and herbaceous species. There is a general trend towards the erosion of indigenous livestock genetic diversity due to uncontrolled mating and cross-breeding. The impacts of pastoralism on ecosystem diversity are mainly due to changes in land use and habitat fragmentation. Further multi-country, comparative studies are needed to better qualify the interactions, complementarities and possible conflicts between the different pastoralism-related land uses and biodiversity conservation in West Africa.
Mathematical models have been used to understand and control the dynamics of the disease (influenza, covid 19, HIV etc.). After first SIR type mathematical model constructed by Karmic and MC-Kendrick, for different kind of models (SIR, SIS, SEIR, SI etc.) have been proposed and studied by many authors (see, e.g., [1,2,3,4]). One of the important virus that whole world fighting with is the Human Immunodeficiency Virus (HIV) that is a lent virus caused HIV infection [5]. HIV virus can be transmitted in many ways like sexual intercourse, direct contact with contaminated blood products, needle, or during birth or through breastfeeding (mother to child). Since there is no recovery after HIV, SI type models are more appropriate to comprehend the dynamics of the HIV. In [3], J.J.Wang et al. have been studied mother to child transmission of HIV. The system that obtained with the constructed model in [3] extended and the numerical solutions of the system of linear parabolic equations(PEs) is studied in [6]. In the paper [7], Ashyralyev, Hincal and Kaymakamzade investigated the boundedness of solution of the initial boundary value problem for the system of PEs of observing epidemic models with general nonlinear incidence rate. This model constructed in [8] and it is well-known that (see, [9]) such and many other initial boundary value problems for system of PEs can be reduced to the initial-value problem for system of ordinary differential equations
{dv1(t)dt+μv1(t)+Av1(t)=−F(t,v1(t),v2(t)),dv2(t)dt+(α+μ)v2(t)+Av2(t)=F(t,v1(t),v2(t))−G(t,v2(t)),dv3(t)dt+μv3(t)+Av3(t)=G(t,v2(t)),0<t<T,vk(0)=ψk,1≤k≤3 | (1.1) |
in a Hilbert.space.H.with a self-adjoint.positive.definite.operator A≥δI,δ>0.
Existence.and.uniqueness.theorems.of the.bounded.solution of linear and nonlinear systems was.established in the following theorem ([7], [9]).
Theorem 1. Assume.the following.hypotheses hold
1. ψn,1≤n≤3 belongs to D(A) and
‖ψn‖D(A)=M1. | (1.2) |
2. The.function.F:[0,T]×H×H⟶H be.continuous.function, that.is
‖F(t,w(t),z(t))‖H≤M2 | (1.3) |
in [0,T]×H×H and Lipschitz condition holds uniformly with respect to t
‖F(t,u,v)−f(t,z,w)‖H≤L1[‖u−z‖H+‖v−w‖H]. | (1.4) |
3. The.function.G:[0,T]×H⟶H be.continuous function, that is
‖G(t,v(t))‖H≤M3 | (1.5) |
in [0,T]×H and Lipschitz condition holds uniformly with respect to t
‖G(t,u)−G(t,z)‖H≤L2‖u−z‖H. | (1.6) |
Then, there.exists.a unique bounded solution v(t)=(v1(t),v2(t),v3(t))⊥ of problem (1.1).
In applications, theorems on the bounded solutions of several systems of nonlinear. PEs were given. Moreover the first order of accuracy DS
{v1k−v1k−1τ+μv1k+Av1k=−F(tk,v1k,v2k),v2k−v2k−1τ+(α+μ)v2k+Av2k=Ff(tk,v1k,v2k)−G(tk,v2k),v3k−v3k−1τ+μv3k+Av3k=G(tk,v2k),tk=kτ,1⩽k⩽N,Nτ=T,vn0=ψn,1≤n≤3 | (1.7) |
for the approximate solution of problem (1.1) was studied. The existence and uniqueness of a bounded solution of DS (1.7) uniformly with.respect.to time.step.τ was.established in the following theorem.
Theorem 2. If the assumptions (1.2)-(1.6) and μ+δ>2(L1+L2) hold, then there exists a unique solution vτ={vk}Nk=0 of DS (1.7) which is bounded uniformly with respect to τ.
Bounded solutions of several systems of nonlinear PEs and DSs for the approximate solution of these systems were constituted. Numerical results were provided.
In general, .it is not possible to get exact solution of nonlinear problems. Therefore, we are interested in constructing a uniformly bounded high order of accuracy DSs with respect to time step size for the approximate solutions initial value problem (1.1).
In this work, for the approximate solution.of problem (1.1), the second.order of accuracy.Crank-Nicholson DS is investigated. The existence and uniqueness theorems of bounded solution of Crank-Nicholson DS uniformly with respect to time step τ is proved. In practice, theoretical results are presented on four nonlinear systems of parabolic equations to explain how it works on one and multidimensional problems. Numerical results are provided.
In this section, it will be considered the second order of accuracy Crank-Nicholson DS
{v1k−v1k−1τ+μv1k+v1k−12+Av1k+v1k−12=−F(tk−τ2,v1k+v1k−12,v2k+v2k−12),v2k−v2k−1τ+(α+μ)v2k+v2k−12+Av2k+v2k−12=F(tk−τ2,v1k+v1k−12,v2k+v2k−12)−G(tk−τ2,v2k+v2k−12),v3k−v3k−1τ+μv2k+v2k−12+Av2k+v2k−12=G(tk−τ2,v2k+v2k−12),tk=kτ,1⩽k⩽N,Nτ=T,vn0=ψn,1≤n≤3 | (2.1) |
for the approximate solution.of the initial.value.problem (1.1).
It is interested to studied the existence and uniqueness of a bounded solution of Crank- Nicholson DS (2.1) uniformly with respect to time step τ under the assumptions of Theorem 2.
Unfortunately, we are not able to establish the Theorem 3 for the solution of Crank-Nicholson DS (2.1) under the assumption μ+δ>2(L1+L2) without restriction to T. Nevertheless, it could be established the such result under assumption 1+1/2τ(μ+δ)>2(L1+L2)T. It is more strong than μ+δ>2(L1+L2) that means it is under assumption with restriction for T. Thus such result we can proved under assumption with restriction for T. It is based on reducing this DS to an equivalent system of nonlinear equations and is used as an operator method to prove the main theorem on the existence and uniqueness of a bounded solution of DS (2.1) uniformly with respect to τ.
An equivalent system of nonlinear equations for the DS (2.1) is
{v1k=Bkψ1−∑km=1Bk−mRF(tm−τ2,v1m+v1m−12,v2m+v2m−12)τ,v2k=Bk1ψ2+∑km=1Bk−m1R1[F(tm−τ2,v1m+v1m−12,v2m+v2m−12)−G(tm−τ2v2m+v2m−12)]τ,v3k=Bkψ3+∑km=1Bk−mRG(tm−τ2v2m+v2m−12)τ,1≤k≤N | (2.2) |
in Cτ(H)×Cτ(H)×Cτ(H) and the using of successive approximations. Here.and.in.future B=(I−τ(μI+A)2)R,R=(I+τ(μI+A)2)−1,B1=(I−τ((μ+α)I+A)2)R1,R1=(I+τ((μ+α)I+A)2)−1 and Cτ(H)=C([0,T]τ,H) stands for the Banach space of the mesh functions vτ={vl}Nl=0 defined on [0,T]τ with values in H,equipped with the norm
∥vτ∥Cτ(H)=max |
For the solution of DS (2.1), the recursive formula is
\begin{equation} \left\{ \begin{array}{l} \frac{jv_{k}^{1}-jv_{k-1}^{1}}{\tau }+\mu \frac{ jv_{k}^{^{_{1}}}+jv_{k-1}^{^{_{1}}}}{2}+A\frac{ jv_{k}^{^{_{1}}}+jv_{k-1}^{^{_{1}}}}{2} \\ \\ = -F\left( t_{k}-\frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{1}}}+\left( j-1\right) v_{k-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) , \\ \\ \frac{jv_{k}^{2}-jv_{k-1}^{2}}{\tau }+\left( \alpha +\mu \right) \frac{ jv_{k}^{^{_{2}}}+jv_{k-1}^{^{_{2}}}}{2}+A\frac{jv_{k}^{2}+jv_{k-1}^{^{_{2}}} }{2} \\ \\ = F\left( t_{k}-\frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{1}}}+\left( j-1\right) v_{k-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) -G\left( t_{k}-\frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) , \\ \\ \frac{jv_{k}^{3}-jv_{k-1}^{3}}{\tau }+\mu \frac{ jv_{k}^{^{_{2}}}+jv_{k-1}^{^{_{2}}}}{2}+A\frac{jv_{k}^{2}+jv_{k-1}^{^{_{2}}} }{2} = G\left( t_{k}-\frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) , \\ \\ t_{k} = k\tau ,1\leqslant k\leqslant N,N\tau = T, \\ \\ jv_{0}^{n} = \psi ^{n},1 \leq n \leq 3,j = 1,2,..., \\ \\ 0v_{k}^{n} = B^{k}\psi ^{n},n = 1,3,0v_{k}^{2} = B^{k}\psi ^{2},0\leq k\leq N. \end{array} \right. \end{equation} | (2.3) |
From (2.2) and (2.3) it follows
\begin{equation} \left\{ \begin{array}{l} jv_{k}^{1} = B^{k}\psi ^{1}-\sum_{m=1}^{k}B^{k-m}RF\left( t_{k}- \frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{1}}}+\left( j-1\right) v_{k-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) \tau , \\ \\ jv_{k}^{2} = B_{1}^{k}\psi ^{2}+\sum_{m=1}^{k}B_{1}^{k-m}R_{1}F \left( t_{k}-\frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{1}}}+\left( j-1\right) v_{k-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) \tau \\ \\ -\sum_{m=1}^{k}B_{1}^{k-m}R_{1}G\left( t_{k}-\frac{\tau }{2},\frac{ \left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2} \right) \tau , \\ jv_{k}^{3} = B^{k}\psi ^{3}+\sum_{m=1}^{k}B^{k-m}RG\left( t_{k}- \frac{\tau }{2},\frac{\left( j-1\right) v_{k}^{^{_{2}}}+\left( j-1\right) v_{k-1}^{^{_{2}}}}{2}\right) ,\left( j-1\right) v_{k}^{^{_{2}}})\tau , \\ \\ 1\leq k\leq N,j = 1,2,..., \\ \\ 0v_{k}^{m} = B^{k}\psi ^{m},m = 1,3,0v_{k}^{2} = B^{k}\psi ^{2},0\leq k\leq N. \end{array} \right. \end{equation} | (2.4) |
Theorem 3. Let the assumptions (1.2)-(1.6) be satisfied and 2\left(L_{1}+L_{2}\right) T < 1+\frac{\tau \left(\mu +\delta \right) }{2} . Then, there exists a unique solution v^{\tau } = \left\{ v_{k}\right\} _{k = 0}^{N} of DS (2.1) that is bounded in C_{\tau }\left(H\right) \times C_{\tau }\left(H\right) \times C_{\tau }\left(H\right) of uniformly wrt. \tau .
Proof. Since v_{k}^{3} does not appear in equations for \frac{ v_{k}^{n}-v_{k-1}^{n}}{\tau }, n = 1, 2 , it is sufficient to analyze the behaviors of solutions v_{k}^{^{_{1}}} and v_{k}^{^{_{2}}} of (2.1). According to the method of recursive approximation (2.4), we get
\begin{equation} v_{k}^{n} = 0v_{k}^{n}+\sum\limits_{i = 0}^{\infty }\left[ (i+1)v_{k}^{n}-iv_{k}^{n} \right] ,n = 1,2, \end{equation} | (2.5) |
where
\begin{equation} 0v_{k}^{n} = \left\{ \begin{array}{c} B^{k}\psi ^{n},n = 1,3, \\ \\ B_{1}^{k}\psi ^{2},n = 2. \end{array} \right. \end{equation} | (2.6) |
Applying formula (2.6), estimates
\begin{equation} \left\Vert B\right\Vert _{H\rightarrow H}\leq 1,\left\Vert B_{1}\right\Vert _{H\rightarrow H}\leq 1, \end{equation} | (2.7) |
we get
\begin{equation} \left\Vert 0v_{k}^{n}\right\Vert _{H}\leq \left\Vert \psi ^{n}\right\Vert _{H}\leq M_{1}. \end{equation} | (2.8) |
Applying formula (2.4), estimates (2.7) and
\begin{equation} \left\Vert R\right\Vert _{H\rightarrow H}\leq \frac{1}{1+\frac{\tau \left( \mu +\delta \right) }{2}},\left\Vert R_{1}\right\Vert _{H\rightarrow H}\leq \frac{1}{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}}, \end{equation} | (2.9) |
we get
\begin{equation*} \Vert 1v_{k}^{1}-0v_{k}^{1}\Vert _{H}\leq \sum\limits_{m = 1}^{k}\left\Vert B^{k-m}R\right\Vert _{H\rightarrow H}\left\Vert f\left( t_{m}-\frac{\tau }{2} ,\frac{0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2},\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H}\tau \end{equation*} |
\begin{equation*} \leq M_{2}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}}\leq M_{2}\frac{T}{1+\frac{\tau \left( \mu +\delta \right) }{2}}, \end{equation*} |
\begin{equation*} \Vert 1v_{k}^{2}-0v_{k}^{2}\Vert _{H}\leq \sum\limits_{m = 1}^{k}\left\Vert B_{1}^{k-m}R_{1}\right\Vert _{H\rightarrow H}\left[ \left\Vert F\left( t_{m}- \frac{\tau }{2},\frac{0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2},\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H}\right. \end{equation*} |
\begin{equation*} \left. +\left\Vert G\left( t_{m}-\frac{\tau }{2},\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H}\right] \tau \end{equation*} |
\begin{equation*} \leq \left( M_{2}+M_{3}\right) \sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}}\leq \left( M_{2}+M_{3}\right) \frac{ T}{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}} \end{equation*} |
for any k = 1, \cdot \cdot \cdot, N. With using triangle inequality, is is obtained that
\begin{equation*} \Vert 1v_{k}^{1}\Vert _{H}\leq M_{1}+\left( M_{2}+M_{3}\right) \frac{T}{1+ \frac{\tau \left( \mu +\delta \right) }{2}}, \end{equation*} |
\begin{equation*} \Vert 1v_{k}^{2}\Vert _{H}\leq M_{1}+\left( M_{2}+M_{3}\right) \frac{T}{1+ \frac{\tau \left( \mu +\delta \right) }{2}} \end{equation*} |
for any. k = 1, \cdot \cdot \cdot, N. Applying.formula (2.4), and estimates (2.7), (2.9), (1.4), (1.2) and (1.3), we get
\begin{equation*} \Vert 2v_{k}^{1}-1v_{k}^{1}\Vert _{H}\leq \tau \sum\limits_{m = 1}^{k}\left\Vert B^{k-m}R\right\Vert _{H\rightarrow H} \end{equation*} |
\begin{equation*} \times \left\Vert F\left( t_{m}-\frac{\tau }{2},\frac{ 1v_{m}^{^{_{1}}}+1v_{m-1}^{^{_{1}}}}{2},\frac{ 1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}\right) -F\left( t_{m}-\frac{\tau }{2} ,\frac{0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2},\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} \leq \sum\limits_{m = 1}^{k}\frac{L_{1}\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}}\left[ \left\Vert \frac{1v_{m}^{^{_{1}}}+1v_{m-1}^{^{_{1}}}}{2}-\frac{ 0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2}\right\Vert _{H}+\left\Vert \frac{ 1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}-\frac{0v_{m}^{^{_{2}}}+0v_{m-1}^{2}}{ 2}\right\Vert _{H}\right] \end{equation*} |
\begin{equation*} \leq \frac{2L_{1}\left( M_{2}+M_{3}\right) T}{1+\frac{\tau \left( \mu +\delta \right) }{2}}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}}\leq \frac{2\left( L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T^{2}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2} \right) ^{2}}, \end{equation*} |
\begin{equation*} \Vert 2v_{k}^{2}-1v_{k}^{2}\Vert _{H}\leq \tau \sum\limits_{m = 1}^{k}\left\Vert B_{1}^{k-m}R_{1}\right\Vert _{H\rightarrow H} \end{equation*} |
\begin{equation*} \times \left\Vert F\left( t_{m}-\frac{\tau }{2},\frac{ 1v_{m}^{^{_{1}}}+1v_{m-1}^{^{_{1}}}}{2},\frac{ 1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}\right) -F\left( t_{m}-\frac{\tau }{2} ,\frac{0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2},\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} +\tau \sum\limits_{m = 1}^{k}\left\Vert B_{1}^{k-m}R_{1}\right\Vert _{H\rightarrow H}\left\Vert G\left( t_{m}-\frac{\tau }{2},\frac{ 1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}\right) -G\left( t_{m}-\frac{\tau }{2} ,\frac{0v_{m}^{^{_{2}}}+0v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} \leq L_{1}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}} \end{equation*} |
\begin{equation*} \times \left[ \left\Vert \frac{1v_{m}^{^{_{1}}}+1v_{m-1}^{^{_{1}}}}{2}-\frac{ 0v_{m}^{^{_{1}}}+0v_{m-1}^{^{_{1}}}}{2}\right\Vert _{H}+\left\Vert \frac{ 1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}-\frac{0v_{m}^{^{_{2}}}+0v_{m-1}^{2}}{ 2}\right\Vert _{H}\right] \end{equation*} |
\begin{equation*} +L_{2}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}}\left\Vert \frac{1v_{m}^{^{_{2}}}+1v_{m-1}^{^{_{2}}}}{2}-\frac{ 0v_{m}^{^{_{2}}}+0v_{m-1}^{2}}{2}\right\Vert _{H} \end{equation*} |
\begin{equation*} \leq \frac{\left( 2L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T}{1+\frac{ \tau \left( \mu +\delta \right) }{2}}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta +\alpha \right) }{2}}\leq \frac{2\left( L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T^{2}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{2}} \end{equation*} |
for any k = 1, \cdot \cdot \cdot, N. Then
\begin{equation*} \Vert 2v_{k}^{n}\Vert _{H}\leq M_{1}+\left( M_{2}+M_{3}\right) \frac{T}{1+ \frac{\tau \left( \mu +\delta \right) }{2}}+\frac{2\left( L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T^{2}}{(1+\frac{\tau \left( \mu +\delta \right) }{2}) ^{2}},n = 1,2 \end{equation*} |
for any k = 1, \cdot \cdot \cdot, N. Let
\begin{equation*} \Vert jv_{k}^{n}-\left( j-1\right) v_{k}^{n}\Vert _{H}\leq \frac{ 2^{j-1}\left( L_{1}+L_{2}\right) ^{j-1}\left( M_{2}+M_{3}\right) T^{j}}{ \left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j}},n = 1,2. \end{equation*} |
Applying formula (2.4), estimates (2.7), (1.4), (1.2) and (1.3), we get
\begin{equation*} \Vert \left( j+1\right) v_{k}^{1}-jv_{k}^{1}\Vert _{H}\leq \tau \sum\limits_{m = 1}^{k}\left\Vert B^{k-m}R\right\Vert _{H\rightarrow H} \end{equation*} |
\begin{equation*} \times \left\Vert f\left( t_{m}-\frac{\tau }{2},\frac{ jv_{m}^{^{_{1}}}+jv_{m-1}^{^{_{1}}}}{2},\frac{ jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}\right) \right. \end{equation*} |
\begin{equation*} \left. -f\left( t_{m}-\frac{\tau }{2},\frac{\left( j-1\right) v_{m}^{^{_{1}}}+\left( j-1\right) v_{m-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} \leq \sum\limits_{m = 1}^{k}\frac{L_{1}\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}} \end{equation*} |
\begin{equation*} \times \left[ \left\Vert \frac{jv_{m}^{^{_{1}}}+jv_{m-1}^{^{_{1}}}}{2}-\frac{ \left( j-1\right) v_{m}^{^{_{1}}}+\left( j-1\right) v_{m-1}^{^{_{1}}}}{2} \right\Vert _{H}\right. \end{equation*} |
\begin{equation*} \left. +\left\Vert \frac{jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}-\frac{ \left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{2}}{2} \right\Vert _{H}\right] \end{equation*} |
\begin{equation*} \leq \frac{2L_{1}\cdot 2^{j-1}\left( L_{1}+L_{2}\right) ^{j-1}\left( M_{2}+M_{3}\right) T^{j}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2} \right) ^{j}}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}}\leq \frac{\left( 2\left( L_{1}+L_{2}\right) \right) ^{j}\left( M_{2}+M_{3}\right) T^{j+1}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{ 2}\right) ^{j+1}}, \end{equation*} |
\begin{equation*} \Vert \left( j+1\right) v_{k}^{2}-jv_{k}^{2}\Vert _{H}\leq \tau \sum\limits_{m = 1}^{k}\left\Vert B_{1}^{k-m}R_{1}\right\Vert _{H\rightarrow H} \end{equation*} |
\begin{equation*} \times \left\Vert F\left( t_{m}-\frac{\tau }{2},\frac{ jv_{m}^{^{_{1}}}+jv_{m-1}^{^{_{1}}}}{2},\frac{ jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}\right) \right. \end{equation*} |
\begin{equation*} \left. -F\left( t_{m}-\frac{\tau }{2},\frac{\left( j-1\right) v_{m}^{^{_{1}}}+\left( j-1\right) v_{m-1}^{^{_{1}}}}{2},\frac{\left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{^{_{2}}}}{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} +\tau \sum\limits_{m = 1}^{k}\left\Vert B_{1}^{k-m}R_{1}\right\Vert _{H\rightarrow H} \end{equation*} |
\begin{equation*} \times \left\Vert G\left( t_{m}-\frac{\tau }{2},\frac{ jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}\right) -F\left( t_{m}-\frac{\tau }{2} ,\frac{\left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{^{_{2}}} }{2}\right) \right\Vert _{H} \end{equation*} |
\begin{equation*} \leq \sum\limits_{m = 1}^{k}\frac{L_{1}\tau }{1+\frac{\tau \left( \mu +\delta +a\right) }{2}} \end{equation*} |
\begin{equation*} \times \left[ \left\Vert \frac{jv_{m}^{^{_{1}}}+jv_{m-1}^{^{_{1}}}}{2}-\frac{ \left( j-1\right) v_{m}^{^{_{1}}}+\left( j-1\right) v_{m-1}^{^{_{1}}}}{2} \right\Vert _{H}\right. \end{equation*} |
\begin{equation*} \left. +\left\Vert \frac{jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}-\frac{ \left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{2}}{2} \right\Vert _{H}\right] \end{equation*} |
\begin{equation*} +\sum\limits_{m = 1}^{k}\frac{L_{2}\tau }{1+\frac{\tau \left( \mu +\delta +a\right) }{ 2}}\left\Vert \frac{jv_{m}^{^{_{2}}}+jv_{m-1}^{^{_{2}}}}{2}-\frac{\left( j-1\right) v_{m}^{^{_{2}}}+\left( j-1\right) v_{m-1}^{2}}{2}\right\Vert _{H} \end{equation*} |
\begin{equation*} \leq \frac{\left( 2L_{1}+L_{2}\right) 2^{j-1}\left( L_{1}+L_{2}\right) ^{j-1}\left( M_{2}+M_{3}\right) T^{j}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j}}\sum\limits_{m = 1}^{k}\frac{\tau }{1+\frac{\tau \left( \mu +\delta \right) }{2}}\leq \frac{\left( 2\left( L_{1}+L_{2}\right) \right) ^{j}\left( M_{2}+M_{3}\right) T^{j+1}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j+1}} \end{equation*} |
for any k = 1, \cdot \cdot \cdot, N. Then
\begin{equation*} \Vert \left( j+1\right) v_{k}^{n}\Vert _{H}\leq M_{1}+\left( M_{2}+M_{3}\right) \frac{T}{1+\frac{\tau \left( \mu +\delta \right) }{2}} \end{equation*} |
\begin{equation*} +\frac{2\left( L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T^{2}}{(1+\frac{\tau \left( \mu +\delta \right) }{2}) ^{2}}+\cdot \cdot \cdot +\frac{\left( 2\left( L_{1}+L_{2}\right) \right) ^{j}\left( M_{2}+M_{3}\right) T^{j+1}}{\left( 1+ \frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j+1}},n = 1,2 \end{equation*} |
for any k = 1, \cdot \cdot \cdot, N. Therefore, for any j, j\geq 1 , we have that
\begin{equation*} \Vert \left( j+1\right) v_{k}^{n}-jv_{k}^{n}\Vert _{H}\leq \frac{\left( 2\left( L_{1}+L_{2}\right) \right) ^{j}\left( M_{2}+M_{3}\right) T^{j+1}}{ \left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j+1}},n = 1,2, \end{equation*} |
and
\begin{equation*} \left\Vert \left( j+1\right) v_{k}^{n}\right\Vert _{H}\leq M_{1}+\left( M_{2}+M_{3}\right) \frac{T}{1+\frac{\tau \left( \mu +\delta \right) }{2}} \end{equation*} |
\begin{equation*} +\frac{2\left( L_{1}+L_{2}\right) \left( M_{2}+M_{3}\right) T^{2}}{(1+\frac{\tau \left( \mu +\delta \right) }{2}) ^{2}}+\cdot \cdot \cdot +\frac{\left( 2\left( L_{1}+L_{2}\right) \right) ^{j}\left( M_{2}+M_{3}\right) T^{j+1}}{\left( 1+ \frac{\tau \left( \mu +\delta \right) }{2}\right) ^{j+1}},n = 1,2 \end{equation*} |
by mathematical.induction. From that and formula (2.5) it is obtained
\begin{equation*} \Vert v_{k}^{n}\Vert _{H}\leq \Vert 0v_{k}^{n}\Vert _{H}+\sum\limits_{i = 0}^{\infty }\Vert (i+1)v_{k}^{n}-iv_{k}^{n}\Vert _{H} \end{equation*} |
\begin{equation*} \leq M_{1}+\frac{\left( M_{2}+M_{3}\right) T}{1+\frac{\tau \left( \mu +\delta \right) }{2}}\sum\limits_{i = 0}^{\infty }\frac{2^{i}\left( L_{1}+L_{2}\right) ^{i}T^{i}}{\left( 1+\frac{\tau \left( \mu +\delta \right) }{2}\right) ^{i}},n = 1,2 \end{equation*} |
that proves the existence of a bounded solution of DS (2.1) which is bounded.in C_{\tau }\left(H\right) \times C_{\tau }\left(H\right) \times C_{\tau }\left(H\right) of uniformly wrt. \tau . Theorem 3 is proved.
A study of discretization, over time only, of the initial value problem also permits one to include general DSs in applications, if the differential operator A is replaced by the difference operator A_{h} that act in the Hilbert spaces and are uniformly self-adjoint positive definite in h for 0 < h\leq h_{0}.
In this section it will be given considered some nonlinear partial differential equations(PDEs).
First, we consider the initial-boundary.value problem for one.dimensional system.of nonlinear PDEs.
\begin{equation} \left\{ \begin{array}{l} \frac{\partial v^{1}(t,x)}{\partial t}-\left( a(x)v_{x}^{1}\left( t,x\right) \right) _{x}+\left( \delta +\mu \right) v^{1}(t,x) = -F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{2}(t,x)}{\partial t}-\left( a(x)v_{x}^{2}\left( t,x\right) \right) _{x}+\left( \delta +\mu +\alpha \right) v^{2}(t,x) \\ \\ = F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x))-G(t,x;v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{3}(t,x)}{\partial t}-\left( a(x)v_{x}^{3}\left( t,x\right) \right) _{x}+\left( \delta +\mu \right) v^{3}(t,x) = G(t,x;v^{^{_{2}}}(t,x)), \\ \\ 0 < t < T,0 < x < l, \\ \\ v^{n}(0,x) = \psi ^{n}(x),\psi ^{n}(0) = \psi ^{n}(l),\varphi _{x}^{m}(0) = \psi _{x}^{n}(l),x\in \left[ 0,l\right] ,n = 1,2,3, \\ \\ v^{n}(t,0) = v^{n}(t,l),v_{x}^{n}(t,0) = v_{x}^{n}(t,l),0\leq t\leq T,n = 1,2,3, \end{array} \right. \end{equation} | (3.1) |
where a(x), \psi (x) are given sufficiently smooth functions and \delta > 0 is the sufficiently large number. We will assume that a(x)\geq a > 0 and a(l) = a(0).
Assume the following.hypotheses hold
1. \psi ^{n}, n = 1, 2, 3 belongs to W_{2}^{2}\left[ 0, l\right] and
\begin{equation} \left\Vert \psi ^{n}\right\Vert _{W_{2}^{2}\left[ 0,l\right] }\leq M_{1}. \end{equation} | (3.2) |
2. The function f:[0, T]\times \left[ 0, l\right] \times L_{2}\left[ 0, l \right] \times L_{2}\left[ 0, l\right] \rightarrow L_{2}\left[ 0, l\right] be continuous function in t , that is
\begin{equation} \Vert F(t,\cdot ,u(t,\cdot ),v(t,\cdot ))\Vert _{L_{2}\left[ 0,l\right] }\leq M_{2} \end{equation} | (3.3) |
in [0, T]\times \left[ 0, l\right] \times L_{2}\left[ 0, l\right] \times L_{2} \left[ 0, l\right] and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert G(t,\cdot ,u,v)-G(t,\cdot ,z,w)\Vert _{L_{2}\left[ 0,l\right] }\leq L_{1}\left[ \Vert u-z\Vert _{L_{2}\left[ 0,l\right] }+\Vert v-w\Vert _{L_{2} \left[ 0,l\right] }\right] . \end{equation} | (3.4) |
3. The function g:[0, T]\times \left[ 0, l\right] \times L_{2}\left[ 0, l \right] \rightarrow L_{2}\left[ 0, l\right] be continuous function in t , that is
\begin{equation} \Vert G(t,\cdot ,u(t,\cdot ))\Vert _{L_{2}\left[ 0,l\right] }\leq M_{3} \end{equation} | (3.5) |
in [0, T]\times \left[ 0, l\right] \times L_{2}\left[ 0, l\right] and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert G(t,\cdot ,u)-G(t,\cdot ,z)\Vert _{L_{2}\left[ 0,l\right] }\leq L_{2}\Vert u-z\Vert _{L_{2}\left[ 0,l\right] }. \end{equation} | (3.6) |
Here and in future, L_{m}, m = 1, 2, M_{m}, \; m = 1, 2, 3 are positive constants.
The discretization of problem (3.1) is carried out in two steps. In the first step, let us define the grid space
\begin{equation*} \lbrack 0,l]_{h} = \{x:x_{r} = rh,0\leq r\leq K,Kh = l\}. \end{equation*} |
We introduce the Hilbert spaces L_{2h} = L_{2}([0, l]_{h}) and W_{2h}^{2} = W_{2}^{2}([0, l]_{h}) \ of the grid functions \psi ^{h}(x) = \{\psi ^{r}\}_{0}^{K} defined on [0, l]_{h}, equipped with the norms
\begin{equation*} \left\Vert \psi ^{h}\right\Vert _{L_{2h}} = \left( \sum\limits_{x\in \lbrack 0,l]_{h}}\left\vert \psi ^{h}(x)\right\vert ^{2}h\right) ^{1/2} \end{equation*} |
and
\begin{equation*} \left\Vert \psi ^{h}\right\Vert _{W_{2h}^{2}} = \left\Vert \psi ^{h}\right\Vert _{L_{2h}}+\left( \sum\limits_{x\in \lbrack 0,l]_{h}}\left\vert \left( \psi ^{h}\right) _{x\overline{x},j}\right\vert ^{2}h\right) ^{1/2} \end{equation*} |
respectively. To the differential operator A generated by problem (3.1), we assign the difference operator A_{h}^{x} by the formula
\begin{equation} A_{h}^{x}\psi ^{h}(x) = \{-(a(x)\psi _{\overline{x}})_{x,r}+\delta \psi ^{r}\}_{1}^{K-1}, \end{equation} | (3.7) |
acting in the space of grid functions \psi ^{h}(x) = \{\psi ^{r}\}_{0}^{K} satisfying the conditions \psi ^{0} = \psi ^{K}, \ \psi ^{1}-\psi ^{0} = \psi ^{K}-\psi ^{K-1}. With the help of A_{h}^{x}, we arrive at the initial value problem
\begin{equation} \left\{ \begin{array}{l} \frac{dv^{1h}(t,x)}{dt}+\mu v^{1h}(t,x)+A_{h}^{x}v^{1h}(t,x) = -F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{2h}(t,x)}{dt}+\left( \mu +\alpha \right) v^{2h}(t,x)+A_{h}^{x}v^{2h}(t,x) \\ \\ = F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x))-G^{h}(t,x;v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{3h}(t,x)}{dt}+\mu v^{3h}(t,x)+A_{h}^{x}v^{3h}(t,x) = G^{h}(t,x;v^{^{_{2h}}}(t,x)), \\ \\ 0 < t < T,x\in \lbrack 0,l]_{h}, \\ \\ v^{nh}(0,x) = \psi ^{n}(x),n = 1,2,3,x\in \lbrack 0,l]_{h} \end{array} \right. \end{equation} | (3.8) |
for an infinite system of nonlinear ordinary differential equations (ODEs). In the second step, we replace problem (3.8) by DS (2.1)
\begin{equation} \left\{ \begin{array}{l} \frac{v_{k}^{1}-v_{k-1}^{1}}{\tau }+\mu \frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2}+A_{h}^{x}\frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2} = -F^{h}\left( t_{k}-\frac{\tau }{2},x, \frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2} }{2}\right) , \\ \\ \frac{v_{k}^{2}-v_{k-1}^{2}}{\tau }+\left( \alpha +\mu \right) \frac{ v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}+A_{h}^{x}\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2 } \\ \\ = F^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}} }{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) -G^{h}\left( t_{k}-\frac{ \tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ \frac{v_{k}^{3}-v_{k-1}^{3}}{\tau }+\mu \frac{v_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} +A_{h}^{x}\frac{v_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} = G^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ t_{k} = k\tau ,1\leqslant k\leqslant N,N\tau = T,x\in \lbrack 0,l]_{h}, \\ \\ v_{0}^{n} = \psi ^{n},n = 1,2,3. \end{array} \right. \end{equation} | (3.9) |
Theorem 4. Let the assumptions (3.2)-(3.6) be satisfied and 2\left(L_{1}+L_{2}\right) T < 1+\frac{\tau \left(\mu +\delta \right) }{2} . Then, there exists a unique solution v^{\tau } = \left\{ v_{k}\right\} _{k = 0}^{N} of DS (3.9) which is bounded in C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) of uniformly with respect to \tau and h .
The proof of Theorem 4 is based on the abstract Theorem 3 and symmetry properties of the difference operator A_{h}^{x} defined by formula (3.7)[11].
Second, we consider the initial-boundary value problem for one dimensional system of nonlinear PDs with involution
\begin{equation} \left\{ \begin{array}{l} \frac{\partial v^{1}(t,x)}{\partial t}-\left( a(x)v_{x}^{1}\left( t,x\right) \right) _{x}-\beta \left( a(-x)v_{x}\left( t,-x\right) \right) _{x}+\left( \delta +\mu \right) v^{1}(t,x) \\ \\ = -F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{2}(t,x)}{\partial t}-\left( a(x)v_{x}^{2}\left( t,x\right) \right) _{x}-\beta \left( a(-x)v_{x}\left( t,-x\right) \right) _{x}+\left( \delta +\mu +\alpha \right) v^{2}(t,x) \\ \\ = F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x))-G(t,x;v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{3}(t,x)}{\partial t}-\left( a(x)v_{x}^{3}\left( t,x\right) \right) _{x}-\beta \left( a(-x)v_{x}\left( t,-x\right) \right) _{x}+\left( \delta +\mu \right) v^{3}(t,x) \\ \\ = G(t,x;v^{^{_{2}}}(t,x)),0 < t < T,-l < x < l, \\ \\ v^{n}(0,x) = \psi ^{n}(x),\psi ^{n}(-l) = \psi ^{n}(l) = 0,x\in \left[ -l,l\right] ,n = 1,2,3, \\ \\ v^{n}(t,-l) = v^{n}(t,l) = 0,0\leq t\leq T,n = 1,2,3, \end{array} \right. \end{equation} | (3.10) |
where a(x), \psi (x) are given sufficiently smooth functions and \delta > 0 is the sufficiently large number. We will assume that a\geq a\left(x\right) = a\left(-x\right) \geq \delta > 0, \; \delta -a\left\vert \beta \right\vert \geq 0 .
Assume the following hypotheses:
1. \psi ^{n}, n = 1, 2, 3 belongs to W_{2}^{2}\left[ -l, l\right] and
\begin{equation} \left\Vert \psi ^{n}\right\Vert _{W_{2}^{2}\left[ -l,l\right] }\leq M_{1}. \end{equation} | (3.11) |
2. The function F:[0, T]\times \left[ -l, l\right] \times L_{2}\left[ -l, l \right] \times L_{2}\left[ -l, l\right] \rightarrow L_{2}\left[ -l, l\right] be continuous function in t , that is
\begin{equation} \Vert F(t,\cdot ,u(t,\cdot ),v(t,\cdot ))\Vert _{L_{2}\left[ -l,l\right] }\leq M_{2} \end{equation} | (3.12) |
in [0, T]\times \left[ -l, l\right] \times L_{2}\left[ -l, l\right] \times L_{2}\left[ -l, l\right] and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert F(t,\cdot ,u,v)-F(t,\cdot ,z,w)\Vert _{L_{2}\left[ -l,l\right] }\leq L_{1}\left[ \Vert u-z\Vert _{L_{2}\left[ -l,l\right] }+\Vert v-w\Vert _{L_{2} \left[ -l,l\right] }\right] . \end{equation} | (3.13) |
3. The function G:[0, T]\times \left[ -l, l\right] \times L_{2}\left[ -l, l \right] \rightarrow L_{2}\left[ -l, l\right] be continuous function in t , that is
\begin{equation} \Vert G(t,\cdot ,u(t,\cdot ))\Vert _{L_{2}\left[ 0,l\right] }\leq M_{3} \end{equation} | (3.14) |
in [0, T]\times \left[ -l, l\right] \times L_{2}\left[ -l, l\right] and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert G(t,\cdot ,u)-G(t,\cdot ,z)\Vert _{L_{2}\left[ -l,l\right] }\leq L_{2}\Vert u-z\Vert _{L_{2}\left[ -l,l\right] }. \end{equation} | (3.15) |
The discretization of problem (3.10) is carried out in two steps. In the first step, let us define the grid space
\begin{equation*} \lbrack -l,l]_{h} = \{x:x_{r} = rh,-K\leq r\leq K,Kh = l\}. \end{equation*} |
We introduce the Hilbert spaces L_{2h} = L_{2}([-l, l]_{h}) and W_{2h}^{2} = W_{2}^{2}([-l, l]_{h}) \ of the grid functions \psi ^{h}(x) = \{\psi ^{r}\}_{-K}^{K} defined on [-l, l]_{h}, equipped with the norms
\begin{equation*} \left\Vert \psi ^{h}\right\Vert _{L_{2h}} = \left( \sum\limits_{x\in \lbrack -l,l]_{h}}\left\vert \psi ^{h}(x)\right\vert ^{2}h\right) ^{1/2} \end{equation*} |
and
\begin{equation*} \left\Vert \psi^{h}\right\Vert _{W_{2h}^{2}} = \left\Vert \psi ^{h}\right\Vert _{L_{2h}}+\left( \sum\limits_{x\in \lbrack -l,l]_{h}}\left\vert \left( \psi ^{h}\right) _{x\overline{x} ,j}\right\vert ^{2}h\right) ^{1/2} \end{equation*} |
respectively. To the differential operator A generated by problem (3.10), we assign the difference operator A_{h}^{x} by the formula
\begin{equation} A_{h}^{x}\psi ^{h}(x) = \{-(a(x)\psi _{\overline{x}}(x))_{x,r}-\beta \left( a(-x)\psi _{\overline{x}}(-x)\right) _{x,r}+\delta \psi ^{r}\}_{-K+1}^{K-1}, \end{equation} | (3.16) |
acting in the space of grid functions \psi ^{h}(x) = \{\psi ^{r}\}_{-K}^{K} satisfying the conditions \psi ^{-K} = \psi ^{K} = 0. With the help of A_{h}^{x}, we arrive at the initial value problem
\begin{equation} \left\{ \begin{array}{l} \frac{dv^{1h}(t,x)}{dt}+\mu v^{1h}(t,x)+A_{h}^{x}v^{1h}(t,x) = -F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{2h}(t,x)}{dt}+\left( \mu +\alpha \right) v^{2h}(t,x)+A_{h}^{x}v^{2h}(t,x) \\ \\ = F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x))-G^{h}(t,x;v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{3h}(t,x)}{dt}+\mu v^{3h}(t,x)+A_{h}^{x}v^{3h}(t,x) = G^{h}(t,x;v^{^{_{2h}}}(t,x)),0 < t < T,x\in \lbrack -l,l]_{h}, \\ \\ v^{nh}(0,x) = \psi ^{n}(x),n = 1,2,3,x\in \lbrack -l,l]_{h} \end{array} \right. \end{equation} | (3.17) |
for an infinite system of nonlinear ODEs. In the second step, we replace problem (3.17) by DS (2.1)
\begin{equation} \left\{ \begin{array}{l} \frac{v_{k}^{1}-v_{k-1}^{1}}{\tau }+\mu \frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2}+A_{h}^{x}\frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2} = -F^{h}\left( t_{k}-\frac{\tau }{2},x, \frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2} }{2}\right) , \\ \\ \frac{v_{k}^{2}-v_{k-1}^{2}}{\tau }+\left( \alpha +\mu \right) \frac{ v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}+A_{h}^{x}\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2 } \\ \\ = F^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}} }{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) -G^{h}\left( t_{k}-\frac{ \tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ \frac{v_{k}^{3}-v_{k-1}^{3}}{\tau }+\mu \frac{v_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} +A_{h}^{x}\frac{v_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} = G^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ t_{k} = k\tau ,1\leqslant k\leqslant N,N\tau = T,x\in \lbrack -l,l]_{h}, \\ \\ v_{0}^{n} = \psi ^{n},n = 1,2,3. \end{array} \right. \end{equation} | (3.18) |
Theorem 5. Let the assumptions (3.11)-(3.15) be satisfied and 2\left(L_{1}+L_{2}\right) T < 1+\frac{\tau \left(\mu +\delta \right) }{2} . Then, there exists a unique solution v^{\tau } = \left\{ v_{k}\right\} _{k = 0}^{N} of DS (3.18) which is bounded in C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) of uniformly with respect to \tau and h .
The proof of Theorem 5 is based on the abstract Theorem 3 and symmetry properties of the difference operator A_{h}^{x} defined by formula (3.16)[12].
Third, let \Omega \subset R^{n} be a bounded open domain with smooth boundary S , \overline{\Omega } = \Omega \cup S . In \left[ 0, T\right] \times \Omega we consider the initial-boundary value problem for multidimensional system of nonlinear PDEs
\begin{equation} \left\{ \begin{array}{l} \frac{\partial v^{1}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{1})x_{r}+\left( \delta +\mu \right) v^{1}(t,x) \\ \\ = -F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{2}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{2})x_{r}+\left( \delta +\mu +\alpha \right) v^{2}(t,x) \\ \\ = F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x))-G(t,x;v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{3}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{3})x_{r}+\left( \delta +\mu \right) v^{3}(t,x) \\ \\ = G(t,x;v^{^{_{2}}}(t,x)),0 < t < T,x = (x_{1},...,x_{n})\in \Omega , \\ \\ v^{m}(0,x) = \psi ^{m}(x),x\in \overline{\Omega },m = 1,2,3, \\ \\ v^{m}(t,x) = 0,0\leq t\leq T,x\in S,m = 1,2,3, \end{array} \right. \end{equation} | (3.19) |
where a_{r}(x) and \psi ^{m}(x) are given sufficiently smooth functions and \delta > 0 is the sufficiently large number and a_{r}(x) > 0.
Assume the following hypotheses:
1. \psi ^{m}, m = 1, 2, 3 belongs to L_{2}(\overline{\Omega }) and
\begin{equation} \left\Vert \psi ^{m}\right\Vert _{W_{2}^{2}(\overline{\Omega })}\leq M_{1}. \end{equation} | (3.20) |
2. The function f:[0, T]\times \left[ 0, l\right] \times L_{2}(\overline{ \Omega })\times L_{2}(\overline{\Omega })\rightarrow L_{2}(\overline{\Omega }) be continuous function in t , that is
\begin{equation} \Vert F(t,\cdot ,u(t,\cdot ),v(t,\cdot ))\Vert _{L_{2}(\overline{\Omega } )}\leq M_{2} \end{equation} | (3.21) |
in [0, T]\times \left[ 0, l\right] \times L_{2}(\overline{\Omega })\times L_{2}(\overline{\Omega }) and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert F(t,\cdot ,u,v)-F(t,\cdot ,z,w)\Vert _{L_{2}(\overline{\Omega })}\leq L_{1}\left[ \Vert u-z\Vert _{L_{2}(\overline{\Omega })}+\Vert v-w\Vert _{L_{2}(\overline{\Omega })}\right] . \end{equation} | (3.22) |
3. The function G:[0, T]\times \left[ 0, l\right] \times L_{2}(\overline{ \Omega })\rightarrow L_{2}(\overline{\Omega }) be continuous function in t , that is
\begin{equation} \Vert G(t,\cdot ,u(t,\cdot ))\Vert _{L_{2}(\overline{\Omega })}\leq M_{3} \end{equation} | (3.23) |
in [0, T]\times \left[ 0, l\right] \times L_{2}(\overline{\Omega }) and Lipschitz condition holds uniformly with respect to t
\begin{equation} \Vert G(t,\cdot ,u)-G(t,\cdot ,z)\Vert _{L_{2}(\overline{\Omega })}\leq L_{2}\Vert u-z\Vert _{L_{2}(\overline{\Omega })}. \end{equation} | (3.24) |
The discretization of problem (3.19) is also carried out in two steps. In the first step, let us define the grid sets
\begin{equation*} \overline{\Omega }_{h} = \left\{ x = x_{r} = (h_{1}r_{1},...,h_{m}r_{m}),\; r = (r_{1},...,r_{m}),\right. \end{equation*} |
\begin{equation*} \left. \ 0\leq r_{j}\leq N_{j},\; h_{j}N_{j} = 1,\; j = 1,...,m\right\} , \end{equation*} |
\begin{equation*} \Omega _{h} = \overline{\Omega }_{h}\cap \Omega ,\; S_{h} = \overline{\Omega } _{h}\cap S. \end{equation*} |
We introduce the Banach spaces L_{2h} = L_{2}(\overline{\Omega }_{h}) and W_{2h}^{2} = W_{2}^{2}(\overline{\Omega }_{h}) \ of the grid functions \varphi ^{h}(x) = \left\{ \psi (h_{1}r_{1}, ..., h_{m}r_{m})\right\} defined on \overline{\Omega }_{h}, equipped with the norms
\begin{equation*} \left\Vert \psi ^{h}\right\Vert _{L_{2h}} = \left( \sum\limits_{x\in \overline{\Omega }_{h}}\left\vert \psi ^{h}(x)\right\vert ^{2}h_{1}\cdot \cdot \cdot h_{m}\right) ^{1/2} \end{equation*} |
and
\begin{equation*} \left\Vert \psi ^{h}\right\Vert _{W_{2h}} = \left\Vert \psi ^{h}\right\Vert _{L_{2h}}+\left( \sum\limits_{x\in \overline{\Omega }_{h}} \sum\limits_{r=1}^{m}\left\vert \left( \psi ^{h}\right) _{x_{r}\overline{x}_{r},j_{r}}\right\vert ^{2}h_{1}\cdot \cdot \cdot h_{m}\right) ^{1/2} \end{equation*} |
respectively. To the differential operator A generated by problem (3.19), we assign the difference operator A_{h}^{x} by the formula
\begin{equation} A_{h}^{x}v_{x}^{h} = -\sum\limits_{r=1}^{m}\left( a_{r}(x)v_{ \overline{x}_{r}}^{h}\right) _{x_{r},j_{r}} \end{equation} | (3.25) |
acting in the space of grid functions u^{h}(x) , satisfying the conditions v^{h}(x) = 0 for all x\in S_{h}. It is known that A_{h}^{x} is a self-adjoint positive definite operator in L_{2}(\overline{\Omega }_{h}). With the help of A_{h}^{x}, we arrive at the initial value problem
\begin{equation} \left\{ \begin{array}{l} \frac{dv^{1h}(t,x)}{dt}+\mu v^{1h}(t,x)+A_{h}^{x}v^{1h}(t,x) = -F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{2h}(t,x)}{dt}+\left( \mu +\alpha \right) v^{2h}(t,x)+A_{h}^{x}v^{2h}(t,x) \\ \\ = F^{h}(t,x;v^{^{_{1h}}}(t,x),v^{^{_{2h}}}(t,x))-G^{h}(t,x;v^{^{_{2h}}}(t,x)),\quad \\ \\ \frac{dv^{3h}(t,x)}{dt}+\mu v^{3h}(t,x)+A_{h}^{x}v^{3h}(t,x) = G^{h}(t,x;v^{^{_{2h}}}(t,x)),0 < t < T,x\in \overline{\Omega }_{h}, \\ \\ v^{mh}(0,x) = \psi ^{m}(x),m = 1,2,3,x\in \overline{\Omega }_{h} \end{array} \right. \end{equation} | (3.26) |
for an infinite system of nonlinear ODEs. In the second step, we replace problem (3.26) by DS (2.1)
\begin{equation} \left\{ \begin{array}{l} \frac{v_{k}^{1}-v_{k-1}^{1}}{\tau }+\mu \frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2}+A_{h}^{x}\frac{ v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2} = -F^{h}\left( t_{k}-\frac{\tau }{2},x, \frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}}}{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2} }{2}\right) , \\ \\ \frac{v_{k}^{2}-v_{k-1}^{2}}{\tau }+\left( \alpha +\mu \right) \frac{ v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}+A_{h}^{x}\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2 } \\ \\ = F^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{1}}}+v_{k-1}^{^{_{1}}} }{2},\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) -G^{h}\left( t_{k}-\frac{ \tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ \frac{v_{k}^{3}-v_{k-1}^{3}}{\tau }+\mu \frac{V_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} +A_{h}^{x}\frac{v_{k}^{^{_{3}}}+v_{k-1}^{3}}{2} = G^{h}\left( t_{k}-\frac{\tau }{2},x,\frac{v_{k}^{^{_{2}}}+v_{k-1}^{2}}{2}\right) , \\ \\ t_{k} = k\tau ,1\leqslant k\leqslant N,N\tau = T,x\in \overline{\Omega }_{h}, \\ \\ v_{0}^{m} = \psi ^{m},m = 1,2,3. \end{array} \right. \end{equation} | (3.27) |
Theorem 6. Let the assumptions (3.20)-(3.24) be satisfied and 2\left(L_{1}+L_{2}\right) T < 1+\frac{\tau \left(\mu +\delta \right) }{2} . Then, there exists a unique solution v^{\tau } = \left\{ v_{k}\right\} _{k = 0}^{N} of DS (3.27) which is bounded in C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) of uniformly with respect to \tau and h .
The proof of Theorem 6 is based on the abstract Theorem 4 and symmetry properties of the difference operator A_{h}^{x} defined by formula (3.25) and the following theorem on coercivity inequality for the solution of the elliptic problem in L_{2h}.
Theorem 7. For the solutions of the elliptic difference problem
\begin{equation*} \left\{ \begin{array}{c} A_{h}^{x}v^{h}(x) = g^{h}(x),\ x\in \Omega _{h}, \\ v^{h}(x) = 0,\ x\in S_{h} \end{array} \right. \end{equation*} |
the following coercivity inequality
\begin{equation*} \sum\limits_{r=1}^{m}\left\Vert v_{x_{r}\overline{x} _{r},j_{r}}^{h}\right\Vert _{L_{2h}}\leq M\left\Vert g^{h}\right\Vert _{L_{2h}}. \end{equation*} |
holds (see [13]).
Fourth, in \left[ 0, T\right] \times \Omega we consider the initial-boundary value problem for multidimensional system of nonlinear PDEs
\begin{equation} \left\{ \begin{array}{l} \frac{\partial v^{1}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{1})x_{r}+\left( \delta +\mu \right) v^{1}(t,x) = -F(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{2}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{2})x_{r}+\left( \delta +\mu +\alpha \right) v^{2}(t,x) \\ \\ = f(t,x;v^{^{_{1}}}(t,x),v^{^{_{2}}}(t,x))-G(t,x;v^{^{_{2}}}(t,x)),\quad \\ \\ \frac{\partial v^{3}(t,x)}{\partial t}-\sum \limits_{r = 1}^{n}(a_{r}(x)v_{x_{r}}^{3})x_{r}+\left( \delta +\mu \right) v^{3}(t,x) \\ \\ = G(t,x;v^{^{_{2}}}(t,x)),0 < t < T,x = (x_{1},...,x_{n})\in \Omega , \\ \\ v^{m}(0,x) = \psi ^{m}(x),x\in \overline{\Omega },m = 1,2,3, \\ \\ \frac{\partial v}{\partial \overrightarrow{p}}(t,x) = 0,0\leq t\leq T,x\in S,m = 1,2,3, \end{array} \right. \end{equation} | (3.28) |
where a_{r}(x) and \psi ^{m}(x) are given sufficiently smooth functions and \delta > 0 is the sufficiently large number and a_{r}(x) > 0. Here, \overrightarrow{p} is the normal vector to \Omega.
The discretization of problem (3.28) is also carried out in two steps. In the first step, to the differential operator A generated by problem (3.28), we assign the difference operator A_{h}^{x} by the formula
\begin{equation} A_{h}^{x}v_{x}^{h} = -\sum\limits_{r=1}^{m}\left( a_{r}(x)v_{ \overline{x}_{r}}^{h}\right) _{x_{r},j_{r}}+\delta v^{h}(x) \end{equation} | (3.29) |
acting in the space of grid functions v^{h}(x) , satisfying the conditions D^{h}v^{h}(x) = 0 for all x\in S_{h}. Here D^{h} is the approximation of operator \dfrac{\partial }{\partial \overrightarrow{p}} . It is known that A_{h}^{x} is a self-adjoint positive definite operator in L_{2}(\overline{ \Omega }_{h}). With the help of A_{h}^{x}, we arrive at the initial value problem (3.26) for an infinite system of nonlinear ODEs. In the second step, we replace problem (3.26) by DS (2.1), we get DS (3.27).
Theorem 8. Let the assumptions (3.20)-(3.24) be satisfied and 2\left(L_{1}+L_{2}\right) T < 1+\frac{\tau \left(\mu +\delta \right) }{2} . Then, there exists a unique solution v^{\tau } = \left\{ v_{k}\right\} _{k = 0}^{N} of DS (3.27) which is bounded in C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) \times C_{\tau }\left(L_{2h}\right) of uniformly with respect to \tau and h .
The proof of Theorem 8 is based on the abstract Theorem 3 and symmetry properties of the difference operator A_{h}^{x} defined by formula (3.29) and the following theorem on coercivity inequality for the solution of the elliptic problem in L_{2h}.
Theorem 9. For the solutions of the elliptic difference problem
\begin{equation*} \left\{ \begin{array}{c} A_{h}^{x}v^{h}(x) = g^{h}(x),\ x\in \Omega _{h}, \\ D^{h}v^{h}(x) = 0,\ x\in S_{h} \end{array} \right. \end{equation*} |
the following coercivity inequality holds (see [13]):
\begin{equation*} \sum\limits_{r=1}^{m}\left\Vert v_{x_{r}\overline{x} _{r},j_{r}}^{h}\right\Vert _{L_{2h}}\leq M\left\Vert g^{h}\right\Vert _{L_{2h}}. \end{equation*} |
In present section, we consider the initial-boundary value problem
\begin{equation} \left\{ \begin{array}{l} \frac{\partial v^{^{_{1}}}(t,x)}{\partial t}-\lambda +\mu v^{^{_{1}}}(t,x)-\beta \frac{\partial ^{2}v^{^{_{1}}}(t,x)}{\partial x^{2}} \\ \\ = -\lambda +\left( -1+\mu +\beta \right) e^{-t}\sin x-\sin \left( v^{^{_{1}}}(t,x)v^{^{_{2}}}(t,x)-e^{-2t}\sin ^{2}x\right) ,\quad \\ \\ \frac{\partial v^{^{_{2}}}(t,x)}{\partial t}+(\mu +\alpha )v^{^{_{2}}}(t,x)-d \frac{\partial ^{2}v^{^{_{2}}}(t,x)}{\partial x^{2}} = \left( -1+\mu +\alpha +d\right) e^{-t}\sin x \\ \\ +\sin \left( v^{^{_{1}}}(t,x)v^{^{_{2}}}(t,x)-e^{-2t}\sin ^{2}x\right) -\cos \left( v^{^{_{2}}}(t,x)-e^{-t}\sin x\right) ,\quad \\ \\ \frac{\partial v^{^{_{3}}}(t,x)}{\partial t}+\mu v^{^{_{1}}}(t,x)-\gamma \frac{\partial ^{2}v^{^{_{1}}}(t,x)}{\partial x^{2}} = \left( -1+\mu +\gamma \right) e^{-t}\sin x \\ \\ +\cos \left( v^{^{_{2}}}(t,x)-e^{-t}\sin x\right) ,0 < t < 1 ,0 < x < \pi , \\ \\ v^{m}(0,x) = \sin \left( x\right) ,0\leq x\leq \pi ,m = 1,2,3, \\ \\ v^{m}(t,0) = u^{m}(t,\pi ) = 0,0\leq t\leq 1,m = 1,2,3 \end{array} \right. \end{equation} | (4.1) |
for the system of nonlinear PDEs. The spatial factor, x, can be spatially discrete or spatially continuous. In either case, the spatial factor is used to describe the mobility of the population. This mobility can be due to travel and migration, and it could be between cities, towns or even countries, depending on the studied case. The exact solution of problem (4.1) is v^{m}\left(t, x\right) = e^{-t}\sin x, m = 1, 2, 3.
Numerical solutions of system (4.1) will be given for first and second order of DS. Firstly, we consider the first order of accuracy iterative DS
\begin{equation} \left\{ \begin{array}{l} \frac{jv_{n}^{1,k}-jv_{n}^{1,k-1}}{\tau }+\mu jv_{n}^{^{_{1,k}}}-\beta \frac{ _{j}v_{n+1}^{1,k}-2\left( jv_{n}^{1,k}\right) +jv_{n-1}^{1,k}}{h^{2}} \\ \\ = \left( -1+\mu +\beta \right) e^{-t_{k}}\sin x_{n}-\sin \left( \left( j-1\right) v_{n}^{^{_{1,k}}}\left( j-1\right) v_{n}^{^{_{2,k}}}-e^{-2t_{k}}\sin ^{2}x_{n}\right) , \\ \\ \frac{jv_{n}^{2,k}-jv_{n}^{2,k-1}}{\tau }+\left( \alpha +\mu \right) jv_{n}^{^{_{2,k}}}-d\frac{_{j}v_{n+1}^{2,k}-2\left( jv_{n}^{2,k}\right) +jv_{n-1}^{2,k}}{h^{2}} = \left( -1+\mu +\alpha +d\right) e^{-t_{k}}\sin x_{n} \\ \\ +\sin \left( \left( j-1\right) v_{n}^{^{_{1,k}}}\left( j-1\right) v_{n}^{^{_{2,k}}}-e^{-2t_{k}}\sin ^{2}x_{n}\right) -\cos \left( \left( j-1\right) v_{n}^{^{_{2,k}}}-e^{-t_{k}}\sin x_{n}\right) , \\ \\ \frac{jv_{n}^{3,k}-jv_{n}^{3,k-1}}{\tau }+\mu jv_{n}^{^{_{3,k}}}-\gamma \frac{_{j}v_{n+1}^{3,k}-2\left( jv_{n}^{3,k}\right) +jv_{n-1}^{3,k}}{h^{2}} = \left( -1+\mu +\gamma \right) e^{-t_{k}}\sin x_{n} \\ \\ +\cos \left( \left( j-1\right) v_{n}^{^{_{2,k}}}-e^{-t_{k}}\sin x_{n}\right) , \\ \\ t_{k} = k\tau ,1\leq k\leq N,N\tau = 1,x_{n} = nh,1\leq n\leq M-1,Mh = \pi , \\ \\ jv_{n}^{m,0} = \psi ^{m}(x_{n}),jv_{0}^{m,k} = ju_{M}^{m,k} = 0,0\leq k\leq N,m = 1,2,3,j = 1,2,\cdot \cdot \cdot , \\ \\ 0v_{n}^{m,k},0\leq k\leq N,0\leq n\leq M,m = 1,2,3\text{ is given} \end{array} \right. \end{equation} | (4.2) |
and secondly, the second order of accuracy iterative Crank-Nicholson DS
\begin{equation} \left\{ \begin{array}{l} \frac{jv_{n}^{1,k}-jv_{n}^{1,k-1}}{\tau }+\mu \frac{ jv_{n}^{^{_{1,k}}}+jv_{n}^{^{_{1,k-1}}}}{2}-\beta \frac{_{j}v_{n+1}^{1,k}-2 \left( jv_{n}^{1,k}\right) +jv_{n-1}^{1,k}}{2h^{2}}-\beta \frac{ _{j}v_{n+1}^{1,k-1}-2\left( jv_{n}^{1,k-1}\right) +jv_{n-1}^{1,k-1}}{2h^{2}} \\ \\ = \left( -1+\mu +\beta \right) e^{-\left( t_{k}-\frac{\tau }{2}\right) }\sin x_{n} \\ \\ -\sin \left( \frac{\left( j-1\right) v_{n}^{^{_{1,k}}}+\left( j-1\right) v_{n}^{^{_{1,k-1}}}}{2}\frac{\left( j-1\right) v_{n}^{^{_{2,k}}}+\left( j-1\right) v_{n}^{^{_{2,k-1}}}}{2}-e^{-2\left( t_{k}-\frac{\tau }{2}\right) }\sin ^{2}x_{n}\right) , \\ \\ \frac{jv_{n}^{2,k}-jv_{n}^{2,k-1}}{\tau }+\left( \alpha +\mu \right) \frac{ jv_{n}^{^{_{2,k}}}+jv_{n}^{^{_{2,k-1}}}}{2}-d\frac{_{j}v_{n+1}^{2,k}-2\left( jv_{n}^{2,k}\right) +jv_{n-1}^{2,k}}{2h^{2}}-d\frac{_{j}v_{n+1}^{2,k-1}-2 \left( jv_{n}^{2,k-1}\right) +jv_{n-1}^{2,k-1}}{2h^{2}} \\ \\ = \left( -1+\mu +\alpha +d\right) e^{-\left( t_{k}-\frac{\tau }{2}\right) }\sin x_{n} \\ \\ +\sin \left( \frac{\left( j-1\right) v_{n}^{^{_{1,k}}}+\left( j-1\right) v_{n}^{^{_{1,k-1}}}}{2}\frac{\left( j-1\right) v_{n}^{^{_{2,k}}}+\left( j-1\right) v_{n}^{^{_{2,k-1}}}}{2}-e^{-2\left( t_{k}-\frac{\tau }{2}\right) }\sin ^{2}x_{n}\right) \\ \\ -\cos \left( \frac{\left( j-1\right) v_{n}^{^{_{2,k}}}+\left( j-1\right) v_{n}^{^{_{2,k-1}}}}{2}-e^{-\left( t_{k}-\frac{\tau }{2}\right) }\sin x_{n}\right) , \\ \\ \frac{jv_{n}^{3,k}-jv_{n}^{3,k-1}}{\tau }+\mu \frac{ jv_{n}^{^{_{3,k}}}+jv_{n}^{^{_{3,k-1}}}}{2}-\gamma \frac{_{j}v_{n+1}^{3,k}-2 \left( jv_{n}^{3,k}\right) +jv_{n-1}^{3,k}}{2h^{2}}-\gamma \frac{ _{j}v_{n+1}^{3,k-1}-2\left( jv_{n}^{3,k-1}\right) +jv_{n-1}^{3,k-1}}{2h^{2}} \\ \\ = \left( -1+\mu +\gamma \right) e^{-\left( t_{k}-\frac{\tau }{2}\right) }\sin x_{n}+\cos \left( \frac{\left( j-1\right) v_{n}^{^{_{2,k}}}+\left( j-1\right) v_{n}^{^{_{2,k-1}}}}{2}-e^{-\left( t_{k}-\frac{\tau }{2}\right) }\sin x_{n}\right) , \\ \\ t_{k} = k\tau ,1\leq k\leq N,N\tau = 1,x_{n} = nh,1\leq n\leq M-1,Mh = \pi , \\ \\ jv_{n}^{m,0} = \psi ^{m}(x_{n}),jv_{0}^{m,k} = jv_{M}^{m,k} = 0,0\leq k\leq N,m = 1,2,3,j = 1,2,\cdot \cdot \cdot , \\ \\ 0v_{n}^{m,k},0\leq k\leq N,0\leq n\leq M,m = 1,2,3\text{ is given} \end{array} \right. \end{equation} | (4.3) |
for the.approximate solution of the.initial-boundary.value.problem (4.1) for the system.of nonlinear. PEs. Here and in future j denotes the iteration.index and an.initial guess. _{0}u_{n}^{k}, k\geq 1, 0\leq n\leq M is to be made. For solving DS (4.3), the numerical.steps are.given.below. For 0\leq k < N, 0\leq n\leq M the algorithm.is as follows.[10] :
1. j = 1 .
2. _{j-1}v_{n}^{k} is.known.
3. _{j}v_{n}^{k} is.calculated.
4. If the.max absolute.error between _{j-1}v_{n}^{k} and _{j}v_{n}^{k} is greater.than the given.tolerance value \varepsilon = 10^{-8} , take j = j+1 and go.to.step 2. Otherwise, terminate.the iteration.process and take _{j}v_{n}^{k} as the result of the given problem. The errors are computed by
\left( jE^{m}\right) _{M}^{N} = \max\limits_{1\leq k\leq N, 1\leq n\leq M-1}\left\vert v^{m}(t_{k},x_{n})-\left( jv^{m}\right) _{n}^{k}\right\vert, m = 1,2,3 | (4.4) |
of the numerical solutions, where v^{m}(t_{k}, x_{n}) \;, m = 1, 2, 3 represents the exact solutions and \left(jv^{m}\right) _{n}^{k} \;, m = 1, 2, 3 represents.the numerical.solutions at (t_{k}, x_{n}) and the results of the first and second order of DS are given.in Table 1 and Table 2 respectively.
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 0.0068, j=6 | 0.0032, j=6 | 0.0016, j=6 |
m=2 | 0.0071, j=6 | 0.0033, j=6 | 0.0016, j=6 |
m=3 | 0.0073, j=6 | 0.0034, j=6 | 0.0017, j=6 |
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 5.5516e-5, j=7 | 1.3882e-5, j=7 | 3.4708e-6, j=7 |
m=2 | 8.7420e-5, j=7 | 2.1857e-5, j=7 | 5.4645e-6, j=7 |
m=3 | 1.1120e-4, j=7 | 2.7803e-5, j=7 | , 6.9510e-6j=7 |
According to Table 1 and Table 2, if N and M are doubled, the value of errors in the first order of accuracy DS decrease by a factor of 1/2, the errors in the second order of accuracy DS (4.3) decrease approximately by a factor of 1/4 . The errors presented in the tables indicate the stability of the DS and the accuracy of the results. Thus, the second order of accuracy DS increases faster than the first order of accuracy DS.
In the present paper, the.initial boundary value problem for the nonlinear system of PEs observing epidemic models with general nonlinear incidence rate is investigated. The main theorem on the existence and uniqueness of a bounded solution of Crank-Nicholson DS uniformly with respect to time step \tau is established. Applications of the theoretical results are presented for the four systems of one and multidimensional problems with different boundary conditions. Numerical results are given.
The publication has been prepared with the support of the "RUDN University Program 5-100" and published under target program BR05236656 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.
The author declares that there are no conflicts of interest.
[1] | Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Biodiversity Synthesis, World Resources Institute (WRI), Washington DC. |
[2] | Ecological Society of America (1997) Biodiversity, 1997. Available from: https://www.esa.org/blog/tag/biodiversity. |
[3] |
Díaz S, Pascual U, Stenseke M, et al. (2018) Assessing nature's contributions to people. Science 359: 270–272. https://doi.org/10.1126/science.aap8826 doi: 10.1126/science.aap8826
![]() |
[4] | United Nations (2015) Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the General Assembly on 25 September 2015, New York. |
[5] |
Lokonon BOK, Egbendewe AYG, Coulibaly N, et al. (2019) The Potential Impact of Climate Change on Agriculture in West Africa: A Bio-Economic Modeling Approach. Clim Chang Econ 10: 1950015. https://doi.org/10.1142/S2010007819500155 doi: 10.1142/S2010007819500155
![]() |
[6] |
Bornemann FJ, Rowell DP, Evans B, et al. (2019) Future changes and uncertainty in decision-relevant measures of East African climate. Clim Change 156: 365–384. https://doi.org/10.1007/s10584-019-02499-2 doi: 10.1007/s10584-019-02499-2
![]() |
[7] |
Bakshi B, Nawrotzki RJ, Donato JR, et al. (2019) Exploring the link between climate variability and mortality in Sub-Saharan Africa. Int J Environ Sustain Dev 18: 206. https://doi.org/10.1504/IJESD.2019.099518 doi: 10.1504/IJESD.2019.099518
![]() |
[8] |
Hassan RM (2010) The double challenge of adapting to climate change while accelerating development in sub-Saharan Africa. Environ Dev Econ 15: 661–685. https://doi.org/10.1017/S1355770X10000306 doi: 10.1017/S1355770X10000306
![]() |
[9] |
Baarsch F, Granadillos JR, Hare W, et al. (2020) The impact of climate change on incomes and convergence in Africa. World Dev 126: 104699. https://doi.org/10.1016/j.worlddev.2019.104699 doi: 10.1016/j.worlddev.2019.104699
![]() |
[10] |
Zhang L, Traore S, Ge J, et al. (2019) Using boosted tree regression and artificial neural networks to forecast upland rice yield under climate change in Sahel. Comput Electron Agric 166: 105031. https://doi.org/10.1016/j.compag.2019.105031 doi: 10.1016/j.compag.2019.105031
![]() |
[11] |
Sultan B, Gaetani M (2016) Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front Plant Sci 7: e1262. https://doi.org/10.3389/fpls.2016.01262 doi: 10.3389/fpls.2016.01262
![]() |
[12] |
Egbebiyi TS, Lennard C, Crespo O, et al. (2019) Assessing Future Spatio-Temporal Changes in Crop Suitability and Planting Season over West Africa: Using the Concept of Crop-Climate Departure. Climate 7: 102. https://doi.org/10.3390/cli7090102 doi: 10.3390/cli7090102
![]() |
[13] |
Zerboni A, Nicoll K (2019) Enhanced zoogeomorphological processes in North Africa in thehuman-impacted landscapes of the Anthropocene. Geomorphology 331: 22–35. https://doi.org/10.1016/j.geomorph.2018.10.011 doi: 10.1016/j.geomorph.2018.10.011
![]() |
[14] |
Boussaï d A, Souiher N, Dubois C, et al. (2018) L'amplification de la désertification par les pratiques agro-sylvo-pastorales dans les hautes plaines steppiques algériennes : les modes d'habiter de la Wilaya de Djelfa. Cybergeo 2018: 29257. https://doi.org/10.4000/cybergeo.29257 doi: 10.4000/cybergeo.29257
![]() |
[15] |
Campbell JFE, Fletcher WJ, Joannin S, et al. (2017) Environmental Drivers of Holocene Forest Development in the Middle Atlas, Morocco. Front Ecol Evol 5: 113. https://doi.org/10.3389/fevo.2017.00113 doi: 10.3389/fevo.2017.00113
![]() |
[16] | Mebirouk-Boudechiche L, Abidi S, Boudechiche L, et al. (2016) Evaluation of forage produced by Erica arborea, shrub species found in Algerian alder forests in wetlands of northeastern Algeria. Fourrages 2016: 71–74. |
[17] |
Blanco J, Genin D, Carrière SM (2015) The influence of Saharan agro-pastoralism on the structure and dynamics of acacia stands. Agric Ecosyst Environ 213: 21–31. https://doi.org/10.1016/j.agee.2015.07.013 doi: 10.1016/j.agee.2015.07.013
![]() |
[18] |
Davis DK (2005) Indigenous knowledge and the desertification debate: problematising expert knowledge in North Africa. Geoforum 36: 509–524. https://doi.org/10.1016/j.geoforum.2004.08.003 doi: 10.1016/j.geoforum.2004.08.003
![]() |
[19] |
Davies J, Hatfield R (2007) The Economics of Mobile Pastoralism: A Global Summary. Nomad People 11: 91–116. https://doi.org/10.3167/np.2007.110106 doi: 10.3167/np.2007.110106
![]() |
[20] |
Trimble MJ, van Aarde RJ (2014) Supporting conservation with biodiversity research in sub-Saharan Africa's human-modified landscapes. Biodivers Conserv 23: 2345–2369. https://doi.org/10.1007/s10531-014-0716-4 doi: 10.1007/s10531-014-0716-4
![]() |
[21] | FAOSTAT (2021) Agri-Environmental Indicators - Land use indicators, 2021. Available from: http://www.fao.org/faostat/en/#data/EL. |
[22] | FAO (2021) Definitions: Land Use/Land Cover, 2021. Available from: https://www.fao.org/economic/the-statistics-division-ess/other-statistics/socio-economic-agricultural-and-environmental-indicators/compendium-of-agricultural-environmental-indicators-1989-91-to-2000/annex-2-definitions/en. |
[23] |
Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6: e1000097. https://doi.org/10.1371/journal.pmed.1000097 doi: 10.1371/journal.pmed.1000097
![]() |
[24] |
El Bilali H (2021) Organic food and farming in West Africa: A systematic review. Landbauforsch–J Sustain Org Agric Syst 70: 94–102. https://doi.org/10.3220/LBF1611507579000 doi: 10.3220/LBF1611507579000
![]() |
[25] |
Bateki CA, Cadisch G, Dickhoefer U (2019) Modelling sustainable intensification of grassland-based ruminant production systems: A review. Glob Food Sec 23: 85–92. https://doi.org/10.1016/j.gfs.2019.04.004 doi: 10.1016/j.gfs.2019.04.004
![]() |
[26] |
Koura BI, Yassegoungbe FP, Afatondji CU, et al. (2021) Diversity and nutritional values of leaves of trees and shrubs used as supplements for goats in the sub-humid areas of Benin (West Africa). Trop Anim Health Prod 53: 133. https://doi.org/10.1007/s11250-021-02559-9 doi: 10.1007/s11250-021-02559-9
![]() |
[27] |
Ahozonlin MC, Dossa LH (2020) Diversity and Resilience to Socio-Ecological Changes of Smallholder Lagune Cattle Farming Systems of Benin. Sustainability 12: 7616. https://doi.org/10.3390/su12187616 doi: 10.3390/su12187616
![]() |
[28] |
Dendoncker M, Vincke C (2020) Low topographic positions enhance woody vegetation stability in the Ferlo (Senegalese Sahel). J Arid Environ 175: 104087. https://doi.org/10.1016/j.jaridenv.2019.104087 doi: 10.1016/j.jaridenv.2019.104087
![]() |
[29] |
Dendoncker M, Brandt M, Rasmussen K, et al. (2020) 50 years of woody vegetation changes in the Ferlo (Senegal) assessed by high-resolution imagery and field surveys. Reg Environ Chang 20: 137. https://doi.org/10.1007/s10113-020-01724-4 doi: 10.1007/s10113-020-01724-4
![]() |
[30] |
Jimoh SO, Muraina TO, Bello SK, et al. (2020) Emerging issues in grassland ecology research: Perspectives for advancing grassland studies in Nigeria. Acta Oecologica 106: 103548. https://doi.org/10.1007/s10113-020-01724-4 doi: 10.1007/s10113-020-01724-4
![]() |
[31] |
Scheper C, Bohlouli M, Brügemann K, et al. (2020) The role of agro‐ecological factors and transboundary transhumance in shaping the genetic diversity in four indigenous cattle populations of Benin. J Anim Breed Genet 137: 622–640. https://doi.org/10.1111/jbg.12495 doi: 10.1111/jbg.12495
![]() |
[32] |
Charles LS, Dwyer JM, Chapman HM, et al. (2019) Landscape structure mediates zoochorous-dispersed seed rain under isolated pasture trees across distinct tropical regions. Landsc Ecol 34: 1347–1362. https://doi.org/10.1007/s10980-019-00846-3 doi: 10.1007/s10980-019-00846-3
![]() |
[33] |
Ezukanma IO, Ogundipe OT, Glime J (2019) Bryophytes Associated with Termite Mounds on the Northeastern Nigerian Highlands. Cryptogam Bryol 40: 31. https://doi.org/10.5252/cryptogamie-bryologie2019v40a5 doi: 10.5252/cryptogamie-bryologie2019v40a5
![]() |
[34] |
Houessou SO, Dossa LH, Diogo RVC, et al. (2019) Confronting pastoralists' knowledge of cattle breeds raised in the extensive production systems of Benin with multivariate analyses of morphological traits. PLoS One 14: e0222756. https://doi.org/10.1371/journal.pone.0222756 doi: 10.1371/journal.pone.0222756
![]() |
[35] |
Houessou SO, Dossa LH, Diogo RVC, et al. (2019) Change and continuity in traditional cattle farming systems of West African Coast countries: A case study from Benin. Agric Syst 168: 112–122. https://doi.org/10.1016/j.agsy.2018.11.003 doi: 10.1016/j.agsy.2018.11.003
![]() |
[36] |
Leßmeister A, Bernhardt‐Römermann M, Schumann K, et al. (2019) Vegetation changes over the past two decades in a West African savanna ecosystem. Appl Veg Sci 22: 230–242. https://doi.org/10.1111/avsc.12428 doi: 10.1111/avsc.12428
![]() |
[37] |
Naah J-BSN, Braun B (2019) Local agro-pastoralists' perspectives on forage species diversity, habitat distributions, abundance trends and ecological drivers for sustainable livestock production in West Africa. Sci Rep 9: 1707. https://doi.org/10.1038/s41598-019-38636-1 doi: 10.1038/s41598-019-38636-1
![]() |
[38] |
Sanou L, Savadogo P, Zida D, et al. (2019) Contrasting land use systems influence soil seed bank composition and density in a rural landscape mosaic in West Africa. Flora 250: 79–90. https://doi.org/10.1016/j.flora.2018.11.013 doi: 10.1016/j.flora.2018.11.013
![]() |
[39] | Antwi EK, Mensah R, Attua EM, et al. (2018) Assessing Land and Ecosystem Management at the Local Level in the Savannah Ecological Zone and the Implications for Sustainability, In: Saito O, KranjacBerisavljevic G, Takeuchi K, et al. (Eds.), Strategies for Building Resilience against Climate and Ecosystem Changes in Sub-Saharan Africa, Tokyo, Springer Japan KK, 149–177. https://doi.org/10.1007/978-981-10-4796-1_9 |
[40] |
Assouma MH, Lecomte P, Hiernaux P, et al. (2018) How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livest Sci 216: 16–23. https://doi.org/10.1016/j.livsci.2018.07.002 doi: 10.1016/j.livsci.2018.07.002
![]() |
[41] |
Muhammad SI, Ramli R, Then AY (2018) Seasonality, habitat type and locality influenced bird assemblage structure in Nigeria. Ostrich 89: 221–231. https://doi.org/10.2989/00306525.2018.1425927 doi: 10.2989/00306525.2018.1425927
![]() |
[42] |
Ouachinou JM-AS, Dassou GH, Azihou AF, et al. (2018) Breeders' knowledge on cattle fodder species preference in rangelands of Benin. J Ethnobiol Ethnomed 14: 66. https://doi.org/10.1186/s13002-018-0264-1 doi: 10.1186/s13002-018-0264-1
![]() |
[43] |
Pierre C, Kergoat L, Hiernaux P, et al. (2018) Impact of Agropastoral Management on Wind Erosion in Sahelian Croplands. L Degrad Dev 29: 800–811. https://doi.org/10.1002/ldr.2783 doi: 10.1002/ldr.2783
![]() |
[44] |
Sanou L, Zida D, Savadogo P, et al. (2018) Comparison of aboveground vegetation and soil seed bank composition at sites of different grazing intensity around a savanna-woodland watering point in West Africa. J Plant Res 131: 773–788. https://doi.org/10.1007/s10265-018-1048-3 doi: 10.1007/s10265-018-1048-3
![]() |
[45] |
Tamou C, de Boer IJM, Ripoll-Bosch R, et al. (2018) Understanding roles and functions of cattle breeds for pastoralists in Benin. Livest Sci 210: 129–136. https://doi.org/10.1016/j.livsci.2018.02.013 doi: 10.1016/j.livsci.2018.02.013
![]() |
[46] | Zliobaite I, Tang H, Saarinen J, et al. (2018) Dental ecometrics of tropical Africa: linking vegetation types and communities of large plant-eating mammals. Evol Ecol Res 19: 127–147. |
[47] |
Brandt M, Tappan G, Diouf A, et al. (2017) Woody Vegetation Die off and Regeneration in Response to Rainfall Variability in the West African Sahel. Remote Sens 9: 39. https://doi.org/10.3390/rs9010039 doi: 10.3390/rs9010039
![]() |
[48] |
Naah J-BSN, Guuroh RT (2017) Factors influencing local ecological knowledge of forage resources: Ethnobotanical evidence from West Africa's savannas. J Environ Manage 188: 297–307. https://doi.org/10.1016/j.jenvman.2016.11.064 doi: 10.1016/j.jenvman.2016.11.064
![]() |
[49] |
Nero BF, Campion BB, Agbo N, et al. (2017) Tree and Trait Diversity, Species Coexistence, and Diversity-functional Relations of Green Spaces in Kumasi, Ghana. Procedia Eng 198: 99–115. https://doi.org/10.1016/j.proeng.2017.07.164 doi: 10.1016/j.proeng.2017.07.164
![]() |
[50] |
Sunderland T, Abdoulaye R, Ahammad R, et al. (2017) A methodological approach for assessing cross-site landscape change: Understanding socio-ecological systems. For Policy Econ 84: 83–91. https://doi.org/10.1016/j.forpol.2017.04.013 doi: 10.1016/j.forpol.2017.04.013
![]() |
[51] |
Tindano K, Moula N, Traoré A, et al. (2017) Assessing the diversity of preferences of suburban smallholder sheep keepers for breeding rams in Ouagadougou, Burkina Faso. Trop Anim Health Prod 49: 1187–1193. https://doi.org/10.1007/s11250-017-1315-7 doi: 10.1007/s11250-017-1315-7
![]() |
[52] |
Vall E, Marre-Cast L, Kamgang HJ (2017) Chemins d'intensification et durabilité des exploitations de polyculture-élevage en Afrique subsaharienne : contribution de l'association agriculture-élevage. Cah Agric 26: 25006. https://doi.org/10.1051/cagri/2017011 doi: 10.1051/cagri/2017011
![]() |
[53] |
Volpato G, Dioli M, Di Nardo A (2017) Piebald Camels. Pastoralism 7: 3. https://doi.org/10.1186/s13570-017-0075-3 doi: 10.1186/s13570-017-0075-3
![]() |
[54] |
Bocksberger G, Schnitzler J, Chatelain C, et al. (2016) Climate and the distribution of grasses in West Africa. J Veg Sci 27: 306–317. https://doi.org/10.1111/jvs.12360 doi: 10.1111/jvs.12360
![]() |
[55] |
Rasmussen K, D'haen S, Fensholt R, et al. (2016) Environmental change in the Sahel: reconciling contrasting evidence and interpretations. Reg Environ Chang 16: 673–680. https://doi.org/10.1007/s10113-015-0778-1 doi: 10.1007/s10113-015-0778-1
![]() |
[56] | Sewade C, Azihou AF, Fandohan AB, et al. (2016) Diversity, pastoral and conservation priorities of fodder trees in the Sudano-Guinean pasture lands of Benin. Biotechnol Agron Soc Environ 20: 113–129. |
[57] | Zinsstag J, Bonfoh B, Zinsstag G, et al. (2016) A vision for the future of pastoralism. Rev Sci Tech l'OIE 35: 693–716. |
[58] |
Abdussamad AM, Charruau P, Kalla DJU, et al. (2015) Validating local knowledge on camels: Colour phenotypes and genetic variation of dromedaries in the Nigeria-Niger corridor. Livest Sci 181: 131–136. https://doi.org/10.1016/j.livsci.2015.07.008 doi: 10.1016/j.livsci.2015.07.008
![]() |
[59] |
Agossou Yao DAR, Sprycha Y, Porembski S, et al. (2015) AFLP assessment of the genetic diversity of Calotropis procera (Apocynaceae) in the West Africa region (Benin). Genet Resour Crop Evol 62: 863–878. https://doi.org/10.1007/s10722-014-0197-z doi: 10.1007/s10722-014-0197-z
![]() |
[60] |
Brugière D, Chardonnet B, Scholte P (2015) Large-Scale Extinction of Large Carnivores (Lion Panthera Leo, Cheetah Acinonyx Jubatus and Wild Dog Lycaon Pictus) in Protected Areas of West and Central Africa. Trop Conserv Sci 8: 513–527. https://doi.org/10.1177/194008291500800215 doi: 10.1177/194008291500800215
![]() |
[61] | Dendoncker M, Ngom D, Vincke C (2015) Trees dynamics (1955-2012) and their uses in the Senegal's Ferlo region: insights from a historical vegetation database, local knowledge and field inventories. Bois Forets des Trop 2015: 25–41. |
[62] |
Diarisso T, Corbeels M, Andrieu N, et al. (2015) Biomass transfers and nutrient budgets of the agro-pastoral systems in a village territory in south-western Burkina Faso. Nutr Cycl Agroecosystems 101: 295–315. https://doi.org/10.1007/s10705-015-9679-4 doi: 10.1007/s10705-015-9679-4
![]() |
[63] |
Koura IB, Dossa LH, Kassa BD, et al. (2015) Adaptation of Periurban Cattle Production Systems to Environmental Changes: Feeding Strategies of Herdsmen in Southern Benin. Agroecol Sustain Food Syst 39: 83–98. https://doi.org/10.1080/21683565.2014.953662 doi: 10.1080/21683565.2014.953662
![]() |
[64] |
Sanon O, Ouattara F, Savadogo M (2015) Seasonal dynamic of pasture production in the Sahelian rangeland of Burkina Faso. J Agric Environ Int Dev 109: 123–138. https://doi.org/10.12895/jaeid.20151.317 doi: 10.12895/jaeid.20151.317
![]() |
[65] |
Traoré S, Tigabu M, Jouquet P, et al. (2015) Long-term effects of Macrotermes termites, herbivores and annual early fire on woody undergrowth community in Sudanian woodland, Burkina Faso. Flora-Morphol Distrib Funct Ecol Plants 211: 40–50. https://doi.org/10.1016/j.flora.2014.12.004 doi: 10.1016/j.flora.2014.12.004
![]() |
[66] | Badji M, Sanogo D, Akpo LE (2014) Dynamics of Woody Vegetation in Village Woodland and Grazing Reserves in South Senegal's Groundnut Basin. Bois Forets des Trop 2014: 43–52. |
[67] |
Dardel C, Kergoat L, Hiernaux P, et al. (2014) Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens Environ 140: 350–364. https://doi.org/10.1016/j.rse.2013.09.011 doi: 10.1016/j.rse.2013.09.011
![]() |
[68] | Mueller J V. (2013) Floristic and Structural Pattern and Current Distribution of Tiger Bush Vegetation in Burkina Faso (West Africa), Assessed by Means of Belt Transects and Spatial Analysis. Appl Ecol Environ Res 11: 153–171. |
[69] | Sawadogo I, Devineau J-L, Fournier A (2012) The condition of pastoral resources of a land of reception and transit for transhumant herders: the Kotchari territory (Southeastern Burkina Faso). Rev d'Ecologie-La Terre la Vie 67: 157–178. |
[70] |
Wala K, Woegan AY, Borozi W, et al. (2012) Assessment of vegetation structure and human impacts in the protected area of Alédjo (Togo). Afr J Ecol 50: 355–366. https://doi.org/10.1111/j.1365-2028.2012.01334.x doi: 10.1111/j.1365-2028.2012.01334.x
![]() |
[71] | Akoudjin M, Cesar J, Kombassere A, et al. (2011) Spatio-temporal variability of fruit feeding insects used as ecological indicators in West Africa. Bois Forets des Trop 308: 21–32. |
[72] |
Ayantunde AA, de Leeuw J, Turner MD, et al. (2011) Challenges of assessing the sustainability of (agro)-pastoral systems. Livest Sci 139: 30–43. https://doi.org/10.1016/j.livsci.2011.03.019 doi: 10.1016/j.livsci.2011.03.019
![]() |
[73] |
Manu S, Imong IS, Cresswell W (2010) Bird species richness and diversity at montane Important Bird Area (IBA) sites in south-eastern Nigeria. Bird Conserv Int 20: 231–239. https://doi.org/10.1017/S0959270909990311 doi: 10.1017/S0959270909990311
![]() |
[74] |
Hiernaux P, Ayantunde A, Kalilou A, et al. (2009) Trends in productivity of crops, fallow and rangelands in Southwest Niger: Impact of land use, management and variable rainfall. J Hydrol 375: 65–77. https://doi.org/10.1016/j.jhydrol.2009.01.032 doi: 10.1016/j.jhydrol.2009.01.032
![]() |
[75] |
Hiernaux P, Diarra L, Trichon V, et al. (2009) Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J Hydrol 375: 103–113. https://doi.org/10.1016/j.jhydrol.2009.01.043 doi: 10.1016/j.jhydrol.2009.01.043
![]() |
[76] |
Savadogo P, Tigabu M, Sawadogo L, et al. (2009) Examination of multiple disturbances effects on herbaceous vegetation communities in the Sudanian savanna-woodland of West Africa. Flora-Morphol Distrib Funct Ecol Plants 204: 409–422. https://doi.org/10.1016/j.flora.2008.04.004 doi: 10.1016/j.flora.2008.04.004
![]() |
[77] | Kiem A, Nianogo AJ, Ouedraogo T (2008) Effect of rock bunds on the regeneration of the vegetation of a natural pasture on open glacis in the Sahelian region of Burkina Faso. Cah Agric 17: 281–288. |
[78] |
Klop E, Prins HHT (2008) Diversity and species composition of West African ungulate assemblages: effects of fire, climate and soil. Glob Ecol Biogeogr 17: 778–787. https://doi.org/10.1111/j.1466-8238.2008.00416.x doi: 10.1111/j.1466-8238.2008.00416.x
![]() |
[79] |
Savadogo P, Tiveau D, Sawadogo L, et al. (2008) Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspect Plant Ecol Evol Syst 10: 179–195. https://doi.org/10.1016/j.ppees.2008.03.002 doi: 10.1016/j.ppees.2008.03.002
![]() |
[80] |
Traoré S, Lepage M (2008) Effects of controlled livestock grazing and annual prescribed fire on epigeal termite mounds in a savannah woodland in Burkina Faso. Insectes Soc 55: 183–189. https://doi.org/10.1007/s00040-008-0998-1 doi: 10.1007/s00040-008-0998-1
![]() |
[81] |
Traoré S, Nygård R, Guinko S, et al. (2008) Impact of Macrotermes termitaria as a source of heterogeneity on tree diversity and structure in a Sudanian savannah under controlled grazing and annual prescribed fire (Burkina Faso). For Ecol Manage 255: 2337–2346. https://doi.org/10.1016/j.foreco.2007.12.045 doi: 10.1016/j.foreco.2007.12.045
![]() |
[82] |
Bouyer J, Sana Y, Samandoulgou Y, et al. (2007) Identification of ecological indicators for monitoring ecosystem health in the trans-boundary W Regional Park: A pilot study. Biol Conserv 138: 73–88. https://doi.org/10.1016/j.biocon.2007.04.001 doi: 10.1016/j.biocon.2007.04.001
![]() |
[83] |
Devineau J-L, Fournier A (2007) Integrating environmental and sociological approaches to assess the ecology and diversity of herbaceous species in a Sudan-type savanna (Bondoukuy, western Burkina Faso). Flora-Morphol Distrib Funct Ecol Plants 202: 350–370. https://doi.org/10.1016/j.flora.2006.08.004 doi: 10.1016/j.flora.2006.08.004
![]() |
[84] |
Jamnadass R, Mace ES, Hiernaux P, et al. (2006) Population genetic responses of wild forage species to grazing along a rainfall gradient in the Sahel: A study combining phenotypic and molecular analyses. Euphytica 151: 431–445. https://doi.org/10.1007/s10681-006-9175-7 doi: 10.1007/s10681-006-9175-7
![]() |
[85] | Kiema A, Sanon HO (2006) Régénération des pâ turages naturels en région sahélienne par le labour et l'ensemencement d'Alysicarpus ovalifolius. Cah Agric 15: 417–424. |
[86] |
Thiollay JM (2006) Large Bird Declines with Increasing Human Pressure in Savanna Woodlands (Burkina Faso). Biodivers Conserv 15: 2085–2108. https://doi.org/10.1007/s10531-004-6684-3 doi: 10.1007/s10531-004-6684-3
![]() |
[87] | Gardiner A, Reid R, Kiema S (2005) Impact of land-use on butterflies in southwestern Burkina Faso. African Entomol 13: 201–212. |
[88] |
Mortimore M, Turner B (2005) Does the Sahelian smallholder's management of woodland, farm trees, rangeland support the hypothesis of human-induced desertification? J Arid Environ 63: 567–595. https://doi.org/10.1016/j.jaridenv.2005.03.005 doi: 10.1016/j.jaridenv.2005.03.005
![]() |
[89] |
Ramisch JJ (2005) Inequality, agro-pastoral exchanges, and soil fertility gradients in southern Mali. Agric Ecosyst Environ 105: 353–372. https://doi.org/10.1016/j.agee.2004.02.001 doi: 10.1016/j.agee.2004.02.001
![]() |
[90] |
Diallo MD, Martens M, Vloemans N, et al. (2004) Phylogenetic Analysis of Partial Bacterial 16S rDNA Sequences of Tropical Grass Pasture Soil under Acacia tortilis subsp. raddiana in Senegal. Syst Appl Microbiol 27: 238–252. https://doi.org/10.1078/072320204322881862 doi: 10.1078/072320204322881862
![]() |
[91] |
Madsen JE, Lykke AM, Boussim J, et al. (2003) Floristic composition of two 100 km reference sites in West African cultural landscapes. Nord J Bot 23: 99–114. https://doi.org/10.1111/j.1756-1051.2003.tb00372.x doi: 10.1111/j.1756-1051.2003.tb00372.x
![]() |
[92] |
Söderström B, Kiema S, Reid RS (2003) Intensified agricultural land-use and bird conservation in Burkina Faso. Agric Ecosyst Environ 99: 113–124. https://doi.org/10.1016/S0167-8809(03)00144-0 doi: 10.1016/S0167-8809(03)00144-0
![]() |
[93] | de La Rocque S, Augusseau X, Guillobez S, et al. (2001) The changing distribution of two riverine tsetse flies over 15 years in an increasingly cultivated area of Burkina Faso. Bull Entomol Res 91: 157–166. |
[94] | Devineau J (1999) Effect of cattle on the fallow-crop rotation in a Sudanian region: The dispersal of plants that colonize open habitats (Bondoukuy, sud-ouest du Burkina Faso). Rev d'Ecologie-La Terre la Vie 54: 97–121. |
[95] |
Hiernaux P, Gérard B (1999) The influence of vegetation pattern on the productivity, diversity and stability of vegetation: The case of 'brousse tigrée' in the Sahel. Acta Oecologica 20: 147–158. https://doi.org/10.1016/S1146-609X(99)80028-9 doi: 10.1016/S1146-609X(99)80028-9
![]() |
[96] |
Vickery J, Rowcliffe M, Cresswell W, et al. (1999) Habitat selection by Whitethroats Sylvia communis during spring passage in the Sahel zone of northern Nigeria. Bird Study 46: 348–355. https://doi.org/10.1080/00063659909461149 doi: 10.1080/00063659909461149
![]() |
[97] |
Hiernaux P (1998) Effects of grazing on plant species composition and spatial distribution in rangelands of the Sahel. Plant Ecol 138: 191–202. https://doi.org/10.1023/A:1009752606688 doi: 10.1023/A:1009752606688
![]() |
[98] |
Peters M, Kramer H, Tarawali S, et al. (1998) Characterization of a germplasm collection of the tropical pasture legume Centrosema brasilianum in subhumid West Africa. J Agric Sci 130: 139–147. https://doi.org/10.1017/S0021859697004991 doi: 10.1017/S0021859697004991
![]() |
1. | Nezihal Gokbulut, Evren Hincal, Hasan Besim, Bilgen Kaymakamzade, Reducing the Range of Cancer Risk on BI-RADS 4 Subcategories via Mathematical Modelling, 2022, 133, 1526-1506, 93, 10.32604/cmes.2022.019782 |
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 0.0068, j=6 | 0.0032, j=6 | 0.0016, j=6 |
m=2 | 0.0071, j=6 | 0.0033, j=6 | 0.0016, j=6 |
m=3 | 0.0073, j=6 | 0.0034, j=6 | 0.0017, j=6 |
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 5.5516e-5, j=7 | 1.3882e-5, j=7 | 3.4708e-6, j=7 |
m=2 | 8.7420e-5, j=7 | 2.1857e-5, j=7 | 5.4645e-6, j=7 |
m=3 | 1.1120e-4, j=7 | 2.7803e-5, j=7 | , 6.9510e-6j=7 |
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 0.0068, j=6 | 0.0032, j=6 | 0.0016, j=6 |
m=2 | 0.0071, j=6 | 0.0033, j=6 | 0.0016, j=6 |
m=3 | 0.0073, j=6 | 0.0034, j=6 | 0.0017, j=6 |
\left(jE^{m}\right) _{M}^{N} | N=M=20 | N=M=40 | N=M=80 |
m=1 | 5.5516e-5, j=7 | 1.3882e-5, j=7 | 3.4708e-6, j=7 |
m=2 | 8.7420e-5, j=7 | 2.1857e-5, j=7 | 5.4645e-6, j=7 |
m=3 | 1.1120e-4, j=7 | 2.7803e-5, j=7 | , 6.9510e-6j=7 |