Research article

Evaluating the acceptance of CBDCs: experimental research with artificial intelligence (AI) generated synthetic response

  • Received: 31 October 2024 Revised: 28 February 2025 Accepted: 25 March 2025 Published: 31 March 2025
  • JEL Codes: B26, C53, G40, G41

  • This research examines the factors that influence the public's expectation for more information, acceptance or rejection of central bank digital currencies (CBDC). Using generative AI (ChatGPT 4.0), responses were simulated to mimic CBDC adoption scenarios, considering demographic attributes, such as gender, income, education, age, level of financial literacy, network effect, media influence, and merchant acceptance. A total of 663 synthetic responses were generated and analyzed using statistical methods and multinomial logistic regression to assess the probability of acceptance, rejection, or waiting for more information to decide. The chi-squared automatic interaction detection (CHAID) model showed a high performance in correctly classifying cases of acceptance, indecision, and rejection, presenting an accuracy of 92.6%. Multinomial logistic regression revealed that factors, such as educational level, financial experience, and income level, significantly influence the decision to accept a CBDC. This method also shows a high performance, as it obtained an accuracy of 96.4%. These results are in line with previous research and underline the effectiveness of generative AI as a reproducible and low-cost tool for analyzing hypothetical scenarios. Generative AI, with its algorithmic fidelity, has great potential for predicting human behavior in economic contexts. However, synthetic data may not capture the complexities and nuances of actual human decision making. As a result, certain contextual factors, emotional influences, and unique personal experiences that may significantly influence an individual's decision to accept or reject CBDC may be overlooked.

    Citation: Sergio Luis Náñez Alonso, Peterson K. Ozili, Beatriz María Sastre Hernández, Luís Miguel Pacheco. Evaluating the acceptance of CBDCs: experimental research with artificial intelligence (AI) generated synthetic response[J]. Quantitative Finance and Economics, 2025, 9(1): 242-273. doi: 10.3934/QFE.2025008

    Related Papers:

  • This research examines the factors that influence the public's expectation for more information, acceptance or rejection of central bank digital currencies (CBDC). Using generative AI (ChatGPT 4.0), responses were simulated to mimic CBDC adoption scenarios, considering demographic attributes, such as gender, income, education, age, level of financial literacy, network effect, media influence, and merchant acceptance. A total of 663 synthetic responses were generated and analyzed using statistical methods and multinomial logistic regression to assess the probability of acceptance, rejection, or waiting for more information to decide. The chi-squared automatic interaction detection (CHAID) model showed a high performance in correctly classifying cases of acceptance, indecision, and rejection, presenting an accuracy of 92.6%. Multinomial logistic regression revealed that factors, such as educational level, financial experience, and income level, significantly influence the decision to accept a CBDC. This method also shows a high performance, as it obtained an accuracy of 96.4%. These results are in line with previous research and underline the effectiveness of generative AI as a reproducible and low-cost tool for analyzing hypothetical scenarios. Generative AI, with its algorithmic fidelity, has great potential for predicting human behavior in economic contexts. However, synthetic data may not capture the complexities and nuances of actual human decision making. As a result, certain contextual factors, emotional influences, and unique personal experiences that may significantly influence an individual's decision to accept or reject CBDC may be overlooked.



    加载中


    [1] Abraham MP (2021) Bitcoin threat and the emergence of Central Bank Digital Currency: Regulatory and valuation challenges. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3980287 doi: 10.2139/ssrn.3980287
    [2] ABD (2023) Recent Central Bank Digital Currency Developments in Asia and Their Implications. Available from: https://www.adb.org/publications/central-bank-digital-currency-developments-asia-implications.
    [3] Ahiabenu K (2022) A comparative study of the design frameworks of the Ghanaian and Nigerian central banks' digital currencies (CBDC). FinTech 1: 235–249. https://doi.org/10.3390/fintech1030019 doi: 10.3390/fintech1030019
    [4] Alfar AJK, Kumpamool C, Nguyen DTK, et al. (2023) The determinants of issuing central bank digital currencies. Res Int Bus Financ 64: 101884. https://doi.org/10.1016/j.ribaf.2023.101884 doi: 10.1016/j.ribaf.2023.101884
    [5] Alonso SLN (2023) Can Central Bank Digital Currencies be green and sustainable? Green Financ 5: 603–623. https://doi.org/10.3934/gf.2023023 doi: 10.3934/gf.2023023
    [6] Alonso SLN, Fernández MÁE, Bas DS, et al. (2024) El Salvador: An analysis of the monetary integration law and the bitcoin law. Braz J Polit Econ 44: 189–209. https://doi.org/10.1590/0101-31572024-3459 doi: 10.1590/0101-31572024-3459
    [7] Alonso SLN, Jorge-Vázquez J, Rodríguez PA, et al. (2023) Gender gap in the ownership and use of cryptocurrencies: Empirical evidence from Spain. J Open Innov: Tech Mark Complex 9: 100103. https://doi.org/10.1016/j.joitmc.2023.100103 doi: 10.1016/j.joitmc.2023.100103
    [8] Amarta CC, Latifah FN (2023) Influence of understanding financial literacy and community readiness on the use of central bank digital currency (CBDC). J Ekonomi Syariah Indonesia 13: 45–53. https://doi.org/10.21927/jesi.2023.13(1).45-53 doi: 10.21927/jesi.2023.13(1).45-53
    [9] Amirova A, Fteropoulli T, Ahmed N, et al. (2024) Framework-based qualitative analysis of free responses of Large Language Models: Algorithmic fidelity. PLOS ONE 19: e0300024. https://doi.org/10.1371/journal.pone.0300024 doi: 10.1371/journal.pone.0300024
    [10] Anjaria M, Guddeti RMR (2014) Influence factor based opinion mining of Twitter data using supervised learning. 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS). http://dx.doi.org/10.1109/comsnets.2014.6734907
    [11] Argyle LP, Busby EC, Fulda N, et al. (2023) Out of one, many: Using language models to simulate human samples. Polit Anal 31: 337–351. https://doi.org/10.1017/pan.2023.2 doi: 10.1017/pan.2023.2
    [12] Bank for International Settlements (BIS) (2021) Central bank digital currencies: user needs and adoption. Bank for International Settlements. Available from: https://www.bis.org/publ/othp42_user_needs.pdf.
    [13] Batrancea I, Batrancea L, Maran Rathnaswamy M, et al. (2020) Greening the financial system in USA, Canada and Brazil: A panel data analysis. Mathematics 8: 2217. https://doi.org/10.3390/math8122217 doi: 10.3390/math8122217
    [14] Bertsimas D, Dunn J (2017) Optimal classification trees. Mach Learn 106: 1039–1082. https://doi.org/10.1007/s10994-017-5633-9 doi: 10.1007/s10994-017-5633-9
    [15] Bijlsma M, van der Cruijsen C, Jonker N, et al. (2024) What triggers consumer adoption of central bank digital currency? J Financ Serv Res 65: 1–40. https://doi.org/10.1007/s10693-023-00420-8 doi: 10.1007/s10693-023-00420-8
    [16] Brand J, Israeli A, Ngwe D (2023) Using GPT for market research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4395751 doi: 10.2139/ssrn.4395751
    [17] Carbo-Valverde S, Cuadros-Solas P, Rodríguez-Fernández F (2020) A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests. PLOS ONE 15: e0240362. https://doi.org/10.1371/journal.pone.0240362 doi: 10.1371/journal.pone.0240362
    [18] Casaló LV, Flavián C, Ibáñez-Sánchez S (2020) Influencers on Instagram: Antecedents and consequences of opinion leadership. J Bus Res 117: 510–519. https://doi.org/10.1016/j.jbusres.2018.07.005 doi: 10.1016/j.jbusres.2018.07.005
    [19] Choi S, Kim YS, Kim B, et al. (2022) Central Bank digital currency and privacy: A randomized survey experiment. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4204110 doi: 10.2139/ssrn.4204110
    [20] Dai S, Xu C, Xu S, et al. (2024) Bias and unfairness in information retrieval systems: New challenges in the LLM era. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6437–6447. https://doi.org/10.1145/3637528.3671458
    [21] Das M, Mancini-Griffoli T, Nakamura F, et al. (2023) Implications of central bank digital currencies for monetary policy transmission, IMF. Available from: https://www.imf.org/en/Publications/fintech-notes/Issues/2023/09/15/Implications-of-Central-Bank-Digital-Currencies-for-Monetary-Policy-Transmission-538517.
    [22] Delen D, Kuzey C, Uyar A (2013) Measuring firm performance using financial ratios: A decision tree approach. Expert Syst Appl 40: 3970–3983. https://doi.org/10.1016/j.eswa.2013.01.012 doi: 10.1016/j.eswa.2013.01.012
    [23] de Sèze N (2023) Monnaies numériques de banque centrale: Une mise en perspective des travaux à travers le monde. Revue d'économie Financière 149: 91–105. https://doi.org/10.3917/ecofi.149.0091 doi: 10.3917/ecofi.149.0091
    [24] Di Maggio M, Ghosh P, Ghosh SK, et al. (2024) Impact of Retail CBDC on Digital Payments, and Bank Deposits: Evidence from India (No. w32457). National Bureau of Economic Research.
    [25] Dillion D, Tandon N, Gu Y, et al. (2023) Can AI language models replace human participants? Trends Cogn Sci 27: 597–600. https://doi.org/10.1016/j.tics.2023.04.008 doi: 10.1016/j.tics.2023.04.008
    [26] Dunbar K (2023) CBDC uncertainty: Financial market implications. Int Rev Financ Anal 87: 102607. https://doi.org/10.1016/j.irfa.2023.102607 doi: 10.1016/j.irfa.2023.102607
    [27] Dunbar K, Treku DN (2024) Examining the impact of a central bank digital currency on the access to banking. Int Rev Financ Anal 93: 103220. https://doi.org/10.1016/j.irfa.2024.103220 doi: 10.1016/j.irfa.2024.103220
    [28] Durica M, Frnda J, Svabova L (2023) Artificial neural network and decision tree-based modelling of non-prosperity of companies. Equilibrium 18: 1105–1131. https://doi.org/10.24136/eq.2023.035 doi: 10.24136/eq.2023.035
    [29] Echterhoff JM, Liu Y, Alessa A, et al. (2024) Cognitive bias in decision-making with llms. Findings of the Association for Computational Linguistics: EMNLP 2024, 12640–12653. https://doi.org/10.18653/v1/2024.findings-emnlp.739
    [30] Escobar Mercado RM (2002) Las aplicaciones del análisis de segmentación: El procedimiento Chaid. Empiria. Revista de Metodología de Ciencias Sociales, 13–49. https://doi.org/10.5944/empiria.1.1998.706 doi: 10.5944/empiria.1.1998.706
    [31] Erwanti N, Prasetyani H (2023) Investigating the adoption factors of Indonesia's Central Bank digital currency. Qual-Access Success 24: 262–267. https://doi.org/10.47750/qas/24.196.32 doi: 10.47750/qas/24.196.32
    [32] Fernández JJ, Fernández MÁE, Alonso SLN (2024) The asset-backing risk of stablecoin trading: The case of Tether. Econ Bus Rev 10. https://doi.org/10.18559/ebr.2024.1.1211 doi: 10.18559/ebr.2024.1.1211
    [33] Fernández-Villaverde J, Sanches D, Schilling L, et al. (2020). Central bank digital currency: Central banking for all? In Working paper (Federal Reserve Bank of Philadelphia). Federal Reserve Bank of Philadelphia. http://dx.doi.org/10.21799/frbp.wp.2020.19
    [34] Ferretti S, Furini M (2023) On using twitter to understand the stablecoin terra collapse. Proceedings of the 2023 ACM Conference on Information Technology for Social Good. http://dx.doi.org/10.1145/3582515.3609513
    [35] Filippas A, Horton JJ, Manning BS (2024) Large language models as simulated economic agents: What can we learn from homo silicus? Proceedings of the 25th ACM Conference on Economics and Computation, 614–615. https://doi.org/10.1145/3670865.3673513
    [36] Fujiki H (2021) Attributes needed for Japan's central bank digital currency. Jpn Econ Rev 74: 117–175. https://doi.org/10.1007/s42973-021-00106-7 doi: 10.1007/s42973-021-00106-7
    [37] Fujiki H (2023) Central bank digital currency, crypto assets, and cash demand: Evidence from Japan. Appl Econ 56: 2241–2259. https://doi.org/10.1080/00036846.2023.2186362 doi: 10.1080/00036846.2023.2186362
    [38] Grossmann I, Feinberg M, Parker DC, et al. (2023). AI and the transformation of social science research. Science 380: 1108–1109. https://doi.org/10.1126/science.adi1778 doi: 10.1126/science.adi1778
    [39] Gu J, Jiang X, Shi Z, et al. (2024) A survey on llm-as-a-judge. arXiv.Org. https://arXiv.org/abs/2411.15594
    [40] Gupta M, Taneja S, Sharma V, et al. (2023) Does previous experience with the unified payments interface (UPI) affect the usage of central bank digital currency (CBDC)? J Risk Financ Manag 16: 286. https://doi.org/10.3390/jrfm16060286 doi: 10.3390/jrfm16060286
    [41] Horton J (2023) Large language models as simulated economic agents: What can we learn from homo silicus? National Bureau of Economic Research. http://dx.doi.org/10.3386/w31122
    [42] Huynh KP, Molnar J, Shcherbakov O, et al. (2020) Demand for payment services and consumer welfare: the introduction of a central bank digital currency. Bank of Canadá. Available from: https://www.bankofcanada.ca/wp-content/uploads/2020/03/swp2020-7.pdf.
    [43] Ioan B, Malar Kumaran R, Larissa B, et al. (2020) A panel data analysis on sustainable economic growth in India, Brazil, and Romania. J Risk Financ Manag 13: 170. https://doi.org/10.3390/jrfm13080170 doi: 10.3390/jrfm13080170
    [44] Jan C (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability 10: 513. https://doi.org/10.3390/su10020513 doi: 10.3390/su10020513
    [45] Jan C (2021) Financial information asymmetry: Using deep learning algorithms to predict financial distress. Symmetry 13: 443. https://doi.org/10.3390/sym13030443 doi: 10.3390/sym13030443
    [46] Jun J, Yeo E (2021) Central bank digital currency, loan supply, and bank failure risk: A microeconomic approach. Financ Innov 7. https://doi.org/10.1186/s40854-021-00296-4 doi: 10.1186/s40854-021-00296-4
    [47] Kamath U, Keenan K, Somers G, et al. (2024) LLM challenges and solutions, In: Large Language Models: A Deep Dive, Springer Nature Switzerland, 219–274. https://doi.org/10.1007/978-3-031-65647-7_6
    [48] Kanwal M, Burki U, Ali R, et al. (2021) Systematic review of gender differences and similarities in online consumers' shopping behavior. J Consum Mark 39: 29–43. https://doi.org/10.1108/jcm-01-2021-4356 doi: 10.1108/jcm-01-2021-4356
    [49] Kasemrat R, Kraiwanit T (2022) Potential Acceptance of Upcoming Thai Retail CBDC (Central Bank Digital Currency) in Thailand. Proceedings of RSU International Research Conference (2022), 241–250. https://rsucon.rsu.ac.th/files/proceedings/RSUSOC2022/IN22-004.pdf
    [50] Kazinnik S (2023) Bank run, interrupted: Modeling deposit withdrawals with generative AI. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4656722 doi: 10.2139/ssrn.4656722
    [51] Kepplinger HM (2008) Effects of the news media on public opinion, In: Donsbach, W., Traugott, M.W., The SAGE Handbook of Public Opinion Research, SAGE Publications Ltd, 192–204. http://dx.doi.org/10.4135/9781848607910.n19
    [52] Kiff J, Alwazir J, Davidovic S, et al. (2020) A survey of research on retail central bank digital currency. IMF Working Papers 20. https://doi.org/10.5089/9781513547787.001 doi: 10.5089/9781513547787.001
    [53] Korinek A (2023) Generative AI for economic research: Use cases and implications for economists. J Econ Lit 61: 1281–1317. https://doi.org/10.1257/jel.20231736 doi: 10.1257/jel.20231736
    [54] Kosse A, Mattei I (2023) Making headway - Results of the 2022 BIS survey on central bank digital currencies and crypto. BIS.Org; Bank for International Settlements. Available from: https://www.bis.org/publ/bppdf/bispap136.htm.
    [55] Koyuncugil AS, Ozgulbas N (2012) Financial early warning system model and data mining application for risk detection. Expert Syst Appl 39: 6238–6253. https://doi.org/10.1016/j.eswa.2011.12.021 doi: 10.1016/j.eswa.2011.12.021
    [56] Koziuk V (2021) Confidence in digital money: Are central banks more trusted than age is matter? Invest Manag Financ Innov 18: 12–32. https://doi.org/10.21511/imfi.18(1).2021.02 doi: 10.21511/imfi.18(1).2021.02
    [57] Lamberty R, Kirste D, Kannengießer N, et al. (2024) HybCBDC: A design for central bank digital currency systems enabling digital cash. IEEE Access 12: 137712–137728. https://doi.org/10.1109/access.2024.3458451 doi: 10.1109/access.2024.3458451
    [58] Lee DKC, Yan L, Wang Y (2021) A global perspective on central bank digital currency. China Econ J 14: 52–66. https://doi.org/10.1080/17538963.2020.1870279 doi: 10.1080/17538963.2020.1870279
    [59] Lee N, An N, Thorne J (2023) Can large language models capture dissenting human voices? Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. http://dx.doi.org/10.18653/v1/2023.emnlp-main.278
    [60] Lekhi P, Ayinde KS, Toobaee M (2024) Technological breakthroughs in financial services: Payment services, BNPL, and cbdcs, In: Turi, A.N., Lekhi, P. (eds), Innovation, Sustainability, and Technological Megatrends in the Face of Uncertainties, Springer Nature Switzerland, 73–80. http://dx.doi.org/10.1007/978-3-031-46189-7_5
    [61] León C, Moreno JF, Soramäki K (2024) Simulating the adoption of a retail CBDC. Jahrbücher Für Nationalökonomie Und Statistik. https://doi.org/10.1515/jbnst-2024-0002 doi: 10.1515/jbnst-2024-0002
    [62] Li J (2023) Predicting the demand for central bank digital currency: A structural analysis with survey data. J Monetary Econ 134: 73–85. https://doi.org/10.1016/j.jmoneco.2022.11.007 doi: 10.1016/j.jmoneco.2022.11.007
    [63] Liu X, Wang Q, Wu G, et al. (2022) Determinants of individuals' intentions to use central bank digital currency: Evidence from China. Technol Anal Strateg Manage 36: 2213–2227. https://doi.org/10.1080/09537325.2022.2131517 doi: 10.1080/09537325.2022.2131517
    [64] Liu, Y, Bhandari S, Pardos ZA (2024) Leveraging llm-respondents for item evaluation: A psychometric analysis. arXiv.Org. https://arXiv.org/abs/2407.10899
    [65] Lozano-Blasco R, Mira-Aladrén M, Gil-Lamata M (2023). Social media influence on young people and children: Analysis on Instagram, Twitter and YouTube. Comunicar 31: 125–137. https://doi.org/10.3916/c74-2023-10 doi: 10.3916/c74-2023-10
    [66] Lyócsa Š, Halousková M, Haugom E (2023) The US banking crisis in 2023: Intraday attention and price variation of banks at risk. Financ Res Lett 57: 104209. https://doi.org/10.1016/j.frl.2023.104209 doi: 10.1016/j.frl.2023.104209
    [67] Maino R, Pani M (2024) Could cbdcs lead to cash extinction? Insights from a "merchant-customer" model. Int Adv Econ Res 30: 21–45. https://doi.org/10.1007/s11294-024-09888-z doi: 10.1007/s11294-024-09888-z
    [68] Masciandaro D, Cillo A, Borgonovo E, et al. (2018) Cryptocurrencies, central bank digital cash, traditional money: Does privacy matter? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3291269 doi: 10.2139/ssrn.3291269
    [69] Millán Solarte JC, Caicedo Cerezo E (2018) Modelos para otorgamiento y seguimiento en la gestión del riesgo de crédito. Revista de Métodos Cuantitativos Para La Economía y La Empresa 25. https://doi.org/10.46661/revmetodoscuanteconempresa.2370 doi: 10.46661/revmetodoscuanteconempresa.2370
    [70] Mohammed MA, De-Pablos-Heredero C, Montes Botella JL (2023) Exploring the factors affecting countries' adoption of blockchain-enabled central bank digital currencies. Future Internet 15: 321. https://doi.org/10.3390/fi15100321 doi: 10.3390/fi15100321
    [71] Mohammed MA, De-Pablos-Heredero C, Montes Botella JL (2024) The role of financial sanctions and financial development factors on Central Bank digital currency implementation. FinTech 3: 135–150. https://doi.org/10.3390/fintech3010009 doi: 10.3390/fintech3010009
    [72] Mohammed MA, De-Pablos-Heredero C, Botella JLM (2025) Mapping the transformative realm of blockchain-enabled central bank digital currencies: A bibliometric analysis. Eurasian Econ Rev. https://doi.org/10.1007/s40822-024-00307-6 doi: 10.1007/s40822-024-00307-6
    [73] Mu C (2023) Theories and practice of exploring China's e-CNY, In: Dombret, A., Kenadjian, P.S., Data, Digitalization, Decentialized Finance and Central Bank Digital Currencies: The Future of Banking and Money, Berlin, Boston: De Gruyter, 179–190.
    [74] Náñez Alonso SL, Echarte Fernández MÁ, Sanz Bas D, et al. (2020a) Reasons fostering or discouraging the implementation of central bank-backed digital currency: A review. Economies 8: 41. https://doi.org/10.3390/economies8020041 doi: 10.3390/economies8020041
    [75] Náñez Alonso SL, Jorge-Vazquez J, Reier Forradellas RF (2020b) Detection of financial inclusion vulnerable rural areas through an access to cash index: Solutions based on the pharmacy network and a CBDC. Evidence based on ávila (spain). Sustainability 12: 7480. https://doi.org/10.3390/su12187480 doi: 10.3390/su12187480
    [76] Náñez Alonso SL, Jorge-Vazquez J, Reier Forradellas RF (2021a) Central banks digital currency: Detection of optimal countries for the implementation of a CBDC and the implication for payment industry open innovation. J Open Innov Tech Mark Complex 7: 72. https://doi.org/10.3390/joitmc7010072 doi: 10.3390/joitmc7010072
    [77] Náñez Alonso SL, Jorge-Vázquez J, Echarte Fernández MÁ, et al. (2021b) Cryptocurrency mining from an economic and environmental perspective. Analysis of the most and least sustainable countries. Energies 14: 4254. https://doi.org/10.3390/en14144254 doi: 10.3390/en14144254
    [78] Náñez Alonso SL, Echarte Fernández MÁ, Kolegowicz K, et al. (2023) ¿ Qué impulsa la adopción de CBDC o bitcoin? Evidencia derivada de la experiencia del Caribe, Centroamérica y Sudamérica. Ensayos de Economía 33: 13–40. https://doi.org/10.15446/ede.v33n63.105413 doi: 10.15446/ede.v33n63.105413
    [79] Náñez Alonso SL, Jorge-Vázquez J, Echarte Fernández MÁ, et al. (2024) Bitcoin's bubbly behaviors: Does it resemble other financial bubbles of the past? Hum Soc Sci Commun 11. https://doi.org/10.1057/s41599-024-03220-0 doi: 10.1057/s41599-024-03220-0
    [80] Ngo VM, Van Nguyen P, Nguyen HH, et al. (2023) Governance and monetary policy impacts on public acceptance of CBDC adoption. Res Int Bus Financ 64: 101865. https://doi.org/10.1016/j.ribaf.2022.101865 doi: 10.1016/j.ribaf.2022.101865
    [81] Niroula A (2024) Central Bank Credibility, Central Bank Digital Currency Adoption, and Financial Literacy: A Pilot Randomized Controlled Trial. J Emerg Technol Innov Res 11: 32–43. https://doi.org/10.6084/m9.jetir.JETIR2403305 doi: 10.6084/m9.jetir.JETIR2403305
    [82] Ogunmola GA, Das U (2024) Analyzing consumer perceptions and adoption intentions of central bank digital currency: A case of the digital rupee. Digit Policy Regul Gov 26: 450–471. https://doi.org/10.1108/dprg-09-2023-0136 doi: 10.1108/dprg-09-2023-0136
    [83] Oh EY, Zhang S (2022) Informal economy and central bank digital currency. Econ Inq 60: 1520–1539. https://doi.org/10.1111/ecin.13105 doi: 10.1111/ecin.13105
    [84] Ozili PK (2022) Central bank digital currency in Nigeria: Opportunities and risks, In: Grima, S., Ö zen, E., Boz, H. (Ed.), The New Digital Era: Digitalisation, Emerging Risks and Opportunities, Emerald Publishing Limited, 125–133. http://dx.doi.org/10.1108/s1569-37592022000109a008
    [85] Ozili PK (2023a) Using central bank digital currency to achieve the sustainable development goals, In: Sood, K., Balusamy, B., Grima, S. (Ed.), Digital Transformation, Strategic Resilience, Cyber Security and Risk Management, Emerald Publishing Limited, 143–153. http://dx.doi.org/10.1108/s1569-37592023000111c008
    [86] Ozili PK (2023b) Determinants of interest in eNaira and financial inclusion information in Nigeria: Role of FinTech, cryptocurrency and central bank digital currency. Digit Transform Soc 2: 202–214. https://doi.org/10.1108/dts-08-2022-0040 doi: 10.1108/dts-08-2022-0040
    [87] Ozili PK (2023c) A Survey of Central Bank Digital Currency Adoption in African countries. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4447018 doi: 10.2139/ssrn.4447018
    [88] Ozili PK (2024) Nigeria cNGN Stablecoin: Everything You Need to Know About cNGN and eNaira CBDC, In: Derbali, A. (Ed.), Blockchain Applications for Smart Contract Technologies, IGI Global Scientific Publishing, 225–233. http://dx.doi.org/10.4018/979-8-3693-1511-8.ch011
    [89] Ozili PK, Alonso SLN (2024) Central bank digital currency adoption challenges, solutions, and a sentiment analysis. J Cent Bank Theor Pract 13: 133–165. https://doi.org/10.2478/jcbtp-2024-0007 doi: 10.2478/jcbtp-2024-0007
    [90] Park JS, Zou CQ, Shaw A, et al. (2024) Generative agent simulations of 1,000 people. arXiv.Org. https://doi.org/10.48550/arXiv.2411.10109
    [91] Robinson P (2016) 10. The role of media and public opinion. In: Smith, S., Hadfield, A., Dunne, T., Foreign Policy: Theories, Actors, Cases, Oxford University Press, 186–205. http://dx.doi.org/10.1093/hepl/9780198708902.003.0010
    [92] Samudrala RS, Yerchuru SK (2021) Central bank digital currency: risks, challenges and design considerations for India. CSI Transactions on ICT 9: 245-249.
    [93] Schumacher LV (2024) Architecting a retail CBDC, In: Decoding Digital Assets, Springer Nature Switzerland, 245–311. https://doi.org/10.1007/978-3-031-54601-3_15
    [94] Sethaput V, Innet S (2023) Blockchain application for central bank digital currencies (CBDC). Cluster Comput 26: 2183–2197. https://doi.org/10.1007/s10586-022-03962-z doi: 10.1007/s10586-022-03962-z
    [95] Shahzad SJH, Anas M, Bouri E (2022) Price explosiveness in cryptocurrencies and Elon Musk's tweets. Financ Res Lett 47: 102695. https://doi.org/10.1016/j.frl.2022.102695 doi: 10.1016/j.frl.2022.102695
    [96] Shen W, Hou L (2021) China's central bank digital currency and its impacts on monetary policy and payment competition: Game changer or regulatory toolkit?. Comput Law Secur Rev 41: 105577. https://doi.org/10.1016/j.clsr.2021.105577 doi: 10.1016/j.clsr.2021.105577
    [97] Soukal I, Haviger J, Maci J (2024) Adoption of national and international cbdc in relation to privacy concerns and trust: Survey of the czech republic and slovakia. http://dx.doi.org/10.2139/ssrn.4896248
    [98] Sun T (2023) Some lessons from Asian e-money schemes for the adoption of central bank digital currency. IMF Working Papers. https://doi.org/10.5089/9798400245046.001 doi: 10.5089/9798400245046.001
    [99] Tan B (2023) Central bank digital currency adoption: A two-sided model. IMF Working Papers. https://doi.org/10.5089/9798400244858.001 doi: 10.5089/9798400244858.001
    [100] Tercero-Lucas D (2023) Central bank digital currencies and financial stability in a modern monetary system. J Financ Stab 69: 101188. https://doi.org/10.1016/j.jfs.2023.101188 doi: 10.1016/j.jfs.2023.101188
    [101] Tronnier F, Harborth D, Biker P (2023) Applying the extended attitude formation theory to central bank digital currencies. Electron Mark 33. https://doi.org/10.1007/s12525-023-00638-3 doi: 10.1007/s12525-023-00638-3
    [102] Tronnier F, Harborth D, Hamm P (2022) Investigating privacy concerns and trust in the digital Euro in Germany. Electron Commer Res Appl 53: 101158. https://doi.org/10.1016/j.elerap.2022.101158 doi: 10.1016/j.elerap.2022.101158
    [103] Tronnier F, Kakkar S (2021) Would you pay with a digital euro? Investigating usage intention in central bank digital currency. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4194173 doi: 10.2139/ssrn.4194173
    [104] Wang H (2023) How to understand China's approach to central bank digital currency?. Comput Law Secur Rev 50: 105788. https://doi.org/10.1016/j.clsr.2022.105788 doi: 10.1016/j.clsr.2022.105788
    [105] Wang H, Gao S (2023) The future of the international financial system: The emerging CBDC network and its impact on regulation. Regul Gov 18: 288–306. https://doi.org/10.1111/rego.12520 doi: 10.1111/rego.12520
    [106] Wang L (2022) Factors influencing public opinion in mass media news coverage. BCP Bus Manag 34: 1109–1114. https://doi.org/10.54691/bcpbm.v34i.3147 doi: 10.54691/bcpbm.v34i.3147
    [107] Wang Z (2023) Money laundering and the privacy design of central bank digital currency. Rev Econ Dyn 51: 604–632. https://doi.org/10.1016/j.red.2023.06.004 doi: 10.1016/j.red.2023.06.004
    [108] Wenker K (2022) Retail central bank digital currencies (CBDC), disintermediation and financial privacy: The case of the bahamian sand dollar. FinTech 1: 345–361. https://doi.org/10.3390/fintech1040026 doi: 10.3390/fintech1040026
    [109] Wu J, Liu X, Zhang C (2024) Unveiling the influencing mechanism underlying users' adoption and recommend intentions of central bank digital currency: A behavioral reasoning theory perspective. J Retail Consum Serv 81: 104050. https://doi.org/10.1016/j.jretconser.2024.104050 doi: 10.1016/j.jretconser.2024.104050
    [110] Xia H, Gao Y, Zhang JZ (2023) Understanding the adoption context of China's digital currency electronic payment. Financ Innov 9. https://doi.org/10.1186/s40854-023-00467- doi: 10.1186/s40854-023-00467
    [111] Xie C, Chen C, Jia F, et al. (2024) Can large language model agents simulate human trust behavior? arXiv.Org. https://arXiv.org/abs/2402.04559
    [112] Xiong Z, Papageorgiou V, Lee K, et al. (2024) From artificial needles to real haystacks: Improving retrieval capabilities in llms by finetuning on synthetic data. arXiv.Org. https://arXiv.org/abs/2406.19292
    [113] Zarifis A, Cheng X (2023) The six ways to build trust and reduce privacy concern in a central bank digital currency (CBDC), In: Zarifis, A., Ktoridou, D., Efthymiou, L., et al., Business Digital Transformation, Springer International Publishing, 115–138. http://dx.doi.org/10.1007/978-3-031-33665-2_6
    [114] Zhou YS, Sun T, Paduraru A, et al. (2024) Rise of Digital Money: Implications for Pacific Island Countries. International Monetary Fund, 2024. Available from: file:///C:/Users/zhuan/Downloads/RDMEA.pdf.
  • QFE-09-01-008-S001.pdf
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1151) PDF downloads(120) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog