Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article Topical Sections

ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia

  • We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic subjects). First, we match the anatomy of the brain of each individual to the Desikan-Killiany brain atlas. Then, we use the conventional approach of correlating the parcellated time series to construct FCN and ISOMAP, a nonlinear manifold learning algorithm to produce low-dimensional embeddings of the correlation matrices. For the classification analysis, we computed five key local graph-theoretic measures of the FCN and used the LASSO and Random Forest (RF) algorithms for feature selection. For the classification we used standard linear Support Vector Machines. The classification performance is tested by a double cross-validation scheme (consisting of an outer and an inner loop of “Leave one out” cross-validation (LOOCV)). The standard cross-correlation methodology produced a classification rate of 73.1%, while ISOMAP resulted in 79.3%, thus providing a simpler model with a smaller number of features as chosen from LASSO and RF, namely the participation coefficient of the right thalamus and the strength of the right lingual gyrus.

    Citation: Ioannis K Gallos, Kostakis Gkiatis, George K Matsopoulos, Constantinos Siettos. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia[J]. AIMS Neuroscience, 2021, 8(2): 295-321. doi: 10.3934/Neuroscience.2021016

    Related Papers:

    [1] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for qWeibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
    [2] G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed . Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572
    [3] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
    [4] Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz . Some bivariate and multivariate families of distributions: Theory, inference and application. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854
    [5] Aisha Fayomi, Ehab M. Almetwally, Maha E. Qura . A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data. AIMS Mathematics, 2023, 8(8): 17539-17584. doi: 10.3934/math.2023896
    [6] I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady . Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131
    [7] Ammar M. Sarhan, Rabab S. Gomaa, Alia M. Magar, Najwan Alsadat . Bivariate exponentiated generalized inverted exponential distribution with applications on dependent competing risks data. AIMS Mathematics, 2024, 9(10): 29439-29473. doi: 10.3934/math.20241427
    [8] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
    [9] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [10] Yichen Lv, Xinping Xiao . Grey parameter estimation method for extreme value distribution of short-term wind speed data. AIMS Mathematics, 2024, 9(3): 6238-6265. doi: 10.3934/math.2024304
  • We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic subjects). First, we match the anatomy of the brain of each individual to the Desikan-Killiany brain atlas. Then, we use the conventional approach of correlating the parcellated time series to construct FCN and ISOMAP, a nonlinear manifold learning algorithm to produce low-dimensional embeddings of the correlation matrices. For the classification analysis, we computed five key local graph-theoretic measures of the FCN and used the LASSO and Random Forest (RF) algorithms for feature selection. For the classification we used standard linear Support Vector Machines. The classification performance is tested by a double cross-validation scheme (consisting of an outer and an inner loop of “Leave one out” cross-validation (LOOCV)). The standard cross-correlation methodology produced a classification rate of 73.1%, while ISOMAP resulted in 79.3%, thus providing a simpler model with a smaller number of features as chosen from LASSO and RF, namely the participation coefficient of the right thalamus and the strength of the right lingual gyrus.



    In 1995, Kamps presented the notion of generalized order statistics (GOS), which is the unification of different models of ascendingly ordered random variables (RVs). The GOS incorporates significant and well-known concepts that have been discussed individually in the statistical literature. Many models of ascendingly ordered RVs, such as sequential order statistics, progressive Type-Ⅱ (PT-Ⅱ) censored order statistics, ordinary order statistics (OOS), record values, and Pfeifer's record model, are theoretically contained in the GOS model.

    Assume F(.) to be an arbitrary continuous cumulative distribution function (CDF) with probability density function (PDF) f(.). Assume also k>0, nN, and ˜m=(m1,m2,,mn1)n1 to be the parameters such that γn=k and γi=k+ni+Mi, for i=1,,n1, where Mi=n1ι=imι. Then, the RVs Xi:n,˜m,k,i=1,,n, are said to be GOS, if their joint PDF is given by

    f1,2,,n:n,˜m,k(x1,x2,,xn)=k(n1ν=1γν)(n1ν=1[ˉF(xν)]mνf(xν))[ˉF(xn)]k1f(xn), (1.1)

    where ˉF(.)=1F(.) and F1(0)<x1xn<F1(1).

    Several models of arranged RVs can be considered special instances of GOS. m1=m2==mn1=m; γi=k+(ni)(m+1), i=1,,n corresponds to m-generalized order statistics (m-GOS), γi=ni+1 (mi=0,k=1) corresponds to OOS, and mi=1;γi=k, i=1,,n, kN corresponds to k-recored values. Also, for mi=Ri, n=m0+m0ν=1Rν, RνN, and γi=ni1ν=1Rνi+1, 1im0, where m0 denotes the fixed number of failure of units to be observed, the model reduces to PT-Ⅱ censored order statistics.

    Under the condition γiγj, i,j=1,,n1,ij, Kamps and Cramer [23] derived the PDF of Xr:n,˜m,k, 1rn as

    fr:n,˜m,k(x)=Cr1f(x)ri=1ai,r[ˉF(x)]γi1, (1.2)

    and the joint PDF of Xr:n,˜m,k and Xs:n,˜m,k, r,s=1,,n,r<s as

    fr,s:n,˜m,k(x,y)=Cs1[ri=1ai,r[ˉF(x)]γi][sj=r+1a(r)j,s[ˉF(y)ˉF(x)]γj]×f(x)ˉF(x)f(y)ˉF(y),x<y, (1.3)

    where Cr1=ri=1γi, ai,r=rı=1ıi1γıγi,1irn, and a(r)j,s=sȷ=r+1ȷj1γȷγj, r+1jsn.

    It can be shown that for m1=m2==mn1=m1 (Khan and Khan [24]),

    ai,r=(1)ri(m+1)r1(r1)!(r1ri),

    and

    a(r)j,s=(1)sj(m+1)sr1(sr1)!(sr1sj).

    Therefore, the PDF of Xr:n,˜m,k given in (1.2) reduces to

    fr:n,m,k(x)=Cr1(r1)![ˉF(x)]γr1f(x)gr1m(F(x)), (1.4)

    and the joint PDF of Xr:n,˜m,k and Xs:n,˜m,k given in (1.3) reduces to

    fr,s:n,m,k(x,y)=Cs1(r1)!(sr1)![ˉF(x)]mgr1m(F(x))[hm(F(y))hm(F(x))]sr1×[ˉF(y)]γs1f(x)f(y),x<y, (1.5)

    where Cr1=ri=1γi, γi=k+(ni)(m+1), hm(x)={1m+1(1x)m+1,m1,ln(1x),m=1, and gm(x)=hm(x)hm(0), x[0,1) (see Kamps [22]).

    David [8] introduced the concept of concomitants of order statistics (COS), but Yang [47] described the general theory of COS. Concomitants are important in selection and prediction issues, ranked set sampling, parameter estimation, and the characterization of parent bivariate distributions. For a brief overview of the uses of the concomitants of ordered RVs, see Veena and Thomas [46] and the references therein. For a review of fundamental findings on COS, see Daivd and Nagaraja [9]. Furthermore, for some of the recent works on COS, we refer to Philip and Thomas [36,37,38], Kumar et al. [29], Barakat et al. [3], and Koshti and Kamalja [28].

    Several authors have investigated the concomitants of GOS (CGOS), including Ahsanullah and Nevzorov [1], Beg and Ahsanullah [4], El-Din et al. [13], Domma and Giordano [11], Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Alawady et al. [2], and Kamal et al. [20]. Let (Xi,Yi), i=1,,n be a random sample from a bivariate distribution function FX,Y(x,y). When the X-variates are ordered in ascending order as X1:n,˜m,kX2:n,˜m,kX3:n,˜m,kXn:n,˜m,k, then Y-variates paired (not necessarily in ascending order) with these GOS are called the CGOS and are indicated by Y[r:n,˜m,k], r=1,,n. The PDF of Y[r:n,˜m,k] is given by (Ahsanullah and Nevzorov, [1])

    h[r:n,˜m,k](y)=f(y|x)fr:n,˜m,k(x)dx, (1.6)

    where f(y|x) is the conditional PDF of Y given X and fr:n,˜m,k(x) is defined in (1.2).

    Moreover, the joint PDF of Y[r:n,˜m,k] and Y[s:n,˜m,k], r,s=1,,n,r<s is given by

    h[r,s:n,˜m,k](y1,y2)=x1f(y1|x1)f(y2|x2)fr,s:n,˜m,k(x1,x2)dx2dx1, (1.7)

    where fr,s:n,˜m,k(x1,x2) is given in (1.3).

    One of the most notable applications of COS is in ranked set sampling (RSS). RSS is considered a beneficial sampling strategy for improving estimation efficiency and precision if the variable under study is expensive to measure or difficult to get, yet inexpensive and simple to rank. RSS was proposed by McIntyre [31] and then supported by Takahasi and Wakimoto [45] through mathematical theory. The procedure for RSS is described as follows:

    1) Randomly choose n2 units from the population under study, then divide them into n sets of n units.

    2) Order the elements of each set without making actual measurements.

    3) Choose and quantify the ith minimum from the ith set, i=1,,n, to create a new set of size n, known as the RSS.

    4) If a large sample size is required, repeat the above three steps d times (cycles) until a sample of size nd is obtained.

    For a comprehensive review of the theory and applications of RSS, see Chen et al. [7]. In some practical applications, the study variable, say, Y, is more difficult to measure, whereas an auxiliary variable X associated with Y is easily quantifiable and may be precisely arranged. In this situation, Stokes [42] created another RSS technique, which is as follows:

    1) At random, choose n independent bivariate sets of size n.

    2) Take note of the value of the auxiliary variable on each of these units.

    3) From the ith set of size n, choose the variable Y associated with the ith smallest X, i=1,,n.

    The resulting set of n units is known as the RSS. Consider (X(i:n)i,Y[i:n]i), i=1,,n to be the pair chosen from the ith set, where X(i:n)i is the ith order statistics of the auxiliary variate in the ith set and Y[i:n]i is the measurement made on the Y variate associated with X(i:n)i. Y[i:n]i is obviously the concomitant of the ith order statistics resulting from the ith sample. Numerous authors in the literature have considered the estimation of parameters of the various bivariate distributions using RSS and its modifications. Some work in this area is by Chacko and Thomas [5], Philip and Thomas [36,37], Koshti and Kamalja [26], Irshad et al. [16,17], and Dong et al. [12].

    COS and higher moments of multivariate distributions have received a lot of attention in recent years. Most of the literature on concomitants is concentrated on symmetric distributions such as multivariate normal (Sheikhi et al., [41]; Chaumette and Vincent, [6]) or multivariate elliptical (Jamalizadeh and Balakrishnan, [18]). Skewed distributions have gained a lot of interest recently in the literature since many datasets encountered in reality have some degree of skewness. In this regard, the distribution theory of COS from skew distributions has been investigated by several authors, including Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Shahbaz et al. [39], and Kamal et al. [20]. In this article, we consider the bivariate generalized Weibull (BGW) distribution and the CGOS arising from it. There are numerous reasons for considering this particular bivariate distribution. Due to the presence of four parameters, the joint PDF of the BGW distribution is quite flexible and can take on various shapes depending on the shape parameter. The joint PDF, joint CDF, and conditional PDF for the BGW distribution are all in closed forms, making them appropriate for usage in practice. The univariate marginals of this distribution are able to analyze various types of hazard rates. In addition, it can be utilized for modeling bivariate lifetime data in a variety of scenarios. So far, no results on CGOS arising from the BGW distribution have been found in the literature. Thus, the current study aims to develop the distribution theory of CGOS originating from the BGW distribution and apply it to associated inference problems.

    The article is structured as follows: In Section 2, we provide a brief overview of the BGW distribution and some of its properties. In Section 3, we present the marginal PDF as well as the explicit expressions for the single moments of CGOS from the BGW distribution. The joint PDF of CGOS from the BGW distribution is also obtained in Section 3. Furthermore, the explicit expressions for the product moments of CGOS are derived. Section 4 presents the best linear unbiased (BLU) estimator of the parameter of the study variable contained in the BGW distribution using Stokes's RSS and some of the other modified RSS schemes. In Section 5, we apply the results to a real dataset. In Section 6, conclusions are provided.

    A bivariate RV (X,Y) is said to follow a BGW distribution if its PDF is given by (Pathak et al. [34])

    f(x,y)=θα2(β1β2)1xα1yα1eω(x,y;ϕ)(1eω(x,y;ϕ))θ2(1θeω(x,y;ϕ)), (2.1)

    where x,y0,α,β1,β2>0, 0<θ1, ω(x,y;ϕ)=xαβ1+yαβ2, and ϕ=(α,β1,β2). The BGW distribution includes the bivariate generalized exponential distribution (refer to Mirhosseini et al. [32]) and the bivariate generalized Rayleigh distribution (refer to Pathak and Vellaisamy [35]) as sub-models. The conditional PDF of Y given X=x is (Pathak et al. [34])

    f(yx)=α(β2)1yα1eyαβ2(1eω(x,y;ϕ))θ2(1θeω(x,y;ϕ))(1exαβ1)1θ. (2.2)

    The RV XEW(α,β1,θ) is a member of the exponentiated Weibull (EW) distribution with PDF

    f(x)=θα(β1)1xα1exαβ1(1exαβ1)θ1,x0, (2.3)

    and CDF

    F(x)=(1exαβ1)θ,x0. (2.4)

    Similarly, YEW(α,β2,θ). A series expansion of the PDF of the BGW distribution is given by

    f(x,y)=α2(β1β2)1xα1yα1j=1(θj)(1)j+1j2ejω(x,y;ϕ). (2.5)

    Pathak et al. [34] showed that the product moments of the BGW distribution are

    E(xpyq)=Γ(1+pα)Γ(1+qα)βpα1βqα2j=1(θj)(1)j+11j(p+q)/α. (2.6)

    If we make the transformation, U=Xβ1 and V=Yβ2, βi=β1/αi,i=1,2, the standard BGW distribution has the joint PDF as

    f(u,v)=α2uα1vα1j=1(θj)(1)j+1j2ej(uα+vα). (2.7)

    It is clear that the variables U and V have the standard EW distribution as marginal functions with PDFs are, respectively, given by

    f(u)=θαuα1euα(1euα)θ1,u0, (2.8)
    f(v)=θαvα1evα(1evα)θ1,v0. (2.9)

    In this part, we obtain the distributions and moments of CGOS arising from the BGW distribution.

    Suppose (Xi,Yi) and (Ui,Vi) are random samples of size n each originating from the BGW distribution and the standard BGW distribution, with PDFs provided by (2.1) and (2.7), respectively. Let V[r:n,˜m,k] be the concomitant of the rth GOS Ur:n,˜m,k. Then, the PDF and the pth moments of V[r:n,˜m,k], r=1,,n are given by the following two theorems:

    Theorem 1 If V[r:n,˜m,k] is the concomitant of the rth GOS from the standard BGW distribution, then the PDF of V[r:n,˜m,k], for r=1,,n, is given by

    h[r:n,˜m,k](v)=αCr1ri=1j=1ai,rj2δθ(j,γi)vα1ejvα,v0, (3.1)

    where δθ(j,γi)=(θj)γi1τ=0(1)j+τ+1(γi1τ)B(j,θτ+1) and B(.,.) is the complete beta function.

    Proof. Using the PDF of Ur:n,˜m,k (1.2) in (1.6), the PDF of the rth CGOS V[r:n,˜m,k] is given as

    h[r:n,˜m,k](v)=Cr1ri=1ai,r0f(v|u)[ˉF(u)]γi1f(u)du. (3.2)

    In view of (2.7) and (2.8), we get

    h[r:n,˜m,k](v)=αCr1ri=1j=1γi1τ=0ai,r(1)j+τ+1j2(θj)×(γi1τ)vα1ejvα0ejz(1ez)θτdz [provided that γiis an integer], (3.3)

    where z=uα. Now, by using Eq (3.3121) in Gradshteyn and Ryzhik [14] to compute the integral in (3.3), we obtain the result given in (3.1).

    Corollary 1. Taking m1=m2==mn1=m1 in (3.1), the PDF of the rth concomitant of m-GOS from the standard BGW distribution is given by

    h[r:n,m,k](v)=αCr1(r1)!ri=1j=1(1)rij2(m+1)r1(r1ri)δθ(j,γi)vα1ejvα,v0, (3.4)

    where γi=k+(ni)(m+1).

    Remark 1. When m=0 and k=1 in (3.4), we get the PDF of the rth COS from the standard BGW distribution as

    h[r:n](v)=αCr:nri=1j=1(1)rij2(r1ri)δθ(j,ni+1)vα1ejvα, (3.5)

    where Cr:n=n!(r1)!(nr)!.

    Theorem 2. Under the conditions of Theorem 1, the pth moment of V[r:n,˜m,k] is

    μ(p)[r:n,˜m,k]=Cr1ri=1j=1ai,rδθ(j,γi)Γ(pα+1)jpα1. (3.6)

    Proof. Using (3.1), the pth moment of V[r:n,˜m,k] is given as

    μ(p)[r:n,˜m,k]=E[Vp[r:n,˜m,k]]=0vph[r:n,˜m,k](v)dv=Cr1ri=1j=1ai,rj2δθ(j,γi)0zpαejzdz, (3.7)

    where z=vα. Then, after integration, we get (3.6).

    Corollary 2. Taking m1=m2==mn1=m1 in (3.6), the pth moment of the concomitant of m-GOS is given by

    μ(p)[r:n,m,k]=Cr1(r1)!ri=1j=1(1)ri(m+1)r1(r1ri)δθ(j,γi)Γ(pα+1)jpα1. (3.8)

    Remark 2. Let m=0 and k=1 in (3.8), then the pth moment of COS is

    μ(p)[r:n]=E[Vp[r:n]]=Cr:nri=1j=1(1)ri(r1ri)δθ(j,ni+1)Γ(pα+1)jpα1. (3.9)

    Let V[r:n,˜m,k] and V[s:n,˜m,k], r,s=1,,n,r<s be the concomitants of the rth and sth GOS from the standard BGW distribution. Then, the joint PDF and the product moments of V[r:n,˜m,k] and V[s:n,˜m,k] are given by the following two theorems:

    Theorem 3. The joint PDF of concomitants V[r:n,˜m,k] and V[s:n,˜m,k], r,s=1,,n,r<s is given by

    h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sκ21κ2δθ(κ1,κ2,γi,γj)×vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, (3.10)

    where

    δθ(κ1,κ2,γi,γj)=(θκ1)(θκ2)γj1τ1=0γiγj1τ2=0(1)κ1+κ2+τ1+τ2+2(γj1τ1)(γiγj1τ2)
    ×B(κ1+κ2,θτ2+1)3F2(κ2,θτ1,κ1+κ2;κ2+1,κ1+κ2+θτ2+1;1),

    where 3F2(a1,a2,a3;b1,b2;x) denotes the hypergeometric function defined by

    3F2(a1,a2,a3;b1,b2;x)==0(a1)(a2)(a3)(b1)(b2)x!,

    and (c)=c(c+1)(c+1) is the ascending factorial.

    Proof. Using (1.3) in (1.7), the joint PDF of the rth and sth CGOS V[r:n,˜m,k] and V[s:n,˜m,k] is given as

    h[r,s:n,˜m,k](v1,v2)=Cs1ri=1sj=r+1ai,ra(r)j,s0u1f(v1|u1)f(v2|u2)×[ˉF(u1)]γiγj1[ˉF(u2)]γj1f(u1)f(u2)du2du1. (3.11)

    In view of (2.7) and (2.8), we get

    h[r,s:n,˜m,k](v1,v2)=α4Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,s(1)κ1+κ2+2×κ21κ22(θκ1)(θκ2)vα11vα12eκ1vα1eκ2vα2×0uα11eκ1uα1[1(1euα1)θ]γiγj1I(u1)du1, (3.12)

    where

    I(u1)=γj1τ1=0(1)τ1(γj1τ1)u1uα12eκ2uα2(1euα2)τ1θdu2=α1γj1τ1=0(1)τ1(γj1τ1)Bw(κ2,τ1θ+1), (3.13)

    where w=euα1 and Bw(.,.) denotes the incomplete beta function defined by Bw(a1,a2)=w0xa11(1x)a21dx.

    Now, putting the value of I(u1) in (3.12), we get

    h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1γj1τ1=0γiγj1τ2=0ai,ra(r)j,s(1)κ1+κ2+τ1+τ2+2×κ21κ22(θκ1)(θκ2)(γj1τ1)(γiγj1τ2)vα11vα12eκ1vα1eκ2vα2×0eκ1z(1ez)τ2θBez(κ2,τ1θ+1)dz [provided thatγiγjis an integer] , (3.14)

    where z=uα1. We know that Bw(a1,a2)=wa1a12F1(a1,1a2;a1+1;w) (see Mathai and Saxena, [30]), and

    10xa1(1x)b12F1(c,d;e;x)dx=B(a,b)3F2(c,d,a;e,a+b;1). (3.15)

    Therefore,

    h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1γj1τ1=0γiγj1τ2=0ai,ra(r)j,s(1)κ1+κ2+τ1+τ2+2×κ21κ2(θκ1)(θκ2)(γj1τ1)(γiγj1τ2)vα11vα12eκ1vα1eκ2vα2×10tκ1+κ21(1t)τ2θ2F1(κ2,τ1θ;κ2+1;t)dt,

    where t=ez. Now, using (3.15), we get the result of (3.10).

    Corollary 3. At m1=m2==mn1=m1 in (3.10), the joint PDF of concomitants V[r:n,m,k] and V[s:n,m,k] of the rth and sth m-GOS for the standard BGW distribution is given by

    h[r,s:n,m,k](v1,v2)=α2Cs1(r1)!(sr1)!ri=1sj=r+1κ1=1κ2=1(1)ri+sj(m+1)s2(r1ri)(sr1sj)κ21κ2×δθ(κ1,κ2,γi,γj) vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, (3.16)

    where γi=k+(ni)(m+1).

    Remark 3. For m=0 and k=1 in (3.16), we obtain the joint PDF of the rth and sth COS from the standard BGW distribution as

    h[r,s:n](v1,v2)=α2Cr,s:nri=1sj=r+1κ1=1κ2=1(1)ri+sj(r1ri)(sr1sj)κ21κ2×δθ(κ1,κ2,ni+1,nj+1) vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, (3.17)

    where Cr,s:n=n!(r1)!(sr1)!(ns)!.

    Theorem 4. The product moments of two concomitants V[r:n,˜m,k] and V[s:n,˜m,k] are given by

    μ(p,q)[r,s:n,˜m,k]=Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sδθ(κ1,κ2,γi,γj)×Γ(pα+1)κpα11Γ(qα+1)κqα2. (3.18)

    Proof. Using (3.10), the pth and qth moments of V[r:n,˜m,k] and V[s:n,˜m,k] are given as

    μ(p,q)[r,s:n,˜m,k]=E[Vp[r:n,˜m,k]Vq[s:n,˜m,k]]=00vp1vq2h[r,s:n,˜m,k](v1,v2)dv1dv2=Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sκ21κ2δθ(κ1,κ2,γi,γj)×00zpα1zqα2e(κ1z1+κ2z2)dz1dz2, (3.19)

    where zi=vαi,i=1,2. Then, after integration, we get (3.18).

    Corollary 4. Setting m1=m2==mn1=m1 in (3.18), we can get the product moments of two concomitants of m-GOS of the standard BGW distribution.

    Remark 4. When m=0 and k=1 in (3.18), we get the product moments of COS as

    μ(p,q)[r,s:n]=E[Vp[r:n]Vq[s:n]]=Cr,s:nri=1sj=r+1κ1=1κ2=1(1)ri+sj(r1ri)(sr1sj)×δθ(κ1,κ2,ni+1,nj+1)Γ(pα+1)κpα11Γ(qα+1)κqα2. (3.20)

    Remark 5. At mi=Ri,n=m0+m0i=1Ri, and γi=ni1ν=1Rνi+1, 1im0 in Theorems 1–4, the results for PT-Ⅱ censored order statistics can be obtained.

    Remark 6. From (3.9), the expressions of means and variances of the COS Y[i:n],i=1,,n, arising from the BGW distribution, are obtained as follows:

    E[Y[i:n]]=β2E[V[i:n]]
    =β2μ[i:n],
    Var[Y[i:n]]=β22Var[V[i:n]]
    =β22δi,i:n,

    where Var[V[i:n]]=μ(2)[i:n](μ[i:n])2. The expression of the covariances between Y[i:n] and Y[j:n] is given, using (3.9) and (3.20), by

    Cov[Y[i:n],Y[j:n]]=β22Cov[V[i:n],V[j:n]]
    =β22δi,j:n,

    where Cov(V[i:n],V[j:n])=μ[i,j:n]μ[i:n]μ[j:n],1i<jn.

    The means and variances of the COS of the standard BGW distribution for n=1,,5 and different values of the parameters α and θ are calculated in Tables 1 and 2. It can be noted that the condition nr=1μj[r:n]=nμj1:1,j=1,2 is satisfied (see David and Nagaraja, [10]). In Tables 36, we have computed the means and variances of the concomitants of PT-Ⅱ censored order statistics. From Tables 16, one can observe that the variances are decreasing with respect to α.

    Table 1.  Means and variances of the COS for the standard BGW distribution with θ=0.50.
    Mean Variance
    n r α=1 α=2 α=1 α=2
    1 1 0.613519 0.626050 0.710359 0.221580
    2 1 0.454473 0.503844 0.546719 0.200615
    2 0.772564 0.748256 0.823408 0.212676
    3 1 0.363977 0.427653 0.445089 0.181090
    2 0.635465 0.656226 0.700844 0.204833
    3 0.841114 0.794272 0.870593 0.210246
    4 1 0.304634 0.374043 0.375757 0.164726
    2 0.542006 0.588481 0.610825 0.195696
    3 0.728923 0.723970 0.773394 0.204791
    4 0.878510 0.817706 0.897399 0.209868
    5 1 0.262399 0.333637 0.325339 0.151085
    2 0.473577 0.535668 0.541753 0.186636
    3 0.644650 0.667700 0.696872 0.198827
    4 0.785106 0.761484 0.816517 0.205248
    5 0.901861 0.831761 0.914894 0.210035

     | Show Table
    DownLoad: CSV
    Table 2.  Means and variances of the COS for the standard BGW distribution with θ=0.90.
    Mean Variance
    n r α=1 α=2 α=1 α=2
    1 1 0.933392 0.846157 0.956977 0.217410
    2 1 0.898058 0.823580 0.935961 0.219775
    2 0.968725 0.868735 0.975495 0.214025
    3 1 0.873819 0.807493 0.922204 0.221774
    2 0.946537 0.855752 0.959950 0.214226
    3 0.979820 0.875226 0.982898 0.213799
    4 1 0.855345 0.794891 0.912004 0.223493
    2 0.929241 0.845300 0.948711 0.214709
    3 0.963834 0.866204 0.970591 0.213524
    4 0.985148 0.878234 0.986887 0.213854
    5 1 0.840423 0.784489 0.903900 0.224999
    2 0.915036 0.836498 0.939966 0.215307
    3 0.950548 0.858502 0.961071 0.213522
    4 0.972691 0.871339 0.976741 0.213459
    5 0.988263 0.879957 0.989375 0.213938

     | Show Table
    DownLoad: CSV
    Table 3.  Means of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with θ=0.50.
    α m0,n Scheme Mean
    1 2, 10 8,0 0.155927 0.664362
    1 2, 10 0,8 0.155927 0.292953
    1 3, 10 7,0,0 0.155927 0.52911 0.799614
    1 3, 10 0,0,7 0.155927 0.292953 0.412797
    1 4, 10 6,0,0,0 0.155927 0.453142 0.681045 0.858899
    1 4, 10 0,0,0,6 0.155927 0.292953 0.412797 0.51814
    1 5, 10 5,0,0,0,0 0.155927 0.403773 0.601249 0.760842 0.891585
    1 5, 10 0,0,0,0,5 0.155927 0.292953 0.412797 0.51814 0.61135
    2 2, 10 8,0 0.220176 0.671147
    2 2, 10 0,8 0.220176 0.377969
    2 3, 10 7,0,0 0.220176 0.574761 0.767534
    2 3, 10 0,0,7 0.220176 0.377969 0.492427
    2 4, 10 6,0,0,0 0.220176 0.516571 0.691139 0.805731
    2 4, 10 0,0,0,6 0.220176 0.377969 0.492427 0.579475
    2 5, 10 5,0,0,0,0 0.220176 0.476621 0.636421 0.745858 0.825689
    2 5, 10 0,0,0,0,5 0.220176 0.377969 0.492427 0.579475 0.648751

     | Show Table
    DownLoad: CSV
    Table 4.  Means of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with θ=0.90.
    α m0,n Scheme Mean
    1 2, 10 8,0 0.791751 0.94913
    1 2, 10 0,8 0.791751 0.867371
    1 3, 10 7,0,0 0.791751 0.924635 0.973624
    1 3, 10 0,0,7 0.791751 0.867371 0.905027
    1 4, 10 6,0,0,0 0.791751 0.908991 0.955924 0.982475
    1 4, 10 0,0,0,6 0.791751 0.867371 0.905027 0.929301
    1 5, 10 5,0,0,0,0 0.791751 0.897741 0.94274 0.969107 0.986931
    1 5, 10 0,0,0,0,5 0.791751 0.867371 0.905027 0.929301 0.946824
    2 2, 10 8,0 0.749137 0.856937
    2 2, 10 0,8 0.749137 0.805526
    2 3, 10 7,0,0 0.749137 0.84219 0.871684
    2 3, 10 0,0,7 0.749137 0.805526 0.830734
    2 4, 10 6,0,0,0 0.749137 0.832503 0.861564 0.876744
    2 4, 10 0,0,0,6 0.749137 0.805526 0.830734 0.846014
    2 5, 10 5,0,0,0,0 0.749137 0.825394 0.853831 0.869298 0.879226
    2 5, 10 0,0,0,0,5 0.749137 0.805526 0.830734 0.846014 0.85658

     | Show Table
    DownLoad: CSV
    Table 5.  Variances of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with θ=0.50.
    α m0,n Scheme Variance
    1 2, 10 8,0 0.195285 0.741739
    1 2, 10 0,8 0.195285 0.347562
    1 3, 10 7,0,0 0.195285 0.606725 0.840167
    1 3, 10 0,0,7 0.195285 0.347562 0.469548
    1 4, 10 6,0,0,0 0.195285 0.525646 0.734255 0.882579
    1 4, 10 0,0,0,6 0.195285 0.347562 0.469548 0.570046
    1 5, 10 5,0,0,0,0 0.195285 0.47150 0.658836 0.796939 0.906852
    1 5, 10 0,0,0,0,5 0.195285 0.347562 0.469548 0.570046 0.654972
    2 2, 10 8,0 0.107449 0.213924
    2 2, 10 0,8 0.107449 0.150092
    2 3, 10 7,0,0 0.107449 0.19876 0.210507
    2 3, 10 0,0,7 0.107449 0.150092 0.170312
    2 4, 10 6,0,0,0 0.107449 0.186296 0.203372 0.209697
    2 4, 10 0,0,0,6 0.107449 0.150092 0.170312 0.182349
    2 5, 10 5,0,0,0,0 0.107449 0.176605 0.196217 0.204539 0.209823
    2 5, 10 0,0,0,0,5 0.107449 0.150092 0.170312 0.182349 0.190473

     | Show Table
    DownLoad: CSV
    Table 6.  Variances of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with θ=0.90.
    α m0,n Scheme Variance
    1 2, 10 8,0 0.877894 0.963287
    1 2, 10 0,8 0.877894 0.913014
    1 3, 10 7,0,0 0.877894 0.946946 0.978427
    1 3, 10 0,0,7 0.877894 0.913014 0.932212
    1 4, 10 6,0,0,0 0.877894 0.937071 0.965229 0.984791
    1 4, 10 0,0,0,6 0.877894 0.913014 0.932212 0.946122
    1 5, 10 5,0,0,0,0 0.877894 0.93025 0.956015 0.974096 0.988277
    1 5, 10 0,0,0,0,5 0.877894 0.913014 0.932212 0.946122 0.957275
    2 2, 10 8,0 0.230545 0.214788
    2 2, 10 0,8 0.230545 0.218499
    2 3, 10 7,0,0 0.230545 , 0.215351 0.213791
    2 3, 10 0,0,7 0.230545 0.218499 0.214908
    2 4, 10 6,0,0,0 0.230545 0.21593 0.213631 0.213794
    2 4, 10 0,0,0,6 0.230545 0.218499 0.214908 0.213561
    2 5, 10 5,0,0,0,0 0.230545 0.216466 0.213713 0.213429 0.213892
    2 5, 10 0,0,0,0,5 0.230545 0.218499 0.214908 0.213561 0.213094

     | Show Table
    DownLoad: CSV

    In this part, we obtain the BLU estimator of β2 involved in the BGW distribution using Stoke's RSS. Assume that n sets of units, each of size n, are taken from the BGW distribution with the PDF given in (2.1). Let X(i:n)i, i=1,,n represent the observation made on the auxiliary variable X in the ith unit of the RSS, and Y[i:n]i represent the measurement performed on the Y variable in the same unit. It is obvious that Y[i:n]i has the same distribution as Y[i:n], the concomitant of the ith order statistics (see David and Nagraja, [10], p. 145). From Remark 6, the mean and the variance of Y[i:n]i are given as E[Y[i:n]i]=β2μ[i:n], and Var[Y[i:n]i]=β22δi,i:n,1in. Because the two measurements Y[i:n]i and Y[j:n]j (ij) of Y are based on two independent samples, we have Cov[Y[i:n]i,Y[j:n]j]=0.

    Let Y[n]=(Y[1:n]1,Y[2:n]2,,Y[n:n]n) denote the column vector of COS. Then, the mean vector and the variance-covariance matrix of Y[n] can be written as

    E[Y[n]]=β2μ, (4.1)

    and

    (4.2)

    where and If the parameters and are known, then the combination of (4.1) and (4.2) allow us to apply the generalized Gauss-Markov theorem (see David and Nagraja, [10], p. 185). Hence, the BLU estimator of is given as

    (4.3)

    where , and the variance of is given by

    (4.4)

    We have calculated the coefficients of in and for , and different values of the parameters and are presented in Tables 7 and 8.

    Table 7.  The coefficients in the BLUE and for .
    Coefficients
    1 1 1.62994 1.88722
    2 0.75389 0.85091 0.90691
    3 0.48490 0.53764 0.57288 0.59296
    4 0.35637 0.39005 0.41430 0.43032 0.43957
    5 0.28143 0.30502 0.32279 0.33551 0.34396 0.34893
    2 1 1.59732 0.56534
    2 0.64431 0.90259 0.25654
    3 0.38632 0.52409 0.61801 0.16359
    4 0.27147 0.35952 0.42265 0.46582 0.11956
    5 0.20763 0.26986 0.31575 0.34884 0.37235 0.09402

     | Show Table
    DownLoad: CSV
    Table 8.  The coefficients in the BLUE and for .
    Coefficients
    1 1 1.07136 1.09843
    2 0.52613 0.54453 0.54834
    3 0.34606 0.36012 0.36408 0.36523
    4 0.25675 0.26814 0.27185 0.27327 0.27375
    5 0.20354 0.21310 0.21651 0.21800 0.21866 0.21891
    2 1 1.18181 0.30365
    2 0.56671 0.61384 0.15123
    3 0.36625 0.40182 0.41178 0.10059
    4 0.26791 0.29656 0.30558 0.30934 0.07533
    5 0.20987 0.23386 0.24202 0.24571 0.24758 0.06019

     | Show Table
    DownLoad: CSV

    A modified RSS approach is presented by Stokes [43], wherein only the largest or smallest judgment ranked unit is selected for quantification. Let random samples each of size be drawn from the BGW distribution. From each of the samples, choose the unit for which the measurement on the auxiliary variable is the smallest (largest) and measure the variable associated with it. Then, we call the collection of observations () as the lower RSS (LRSS) (upper RSS (URSS)).

    Based on LRSS and URSS, the BLU estimators and of are

    (4.5)
    (4.6)

    and their variances are

    (4.7)
    (4.8)

    The efficiencies of and of relative to are given by

    see, for example, Koshti and Kamalja [27] and Philip and Thomas [37]. We have computed the efficiencies and for , , and , which are presented in Table 9. From Table 9, it can be observed that:

    Table 9.  Efficiencies of the estimators and relative to .
    2 0.50 0.68524 0.64926 1.31476 1.35074
    3 0.50 0.52948 0.49563 1.44557 1.47260
    4 0.50 0.43425 0.40617 1.51216 1.52362
    5 0.50 0.36923 0.34637 1.55104 1.54852
    2 0.90 0.94500 0.93347 1.05501 1.06654
    3 0.90 0.90719 0.88724 1.07020 1.08120
    4 0.90 0.87843 0.85183 1.07685 1.08669
    5 0.90 0.85528 0.82321 1.08048 1.08932

     | Show Table
    DownLoad: CSV

    ● The efficiency is less than one for all selected values of , and . So, is relatively more efficient than .

    ● The efficiency decreases as increases, and for a fixed pair , increases as increases.

    ● The efficiency is greater than one for all selected values of , and . Thus, is relatively more efficient than .

    ● The efficiency increases as increases, and for a fixed pair , decreases as increases.

    For illustration purposes, we have considered the American Football League dataset given in Jamalizadeh and Kundu [19]. The bivariate dataset represents the game time to the first points scored by kicking the ball between goal posts and the 'game time' by moving the ball into the end zone . Pathak et al. [34] demonstrated that the BGW distribution fits this data better than other real-life time models. Here, we generate random samples of size five using forty-two pairs of observations. The samples under RSS schemes are displayed in Table 10.

    Table 10.  Samples of size under various RSS schemes.
    Scheme Sample values for Y-variable
    RSS 0.75 7.78 38.07 49.75 20.57
    LRSS 0.75 2.9 2.9 6.42 3.98
    URSS 49.88 15.53 49.75 42.35 20.57

     | Show Table
    DownLoad: CSV

    The estimator of under various RSS schemes is a function of and , which are unknown in this case. Thus, the method of moment estimation can be taken (see Kamalja and Koshti [21], for example). To obtain the moment estimators of and , we use the moment equations based on the moments of -observations and the moment equation based on the correlation between . These give and . Table 11 shows the estimates of under the RSS, LRSS, and URSS schemes. The results show that has the smallest variance. This is consistent with the findings of the efficiency performance study in Section 4.

    Table 11.  The estimates of under various RSS schemes.
    Scheme Estimator of Estimate of
    RSS 48.4195 0.07167
    LRSS 33.1903 0.89618
    URSS 45.0528 0.03010

     | Show Table
    DownLoad: CSV

    In this paper, we have considered the CGOS from the BGW distribution. We have derived the PDFs and moments of CGOS from the BGW distribution. Similar results for order statistics and PT-Ⅱ censored order statistics are presented as special instances. Finally, we have obtained the BLU estimator of the parameter associated with the study variable based on Stoke's RSS. Moreover, a real dataset is used for illustration purposes. The results for higher joint moments can be used to create skewness or kurtosis matrices (Kollo, [25]), which have important applications in both independent component analysis and invariant coordinate selection. This could be an interesting topic for future research. It will also be interesting to discuss the problem of predicting intervals for future order statistics and record values using concomitants of order statistics and record values arising from BGW distribution; see, for example, Muraleedharan and Chacko [33]. In addition, some information measures, such as the Shannon entropy and extropy, for CGOS can also be investigated.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author would like to acknowledge the Deanship of Graduate Studies and Scientific Research, Taif University for funding this work.

    The author declares that no conflict of interest exist.



    Conflict of interest



    The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

    [1] Bhugra D (2005) The global prevalence of schizophrenia. PLoS Med 2: e151. doi: 10.1371/journal.pmed.0020151
    [2] Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30: 115-125. doi: 10.1016/S0920-9964(97)00140-0
    [3] Liu Y, Liang M, Zhou Y, et al. (2008) Disrupted small-world networks in schizophrenia. Brain 131: 945-961. doi: 10.1093/brain/awn018
    [4] Lynall ME, Bassett DS, Kerwin R, et al. (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30: 9477-9487. doi: 10.1523/JNEUROSCI.0333-10.2010
    [5] Griffa A, Baumann PS, Ferrari C, et al. (2015) Characterizing the connectome in schizophrenia with diffusion spectrum imaging. Hum Brain Mapp 36: 354-366. doi: 10.1002/hbm.22633
    [6] Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62: 938-944. doi: 10.1016/j.neuroimage.2012.01.090
    [7] Dong D, Wang Y, Chang X, et al. (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44: 168-181. doi: 10.1093/schbul/sbx034
    [8] Smith SM, Beckmann CF, Andersson J, et al. (2013) Resting-state fMRI in the human connectome project. Neuroimage 80: 144-168. doi: 10.1016/j.neuroimage.2013.05.039
    [9] Moussa MN, Steen MR, Laurienti PJ, et al. (2012) Consistency of Network Modules in Resting-State fMRI Connectome Data. PloS One 7: e44428. doi: 10.1371/journal.pone.0044428
    [10] Smith SM, Fox PT, Miller KL, et al. (2009) Correspondence of the brain's functional architecture during activation and rest. Proce Natl Acad Sci 106: 13040-13045. doi: 10.1073/pnas.0905267106
    [11] Damoiseaux JS, Rombouts SARB, Barkhof F, et al. (2006) Consistent resting-state networks across healthy subjects. Proce Natl Acad Sci 103: 13848-13853. doi: 10.1073/pnas.0601417103
    [12] Argyelan M, Ikuta T, DeRosse P, et al. (2014) Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull 40: 100-110. doi: 10.1093/schbul/sbt092
    [13] Arribas JI, Calhoun VD, Adali T (2010) Automatic Bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from FMRI data. IEEE Transa Biomed Eng 57: 2850-2860. doi: 10.1109/TBME.2010.2080679
    [14] Matsubara T, Tashiro T, Uehara K (2019) Deep neural generative model of functional MRI images for psychiatric disorder diagnosis. IEEE Transa Biomed Eng 66: 2768-2779. doi: 10.1109/TBME.2019.2895663
    [15] Xiang Y, Wang J, Tan G, et al. (2020) Schizophrenia identification using multi-view graph measures of functional brain networks. Front Bioeng Biotechnol 7: 479. doi: 10.3389/fbioe.2019.00479
    [16] Anderson A, Cohen MS (2013) Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial. Front Hum Neurosci 7: 520.
    [17] Arbabshirani MR, Kiehl KA, Pearlson DG (2013) Classification of schizophrenia patients based on resting-state functional network connectivity. Front Neurosci 7: 133. doi: 10.3389/fnins.2013.00133
    [18] Cheng H, Newman S, Goñi J, et al. (2015) Classification of schizophrenia patients based on restingstate functional network connectivity. Schizophr Res 168: 345-352. doi: 10.1016/j.schres.2015.08.011
    [19] Moghimi P, Lim KO, Netoff TI (2018) Data Driven Classification Using fMRI Network Measures: Application to Schizophrenia. Front Neuroinform 12: 71. doi: 10.3389/fninf.2018.00071
    [20] Sundermann B, Herr D, Schwindt W, et al. (2014) Multivariate classification of blood oxygen level–dependent fMRI data with diagnostic intention: a clinical perspective. Am J Neuroradiol 35: 848-855. doi: 10.3174/ajnr.A3713
    [21] Cai XL, Xie DJ, Madsen KH, et al. (2020) Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data. Hum Brain Mapp 41: 172-184. doi: 10.1002/hbm.24797
    [22] Du W, Calhoun VD, Li H, et al. (2012) High classification accuracy for schizophrenia with rest and task fMRI data. Front Hum Neurosci 6: 145.
    [23] Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45: S199-S209. doi: 10.1016/j.neuroimage.2008.11.007
    [24] Krstajic D, Buturovic LJ, Leahy DE, et al. (2014) Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform 6: 1-15. doi: 10.1186/1758-2946-6-10
    [25] Pettersson-Yeo W, Allen P, Benetti S, et al. (2011) Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev 35: 1110-1124. doi: 10.1016/j.neubiorev.2010.11.004
    [26] Fekete T, Wilf M, Rubin D, et al. (2013) Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One 8: e62867. doi: 10.1371/journal.pone.0062867
    [27] Gallos IK, Galaris E, Siettos CIConstruction of embedded fMRI resting-state functional connectivity networks using manifold learning. Cogn Neurodyn (2020) .
    [28] Lombardi A, Guaragnella C, Amoroso N, et al. (2019) Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes. NeuroImage 195: 150-164. doi: 10.1016/j.neuroimage.2019.03.055
    [29] Hyv¨arinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13: 411-430. doi: 10.1016/S0893-6080(00)00026-5
    [30] Haak KV, Marquand AF, Beckmann CF (2018) Connectopic mapping with resting-state fMRI. Neuroimage 170: 83-94. doi: 10.1016/j.neuroimage.2017.06.075
    [31] Desikan RS, Ségonne F, Fischl B, et al. (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31: 968-980. doi: 10.1016/j.neuroimage.2006.01.021
    [32] Kabbara A, Falou WEL, Khalil M, et al. (2017) The dynamic functional core network of the human brain at rest. Sci Rep 7: 1-16. doi: 10.1038/s41598-017-03420-6
    [33] Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319-2323. doi: 10.1126/science.290.5500.2319
    [34] Liu J, Li M, Pan Y, et al. (2017) Complex brain network analysis and its applications to brain disorders: a survey. Complexity 2017: 1-27.
    [35] Jenkinson M, Bannister P, Brady M, et al. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825-841. doi: 10.1006/nimg.2002.1132
    [36] Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17: 143-155. doi: 10.1002/hbm.10062
    [37] Pruim RHR, Mennes M, van Rooij D, et al. (2015) ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112: 267-277. doi: 10.1016/j.neuroimage.2015.02.064
    [38] Kalcher K, Boubela RN, Huf W, et al. (2014) The spectral diversity of resting-state fluctuations in the human brain. PloS One 9: e93375. doi: 10.1371/journal.pone.0093375
    [39] Fischl B (2012) FreeSurfer. Neuroimage 62: 774-781. doi: 10.1016/j.neuroimage.2012.01.021
    [40] Hyde JS, Jesmanowicz A (2012) Cross-correlation: an fMRI signal-processing strategy. Neuroimage 62: 848-851. doi: 10.1016/j.neuroimage.2011.10.064
    [41] van den Heuvel MP, de Lange SC, Zalesky A, et al. (2017) Proportional thresholding in restingstate fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage 152: 437-449. doi: 10.1016/j.neuroimage.2017.02.005
    [42] Dimitriadis SI, Antonakakis M, Simos P, et al. (2017) Data-driven topological filtering based on orthogonal minimal spanning trees: application to multigroup magnetoencephalography restingstate connectivity. Brain Connect 7: 661-670. doi: 10.1089/brain.2017.0512
    [43] Dimitriadis SI, Salis C, Tarnanas I, et al. (2017) Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: a novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front Neuroinform 11: 28. doi: 10.3389/fninf.2017.00028
    [44] Dijkstra EW (1959) A note on two problems in connexion with graphs. Front Neuroinform 1: 269-271.
    [45] Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1-27. doi: 10.1007/BF02289565
    [46] Saul LK, Weinberger KQ, Ham JH, et al. (2006) Spectral methods for dimensionality reduction. Semisupervised Learning Cambridge, MA, USA: The MIT Press, 292-308.
    [47] Oksanen J, Kindt R, Legendre P, et al. (2007) The vegan package. Community Ecol Package 10: 631-637.
    [48] Team, R Core R: A language and environment for statistical computing (2013) .
    [49] Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059-1069. doi: 10.1016/j.neuroimage.2009.10.003
    [50] Blondel VD, Guillaume JL, Lambiotte R, et al. (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008: P10008. doi: 10.1088/1742-5468/2008/10/P10008
    [51] Barrat A, Barthélemy M, Pastor-Satorras R, et al. (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101: 3747-3752. doi: 10.1073/pnas.0400087101
    [52] Power JD, Schlaggar BL, Lessov-Schlaggar CN, et al. (2013) Evidence for hubs in human functional brain networks. Neuron 79: 798-813. doi: 10.1016/j.neuron.2013.07.035
    [53] Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695: 1-9.
    [54] Chan MK, Krebs MO, Cox D, et al. (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5: e601. doi: 10.1038/tp.2015.91
    [55] Usai MG, Goddard ME, Hayes BJ (2009) LASSO with cross-validation for genomic selection. Genet Res 91: 427-436. doi: 10.1017/S0016672309990334
    [56] Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33: 1-22. doi: 10.18637/jss.v033.i01
    [57] Hastie T, Tibshirani R, Friedman J (2009)  The elements of statistical learning: data mining, inference, and prediction New York City, USA: Springer.
    [58] Breiman L (2001) Random forests. Mach Learn 45: 5-32. doi: 10.1023/A:1010933404324
    [59] Loh WY (2011) Classification and regression trees. WIRES Data Min Knowl 1: 14-23. doi: 10.1002/widm.8
    [60] Menze BH, Kelm BM, Masuch R, et al. (2009) A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10: 213. doi: 10.1186/1471-2105-10-213
    [61] Zhu X, Du X, Kerich M, et al. (2018) Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI. Neurosci Lett 676: 27-33. doi: 10.1016/j.neulet.2018.04.007
    [62] Kesler SR, Rao A, Blayney DW, et al. (2017) Predicting long-term cognitive outcome following breast cancer with pre-treatment resting state fMRI and random forest machine learning. Front Hum Neurosci 11: 555. doi: 10.3389/fnhum.2017.00555
    [63] Ceriani L, Verme P (2012) The origins of the Gini index: extracts from Variabilità e Mutabilità (1912) by Corrado Gini. J Econ Inequal 10: 421-443. doi: 10.1007/s10888-011-9188-x
    [64] Strobl C, Boulesteix AL, Augustin T (2007) Unbiased split selection for classification trees based on the Gini index. Comput Stat Data Anal 52: 483-501. doi: 10.1016/j.csda.2006.12.030
    [65] Louppe G, Wehenkel L, Sutera A, et al. (2013) Understanding variable importances in forests of randomized trees. Adv Neural Inf Process Syst 26: 431-439.
    [66] Behnamian A, Millard K, Banks SN, et al. (2017) A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci Remote S 14: 1988-1992. doi: 10.1109/LGRS.2017.2745049
    [67] RColorBrewer S, Liaw A, Wiener M, et al. Package ‘randomForest’ (2018) .
    [68] Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28: 1-26. doi: 10.18637/jss.v028.i05
    [69] Nieuwenhuis M, van Haren NE, Pol HEH, et al. (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61: 606-612. doi: 10.1016/j.neuroimage.2012.03.079
    [70] Fan Y, Liu Y, Wu H, et al. (2011) Discriminant analysis of functional connectivity patterns on Grassmann manifold. Neuroimage 56: 2058-2067. doi: 10.1016/j.neuroimage.2011.03.051
    [71] Salman MS, Du Y, Lin D, et al. (2019) Group ICA for identifying biomarkers in schizophrenia: ‘Adaptive’ networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression. NeuroImage Clin 22: 101747. doi: 10.1016/j.nicl.2019.101747
    [72] Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22: 1214-1222. doi: 10.1016/j.neuroimage.2004.03.027
    [73] Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8.
    [74] Andreasen NC (1997) The role of the thalamus in schizophrenia. Can J Psychiatry 42: 27-33. doi: 10.1177/070674379704200104
    [75] Byne W, Hazlett EA, Buchsbaum MS, et al. (2009) The thalamus and schizophrenia: current status of research. Acta Neuropathol 117: 347-368. doi: 10.1007/s00401-008-0404-0
    [76] Pergola G, Selvaggi P, Trizio S, et al. (2015) The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 54: 57-75. doi: 10.1016/j.neubiorev.2015.01.013
    [77] Bogousslavsky J, Miklossy J, Deruaz JP, et al. (1987) Lingual and fusiform gyri in visual processing: a clinico-pathologic study of superior altitudinal hemianopia. J Neurol Neurosurg Psychiatry 50: 607-614. doi: 10.1136/jnnp.50.5.607
    [78] Mechelli A, Humphreys GW, Mayall K, et al. (2000) Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading. Proc Biol Sci 267: 1909-1913. doi: 10.1098/rspb.2000.1229
    [79] Yu T, Li Y, Fan F, et al. (2018) Decreased gray matter volume of cuneus and lingual gyrus in schizophrenia patients with tardive dyskinesia is associated with abnormal involuntary movement. Sci Rep 8: 1-7. doi: 10.1038/s41598-017-17765-5
    [80] Kogata T, lidaka T (2018) A review of impaired visual processing and the daily visual world in patients with schizophrenia. Nagoya J Med Sci 80: 317-328.
    [81] Yamamoto M, Bagarinao E, Kushima I, et al. (2020) Support vector machine-based classification of schizophrenia patients and healthy controls using structural magnetic resonance imaging from two independent sites. PloS One 15: e0239615. doi: 10.1371/journal.pone.0239615
    [82] Tohid H, Faizan M, Faizan U (2015) Alterations of the occipital lobe in schizophrenia. Neurosciences 20: 213-224. doi: 10.17712/nsj.2015.3.20140757
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13681) PDF downloads(192) Cited by(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog