
Citation: Hannah P Priyanka, Rahul S Nair. Neuroimmunomodulation by estrogen in health and disease[J]. AIMS Neuroscience, 2020, 7(4): 401-417. doi: 10.3934/Neuroscience.2020025
[1] | Huangjing Yu, Heming Jia, Jianping Zhou, Abdelazim G. Hussien . Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems. Mathematical Biosciences and Engineering, 2022, 19(12): 14173-14211. doi: 10.3934/mbe.2022660 |
[2] | Shuang Wang, Heming Jia, Qingxin Liu, Rong Zheng . An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7076-7109. doi: 10.3934/mbe.2021352 |
[3] | Huangjing Yu, Yuhao Wang, Heming Jia, Laith Abualigah . Modified prairie dog optimization algorithm for global optimization and constrained engineering problems. Mathematical Biosciences and Engineering, 2023, 20(11): 19086-19132. doi: 10.3934/mbe.2023844 |
[4] | Yufei Wang, Yujun Zhang, Yuxin Yan, Juan Zhao, Zhengming Gao . An enhanced aquila optimization algorithm with velocity-aided global search mechanism and adaptive opposition-based learning. Mathematical Biosciences and Engineering, 2023, 20(4): 6422-6467. doi: 10.3934/mbe.2023278 |
[5] | Dongning Chen, Jianchang Liu, Chengyu Yao, Ziwei Zhang, Xinwei Du . Multi-strategy improved salp swarm algorithm and its application in reliability optimization. Mathematical Biosciences and Engineering, 2022, 19(5): 5269-5292. doi: 10.3934/mbe.2022247 |
[6] | Shangbo Zhou, Yuxiao Han, Long Sha, Shufang Zhu . A multi-sample particle swarm optimization algorithm based on electric field force. Mathematical Biosciences and Engineering, 2021, 18(6): 7464-7489. doi: 10.3934/mbe.2021369 |
[7] | Yaning Xiao, Yanling Guo, Hao Cui, Yangwei Wang, Jian Li, Yapeng Zhang . IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. doi: 10.3934/mbe.2022512 |
[8] | Ning Zhou, Chen Zhang, Songlin Zhang . A multi-strategy firefly algorithm based on rough data reasoning for power economic dispatch. Mathematical Biosciences and Engineering, 2022, 19(9): 8866-8891. doi: 10.3934/mbe.2022411 |
[9] | Di-Wen Kang, Li-Ping Mo, Fang-Ling Wang, Yun Ou . Adaptive harmony search algorithm utilizing differential evolution and opposition-based learning. Mathematical Biosciences and Engineering, 2021, 18(4): 4226-4246. doi: 10.3934/mbe.2021212 |
[10] | Hongmin Chen, Zhuo Wang, Di Wu, Heming Jia, Changsheng Wen, Honghua Rao, Laith Abualigah . An improved multi-strategy beluga whale optimization for global optimization problems. Mathematical Biosciences and Engineering, 2023, 20(7): 13267-13317. doi: 10.3934/mbe.2023592 |
Optimization is the process of finding the optimal value. The optimization problem is usually transformed into a minimum problem. The optimal global value is the minimum value within the boundary and satisfies the constraint conditions. Traditional exact algorithms require gradient information or derivative information [1,2]. Although the results are more accurate, the computational complexity of traditional exact algorithms will grow exponentially with the increasing problem dimensions. Scholars gradually favor Meta-heuristic algorithms (MAs) [3]. MAs will generate a group of random solutions in the solution space and move in the solution space according to some mathematical formulas. After a fixed number of iterations, an optimal solution is finally output. Although the accuracy of the solution obtained by MAs is insufficient compared with the traditional exact algorithms. When solving high-dimensional complex problems, MAs can obtain a relatively optimal solution. Compared with traditional exact algorithms, MAs can save much computation. Based on the characteristics of MAs, MAs have been widely used in solving modern practical problems. For instance, the combination of modified reptile optimization algorithm and deep learning can effectively complete the intrusion detection of the Internet of things and cloud environment [4]; Reference [5] uses swarm intelligence optimization to build an Internet recommendation engine; Inspired by swqrm intelligence, Forestiero et al. established a new way of Internet information reorganization and discovery [6].
MAs can be roughly divided into four categories: based on swarm intelligence, based on genetic variation, based on physical and chemical principles, and based on human behavior. For example, the particle swarm optimization (PSO) [7] algorithm imitates birds' behavior of population migration; grey wolf optimizer (GWO) algorithm [8] is inspired by the hierarchy in the gray wolf population, and GWO algorithm solves the global optimization problem by simulating the gray wolves' hunting behavior; monarch butterfly optimization (MBO) [9] algorithm simulates the migration behavior of monarch butterfly between two regions; moth search algorithm (MSA) [10] establishes a mathematical model through the phototaxis of moth and Levy flight. Hunger games search (HGS) [11] is designed according to the hunger driven activities and behaviors of animals. Colony predation algorithm (CPA)'s [12] inspiration comes from group hunting. The inspiration of genetic algorithm (GA) [13] and differential evolution (DE) algorithm [14] is derived from genetic, crossover and mutation operations; the gravitational search algorithm (GSA) [15] is inspired by Newton's law of universal gravitation and kinematics; the sine cosine algorithm (SCA) [16] solves the optimization problem through the model of sine function and cosine function; The arithmetic optimization algorithm (AOA) [17] is inspired by addition, subtraction, multiplication and division operators; The inspiration of WeIghted mean of vectors (INFO) comes from the weighted average in mathematics. [18] The principle of social learning optimization (SLO) algorithm [19] is the evolution process of human intelligence and social learning theory; The group teaching optimization algorithm (GTOA) [20] simulates the behavior of group teaching in class through mathematical formulas to solve optimization problems.
However, from the NFL theorem [21], one algorithm cannot solve all problems. To solve more problems, improving existing algorithms is also an important method. Common improvement strategies include opposition-based learning [22], local escaping operator strategy [23], mutation strategy [24], chaotic map [25], hybrid algorithm [26,27], etc. For example: Zhang et al. hybird the sine cosine algorithm and harris hawks optimizer algorithm to improve the convergence speed of the algorithm [28]. Zhao et al. uses piecewise linear mapping to increase the randomness of harris hawks optimizer algorithm's parameters [29]. In addition, the purpose of improving existing MAs is to solve practical problems. The existing MAs cannot solve all engineering problems. Therefore, to solve specific problems, scholars will modify the existing MAs. For example, in order to effectively solve the problem of multiple image threshold segmentation, Emam et al. proposed an improved RSA by combining RSA with RUNge Kutta optimizer (RUN) [30]. Then, they introduced scale factor to avoid the imbalance between exploration and exploitation. Chakraborty et al. improved WOA by changing some coefficients and variables [31]. The improved algorithm can effectively determine the severity of the disease according to the chest X-ray photos of COVID-19. Sayed et al. combined convolutional neural network and bald eagle search optimization algorithm for skin injury classification [32]. Piri et al. improved HHO and proposed a multi-objective version of HHO algorithm by using the K-nearest neighbor (KNN) method as a packaging classifier [33].
The reptile search algorithm (RSA) [34] simulates crocodiles surrounding and hunting prey. The algorithm is divided into four parts: the exploration stage is divided into high walking and belly walking, and the exploitation stage is divided into hunting coordination and cooperation. After finding the prey in the middle and late stages, crocodiles will approach the prey. Although RSA has partial optimization ability, when facing complex problems, if RSA does not find the approximate location of the optimal solution in the early and middle stages, it will be challenging to converge in the middle and late stages. To improve the performance of RSA, some scholars have modified the traditional RSA.
Almotairi et al. proposed a hybrid algorithm by integrating RSA and ROA to balance the algorithm's exploration ability and exploitation ability to solve data clustering problems [35]. Huang and others improved RSA through the Levy flight and mutation crossover strategies, enhancing RSA's overall capability [36]. Although the above improvements modified RSA's optimization ability, it is still easy to fall into local optimization when facing high-dimensional complex problems. This paper improves the Lagrangian interpolation [37] method to improve RSA's ability to solve complex problems. Then we propose a multi-hunting coordination strategy combined with the teaching-learning-based optimization (TLBO) algorithm's student stage [38] and Lagrangian interpolation. The multi-hunting coordination strategy will use the current population's random and optimal position to update the positions. This mode not only significantly enhances the algorithm's exploitation ability but also improves the algorithm's exploration ability. In addition, considering that RSA will fall into the local optimum due to a lack of exploration ability in the later period, this paper adds lens opposition-based learning (LOBL) [39] and restart strategy [40] to improve the algorithm's global performance. This paper proposes a modified reptile search algorithm based on the above improvements (MRSA). If MRSA cannot effectively find the approximate position of the global optimum in the early stage, it can jump out of the local optimum in the later stage.
The existing research on RSA only solves specific engineering problems, but few of them solve complex high-dimensional problems. The MRSA proposed in this paper not only has significant advantages in solving high-dimensional test functions, but also has good effects in classical engineering problems.
The main work of this paper is as follows:
●The Lagrange interpolation method is modified and combined with the TLBO algorithm's student stage, and a multi-hunting coordination strategy is proposed. It is used to improve the hunting coordination phase of RSA.
●Add the LOBL strategy and restart strategy to prevent the population from falling into a stagnant state and enhance the global performance of the algorithm.
●The performance of MRA was tested through 23 benchmark functions in 30/200/500 dimensions and CEC2020 functions, which reflects the advantages of MRSA.
●Let MRSA solve six classical engineering problems.
The rest of the article follows: Section 2 introduces the original RSA. Section 3 introduces the Lagrange interpolation, the TLBO algorithm's student stage, the LOBL strategy, the restart strategy and the specific details of MRSA. Section 4 introduces MRSA's solution to 23 benchmark functions and CEC2020 functions. Section 5 details MRSA's specific performance in solving practical engineering problems. Lastly, section 6 summarizes the full article.
RSA is a meta-heuristic algorithm inspired by crocodiles' foraging behavior in nature. Although crocodiles appear to move slowly, they can attack quickly. As one of the top predators, crocodiles will hunt in groups. The foraging behavior of crocodiles can be divided into two stages: encircle stage (exploration) and the hunting stage (exploitation). Figure 1 shows the schematic diagram of crocodile hunting.
RSA will generate N candidate solutions, and the dimension size of each solution is dim. The ith solution is (X(i, 1), X(i, 2), ..., X(i, j), ... X(i, dim)). The initialization Formula of the ith solution in the jth dimension is as follows:
X(i,j)=LB(j)+rand×(UB(j)−LB(j)) rand∈[0,1] | (1) |
where LB(j) lower bound and UB(j) is upper bound. rand is a random number.
Crocodiles will choose two different ways in the process of encircling prey: high walking and belly walking. Crocodiles will stretch their legs and float their bodies on the water when looking for prey. Crocodiles crawl around their prey when they find it. At this stage, crocodiles will frequently move throughout the area and will not approach their prey.
The calculation formula for high walking is shown in formula (2):
X(i,j)(t+1)=Bestj(t)×−η(i,j)(t+1)×β−R(i,j)(t+1)×randt≤T4 | (2) |
where X(i, j)(t+1) is the ith individual's position in the jth dimension after updating. Bestj(t) is the optimal position so far in the jth dimension. η(i, j)(t+1) represents the ith individual's hunting operator in the jth dimension, and its value is calculated by formula (3), β is the control the sensitive parameter to search capability, its value is fixed as 0.005. R(i, j)(t+1) is used to reduce the search area, and its size is calculated by formula (4). t represents the current number of iterations, and T represents the total number.
{η(i,j)(t+1)=Bestj(t)×P(i,j)(t+1)P(i,j)(t+1)=α+X(i,j)(t)−M(X(i))Bestj(t)×(UB(j)−LB(j))+εM(X(i))=1dimdim∑j=1X(i,j)(t) | (3) |
where P(i, j)(t+1) is the percentage difference between the optimal individual and the current individual in the jth dimension. α can control the search accuracy, and its value is fixed as 0.1, X(i, j)(t) is the ith individual's position in the jth dimension before updating. M(X(i)) is the average level of the ith individual in each dimensional position, and ε is a minimum that prevents the denominator from being zero.
R(i,j)(t+1)=Bestj(t)−X(r1,j)(t)Bestj(t)+ε | (4) |
where X(r1, j)(t) represents the random individual's position.
Belly walking's calculation formula is shown in formula (5):
X(i,j)(t+1)=Bestj(t)×X(r2,j)(t)×ES×randt>T4&&t≤T2 | (5) |
where X(r2, j)(t) is the random individual's position. ES controls the evolution direction and randomly takes the decreasing value between 2 and –2. The value of ES is calculated as follows:
ES=2×RAND×(1−tT), RAND∈[−1,1] | (6) |
According to crocodiles' hunting behavior, there are two strategies in the hunting stage: hunting coordination and hunting cooperation. Unlike the encircle stage, the crocodiles will keep close to the prey in the hunting stage to complete the predation.
The formula for hunting coordination is as follows:
X(i,j)(t+1)=Bestj(t)×P(i,j)(t+1)×rand t≤3T4&&t>T2 | (7) |
The formula of hunting cooperation is:
X(i,j)(t+1)=Bestj(t)−η(i,j)(t+1)×ϵ−R(i,j)(t+1)×randt>3T4 | (8) |
RSA is implemented by the above method, and its pseudo-code is shown in Algorithm 1:
Algorithm 1. RSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population(X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. For each index by i |
8. For each dim index by j |
9. Using Formula (3 and 4) to update parameters η, P, and R. |
10. If t ≤ T/4 then |
11. Do high walking by Formula (2) |
12. Else if t > T/4 and t ≤ T/2 then |
13. Do belly walking by Formula (5) |
14. Else if t ≤ 3T/4 and t > T/2 then |
15. Do hunting coordination by Formula (7) |
16. Else |
17. Do hunting cooperation by Formula (8) |
18. End if |
19. End for |
20. End for |
21. t = t + 1 |
22. End while |
23. Return the best solution |
The original RSA has a simple structure and excellent results when dealing with simple problems. However, when facing complex problems, RSA quickly falls into local optimum and is challenging to converge. Therefore, this paper improves RSA and the specific improvement strategies are as follows:
RSA will coordinate with the population in the hunting coordination stage, but it is difficult for individuals with poor positions to adjust through the whole population, and this method is challenging. Therefore, RSA is difficult to converge in the later period. In order to overcome this shortcoming, this paper uses the TLBO algorithm to improve the hunting coordination stage of RSA. In the TLBO algorithm's student stage, the current individual and the random individual will coordinate, which can be seen as the coordination between two individuals. However, the coordination between the two individuals has some limitations. It is easy to make the algorithm jump out of the local optimum by coordinating the current individual with multiple individuals. In this section, the TLBO algorithm's student stage is improved by Lagrangian interpolation.
Lagrangian interpolation can construct a polynomial similar to the objective function through some given positions. The polynomial's optimal solution is taken as the objective function's optimal solution. With the shrinking of the interval, the polynomial's optimal solution will be closer to the objective function's optimal solution. The specific formula of Lagrange interpolation is as follows:
Pn(x)=n∑i=1yi(1⩽j⩽n∏j≠i(x−xj)(xi−xj)) | (9) |
where n is the number of selected positions. (xi, yi) is the coordinate of the ith position, and j is the index value different from i.
When n = 1, the obtained polynomial is a constant function. When n = 2, the polynomial is a linear function, and its similarity with the objective function is insufficient. When n ≥ 4, the obtained polynomial is at least a cubic function. Solving its optimal solution will consume huge costs. Therefore, this paper let n = 3, and the obtained polynomial is as follows:
P3(x)=y0×(x−x1)(x−x2)(x0−x1)(x0−x2)+y1×(x−x0)(x−x2)(x1−x0)(x1−x2)+y2×(x−x0)(x−x1)(x2−x0)(x2−x1) | (10) |
We set: a0=y0(x0−x1)(x0−x2), a1=y1(x1−x0)(x1−x2), a2=y2(x2−x0)(x2−x1). Then, it is easy to get the optimal solution of P3(x) as follows:
x∗=a0(x1+x2)+a1(x0+x2)+a2(x0+x1)2(a0+a1+a2) | (11) |
Considering that the optimization problem is multi-dimensional, we have improved the above Formula and obtained the following formulas:
XL=a0(X(r4)(t)+Best(t))+a1(X(r3)(t)+Best(t))+a2(X(r3)(t)+X(r4)(t))2(a0+a1+a2) | (12) |
{a0=f(X(r3)(t))(X(r3)(t)−X(r4)(t))(X(r3)(t)−Best(t))a1=f(X(r4)(t))(X(r4)(t)−X(r3)(t))(X(r4)(t)−Best(t))a2=f(Best(t))(Best(t)−X(r3)(t))(Best(t)−X(r4)(t)) | (13) |
where XL is the new position obtained by Lagrangian interpolation. f() is used to calculate the fitness value, X(r3)(t) and X(r4)(t) are two random individuals' positions, and Best(t) is the position of the current optimal individual.
A new position is generated by Lagrangian interpolation, and the new position is used in the TLBO algorithm's student stage:
XTLBO={X(i)(t)+rand×(X(i)(t)−XL),f(XL)<f(Xi(t))X(i)(t)+rand×(XL−X(i)(t)),f(Xi(t))<f(XL) | (14) |
By comparing the fitness values of XL and XTLBO, choose the better position to change the current position.
The opposition-based learning (OBL) can generate an opposite position based on the current position. By comparing the current position with the opposite position, choose the better position to update the current position. However, due to the fixed distance between the opposite position and the current position, OBL's randomness is lacking. Therefore, OBL has produced many variants, such as random opposition-based learning [41], quasi-opposition-based learning [42], joint opposite selection [43] and so on. The inspiration for LOBL [39] comes from the lens imaging principle, as shown in Figure 2. The object (x, y) on one side of the lens will generate an inverted reduced real image (x', y') on the other side. The y-axis is considered a lens. The Formula of LOBL can be expressed as:
(LB+UB)/2−xx′−(LB+UB)/2=yy′ | (15) |
Let h = y / y' to get the following formula:
x′=LB+UB2+LB+UB2h−xh | (16) |
Considering that the optimization problem is multi-dimensional, Formula (16) can be improved to:
X(i,j)(t+1)=LB(j)+UB(j)2+LB(j)+UB(j)2h−X(i,j)(t)h | (17) |
The restart strategy is an optimization strategy to prevent the population from falling into a stagnant state. Its main idea is: when an individual stays in a poor position for too long, regenerate a position to replace the current individual's position. This paper refers to the idea in reference [40] and records the stagnation state of ith individual by s(i). If s(i) is greater than the limit, the ith individual will generate two new positions through formulas (19)–(21) and replace the original position with the better one. This paper's limit is improved, as shown in formula (18). The condition for taking a restart strategy in the later stage will be complex, and it can prevent individuals from leaving the optimal position.
limit=√t | (18) |
New1=(UB−LB)×rand+LB | (19) |
New2=(UB+LB)×rand−Xi | (20) |
New2=(UB−LB)×rand+LB if New2>UB||New2<LB | (21) |
The above three strategies proposed a modified reptile search algorithm with a MRSA. The new algorithm improves the hunting coordination stage of RSA by combining the TLBO algorithm's student stage with Lagrange interpolation and then proposes a multi-hunting coordination strategy. Benefiting from the proposed strategy, the algorithm's comprehensive optimization ability is effectively improved. At the same time, the LOBL and the restart strategy are added to improve RSA's ability to jump out of the local optimum.The pseudo-code of MRSA is shown in Algorithm 2. MRSA's flow chart is in Figure 3.
Algorithm 2. MRSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population((X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. Update population through LOBL strategy by Formula (17) |
8. For each index by i |
9. For each dim index by j |
10. Using Formula (3, 4) to update parameters η and R, respectively |
11. If t ≤ T/4 then |
12. Do high walking by Formula (2) |
13. Else if t > T/4 and t ≤ T/2 then |
14. Do belly walking by Formula (5) |
15. Else if t ≤ 3T/4 and t > T/2 then |
16. Use Formula (12) to generate Xnew (Lagrange interpolation) |
17. Use Formula (14) to generate XTLBO |
18. Select the position with a better fitness value |
19. Else |
20. Do hunting cooperation by Formula (8) |
21. End if |
22. End for |
23. Update s(i) for each individual |
24. If s(i) > limit |
25. Generate New1 and New2 by Formulas (19–21) |
26. Select the position with a better fitness value |
27. End if |
28. End for |
29. t = t + 1 |
30. End while |
31. Return the best solution |
Computational complexity is an essential criterion for evaluating an algorithm. In MRSA, the complexity of initializing the population is O(N × D), where N is the population size and D is the dimension size. The complexity of updating positions comes from many aspects. The complexity of high walking, bell walking and hunting cooperation is O(1/4 × N × D × T), where T is the number of iterations. The complexity of the multi-hunting cooperation strategy is O(1/2 × N × D × T). The complexity of LOBL is O(N × D × T). The complexity of the restart strategy is O(2 × N × D × T/limit). Through the above analysis, the complexity of MRSA is O(N × D × (9/4 × T + 2T/limit + 1)). The complexity of traditional RSA is O(N × T × (D + 1)). Although the complexity of MRSA is improved, the performance of MRSA is better than that of traditional RSA.
All experiments in this paper are completed in MATLAB R2021a on a PC with 2.50 GHz 11th Gen Intel (R) Core (TM) i7-11700 CPU with 16 GB memory and a 64-bit Windows 11 OS.
In this section, we will use 23 benchmark functions and CEC2020 functions to verify the performance of MRSA. At the same time, to show the improvement effect of MRSA clearly, we selected reptile search algorithm (RSA) [34] and six representatives MAs for comparison. They are remora optimization algorithm (ROA) [41], bald eagle search (BES) [45], Sine cosine algorithm (SCA) [16], arithmetic optimization algorithm (AOA) [17], horse herd optimization algorithm (HOA) [46] and sand cat swarm optimization (SCSO) [47]. In addition, we also add LMRAOA (a variant of AOA) [48] as a comparison algorithm.To ensure the fairness of the experiment, we set each algorithm's population size to 30 and the number of iterations to 500. The parameter settings of MRSA and other algorithms are shown in Table 1. In addition, references are provided for comparing the algorithm's parameter settings.
Algorithm | Parameters Setting |
MRSA | α = 0.1; β = 0.005 |
RSA [34] | α = 0.1; β = 0.005 |
ROA [44] | C = 0.1 |
BES [45] | α = [1.5, 2.0]; r = [0, 1] |
SCA [16] | α = 2 |
AOA [17] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
HOA [46] | w = 1; phiD = 0.2; phi = 0.2 |
SCSO [47] | SM = 2 |
LMRAOA [48] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
This section will give the results of MRSA and compare the other algorithms on 23 benchmark functions. The 23 benchmark functions are divided into 13 variable and ten fixed-dimension functions. Where F1–F7 are unimodal functions and F8–F23 are multimodal functions. The specific information is shown in Table 2. At the same time, to reflect MRSA's ability to deal with high dimensional problems, we tested F1–F13 in different dimensions, including 30,200 and 500 dimensions.
Function | Dim | Boundary | optimal value |
F1(x)=∑ni=1x2i | 30/100/500 | [−100,100] | 0 |
F2(x)=∑ni=1|xi|+∏ni=1|xi| | [−10, 10] | ||
F3(x)=∑ni=1(∑ij−1xj)2 | [−100,100] | ||
F4(x)=max{|xi|,1⩽i⩽n} | [−100,100] | ||
F5(x)=∑n−1i=1[100(xi+1−x2i)2+(xi−1)2] | [−30, 30] | ||
F6(x)=∑ni=1(xi+5)2 | [−100,100] | ||
F7(x)=∑ni=1i×x4i+random[0,1) | [−1.28, 1.28] | ||
F8(x)=∑ni=1−xisin(√|xi|) | [−500,500] | −418.9829 × dim | |
F9(x)=∑ni=1[x2i−10cos(2πxi)+10] | [−5.12, 5.12] | 0 | |
F10(x)=−20exp(−0.2√1n∑ni=1x2i−exp(1n∑ni=1cos(2πxi))+20+e) | [−32, 32] | ||
F11(x)=1400∑ni=1x2i−Πni=1cos(xi√i)+1 | [−600,600] | ||
F12(x)=πn{10sin(πy1)+∑n−1i=1(yi−1)2[1+10sin2(πyi+1)]+(yn−1)2} +∑ni=1u(xi,10,100,4),where yi=1+xi+14, u(xi,a,k,m)={k(xi−a)m xi>a0 −a<xi<ak(−xi−a)m xi<−a | [−50, 50] | ||
F13(x)=0.1(sin2(3πx1)+∑ni=1(xi−1)2[1+sin2(3πxi+1)] +(xn−1)2[1+sin2(2πxn)])+∑ni=1u(xi,5,100,4) | |||
F14(x)=(1500+∑25j=11j+∑2i=1(xi−aij)6)−1 | 2 | [−65, 65] | 1 |
F15(x)=∑11i=1[ai−x1(b2i+bix2)b2i+bix3+x4]2 | 4 | [−5, 5] | 0.00030 |
F16(x)=4x21−2.1x41+13x61+x1x2−4x22+x42 | 2 | −1.0316 | |
F17(x)=(x2−5.14π2x21+5πx1−6)2+10(1−18π)cosx1+10 | 0.398 | ||
F18(x)=[1+(x1+x2+1)2(19−14x1+3x21−14x2+6x1x2+322)]×[30+(2x1−3x2)2×(18−32x2+12x21+48x2−36x1x2+27x22)] | 5 | [−2, 2] | 3 |
F19(x)=−∑4i=1ciexp(−∑3j=1aij(xj−pij)2) | 3 | [−1, 2] | −3.86 |
F20(x)=−∑4i=1ciexp(−∑6j=1aij(xj−pij)2) | 6 | [0, 1] | −3.32 |
F21(x)=−∑5i=1[(X−ai)(X−ai)T+ci]−1 | 4 | [0, 10] | −10.1532 |
F22(x)=−∑7i=1[(X−ai)(X−ai)T+ci]−1 | −10.4028 | ||
F23(x)=−∑10i=1[(X−ai)(X−ai)T+ci]−1 | −10.5363 |
The statistics of MRSA and compared algorithm running 30 times in 23 benchmark functions are shown in Table 3. The bold data represents the best result. In the table, Best represents the optimal fitness value, Mean represents the average fitness value and Std represents the standard deviation. In unimodal functions F1–F7, except F6 and F7, MRSA can find the theoretical optimal value. In F6, LMRAOA gain better sotions. In F7, although MRSA did not find the theoretical optimal value, the result is still the best in all dimensions compared with other algorithms. MRSA is still superior to other algorithms in multimodal functions F8–F13 with variable dimensions. In F12 and F13, LMRAOA is superior to MRSA. However, the solution obtained by MRSA is still better than most of the comparison algorithms. In the multi-dimensional functions with fixed dimensions, MRSA only has unsatisfactory results in F18 and F20, but MRSA can still obtain the minimum Best. Only Mean and Std are not minimum.
Function | Dim | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO | LMRAOA |
F1 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.58×10-02 | 8.05×10-155 | 7.90×10-239 | 5.70×10-125 | 2.93×10-91 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.13×10-313 | 9.96×10-312 | 1.58×10+01 | 6.42×10-66 | 9.56×10-129 | 2.79×10-111 | 3.53×10-84 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.61×10+01 | 3.52×10-65 | 5.17×10-128 | 1.37×10-110 | 1.93×10-83 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.37×10+03 | 1.08×10-01 | 7.35×10-227 | 3.97×10-111 | 1.16×10-48 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.49×10-315 | 0.00×10+00 | 4.68×10+04 | 1.32×10-01 | 7.10×10-140 | 4.90×10-100 | 4.46×10-44 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.41×10+04 | 1.71×10-02 | 3.89×10-139 | 2.56×10-99 | 1.70×10-43 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.47×10+04 | 5.60×10-01 | 3.86×10-225 | 6.39×10-111 | 4.51×10-39 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.01×10-314 | 0.00×10+00 | 2.16×10+05 | 6.39×10-01 | 1.50×10-143 | 1.31×10-99 | 3.31×10-34 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.75×10+04 | 4.64×10-02 | 8.19×10-143 | 5.33×10-99 | 1.00×10-33 | ||
F2 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.70×10-183 | 9.15×10-229 | 8.12×10-04 | 0.00×10+00 | 8.44×10-125 | 2.26×10-66 | 9.75×10-229 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.24×10-165 | 2.53×10-536 | 1.33×10-02 | 0.00×10+00 | 6.00×10-76 | 6.28×10-59 | 3.78×10-141 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.53×10-02 | 0.00×10+00 | 1.89×10-75 | 3.31×10-58 | 2.07×10-140 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.81×10-538 | 5.55×10-238 | 6.08×10+00 | 5.23×10-57 | 9.12×10-122 | 2.69×10-59 | 8.89×10-20 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.00×10-161 | 2.01×10-533 | 3.18×10+01 | 2.02×10-20 | 1.03×10-84 | 8.20×10-53 | 1.31×10-53 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.64×10-160 | 0.00×10+00 | 1.68×10+01 | 1.09×10-19 | 5.63×10-84 | 3.19×10-52 | 2.34×10-53 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 2.17×10-538 | 1.10×10-235 | 3.43×10+01 | 2.77×10-14 | 6.11×10-120 | 1.14×10-57 | 3.63×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 7.17×10-161 | 6.09×10-533 | 9.81×10+01 | 1.03×10-03 | 2.96×10-71 | 8.15×10-50 | 2.86×10-11 | ||
Std | 0.00×10+00 | 0.00×10+00 | 2.72×10-160 | 0.00×10+00 | 3.20×10+01 | 1.31×10-03 | 1.62×10-70 | 3.33×10-49 | 6.51×10-11 | ||
F3 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 1.50×10-323 | 0.00×10+00 | 6.88×10+02 | 1.03×10-121 | 1.95×10-25 | 3.16×10-113 | 6.94×10-164 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.43×10-283 | 1.07×10-28 | 9.99×10+03 | 6.06×10-03 | 8.23×10+01 | 1.12×10-97 | 1.08×10-20 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.84×10-28 | 7.20×10+03 | 1.04×10-02 | 2.60×10+02 | 6.05×10-97 | 4.22×10-20 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.14×10-303 | 0.00×10+00 | 7.65×10+05 | 1.64×10+00 | 2.84×10-26 | 6.68×10-98 | 3.25×10-161 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.34×10-257 | 8.84×10-145 | 1.03×10+06 | 4.13×10+00 | 6.27×10+03 | 5.74×10-90 | 5.34×10-06 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10-144 | 1.84×10+05 | 2.34×10+00 | 1.42×10+04 | 1.97×10-89 | 2.61×10-05 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 3.38×10-294 | 0.00×10+00 | 4.71×10+06 | 1.39×10+01 | 1.67×10-111 | 7.76×10-96 | 1.57×10-160 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.95×10-252 | 1.61×10+03 | 7.10×10+06 | 9.97×10+03 | 8.48×10+04 | 2.18×10-84 | 1.12×10-159 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.95×10+03 | 1.24×10+06 | 5.45×10+04 | 1.33×10+05 | 1.13×10-83 | 7.25×10-160 | ||
F4 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.66×10-538 | 3.54×10-245 | 1.11×10+01 | 3.33×10-40 | 1.44×10-96 | 8.70×10-56 | 8.89×10-16 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.64×10-158 | 1.02×10-182 | 3.64×10+01 | 3.08×10-02 | 5.42×10-62 | 9.61×10-51 | 3.00×10-12 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.45×10-157 | 0.00×10+00 | 1.18×10+01 | 1.82×10-02 | 2.96×10-61 | 3.54×10-50 | 9.03×10-12 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-539 | 4.71×10-236 | 9.33×10+01 | 1.12×10-01 | 3.16×10-106 | 2.90×10-51 | 1.18×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.86×10-158 | 4.45×10-164 | 9.64×10+01 | 1.33×10-01 | 2.70×10-63 | 1.04×10-44 | 2.73×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 8.40×10-158 | 0.00×10+00 | 1.07×10+00 | 1.48×10-02 | 1.06×10-62 | 5.62×10-44 | 5.41×10-03 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-538 | 2.59×10-230 | 9.82×10+01 | 1.62×10-01 | 1.52×10-102 | 1.05×10-50 | 4.54×10-07 | |
Mean | 0.00×10+00 | 0.00×10+00 | 9.84×10-158 | 1.21×10-534 | 9.91×10+01 | 1.85×10-01 | 7.58×10-62 | 1.83×10-45 | 3.34×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 3.93×10-157 | 0.00×10+00 | 2.27×10-01 | 2.08×10-02 | 3.35×10-61 | 7.23×10-45 | 5.47×10-03 | ||
F5 | 30 | Best | 0.00×10+00 | 2.28×10-25 | 2.66×10+01 | 1.44×10+01 | 8.85×10+02 | 2.80×10+01 | 2.89×10+01 | 2.72×10+01 | 2.17×10-09 |
Mean | 6.01×10-01 | 1.55×10+01 | 2.72×10+01 | 2.51×10+01 | 1.27×10+05 | 2.85×10+01 | 2.90×10+01 | 2.82×10+01 | 1.67×10+01 | ||
Std | 1.25×10+00 | 1.47×10+01 | 6.09×10-01 | 9.89×10+00 | 5.09×10+05 | 3.34×10-01 | 5.28×10-02 | 8.01×10-01 | 1.02×10+01 | ||
200 | Best | 0.00×10+00 | 1.99×10+02 | 1.97×10+02 | 1.10×10+00 | 3.43×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 7.18×10-02 | |
Mean | 1.26×10+01 | 1.99×10+02 | 1.97×10+02 | 1.61×10+02 | 5.84×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 1.23×10+02 | ||
Std | 2.75×10+01 | 0.00×10+00 | 1.70×10-01 | 7.57×10+01 | 2.05×10+08 | 5.24×10-02 | 2.74×10-02 | 4.09×10-01 | 9.33×10+01 | ||
500 | Best | 0.00×10+00 | 4.99×10+02 | 4.94×10+02 | 9.67×10+00 | 1.39×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 9.41×10-02 | |
Mean | 4.46×10+00 | 4.99×10+02 | 4.95×10+02 | 4.19×10+02 | 1.90×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 3.78×10+02 | ||
Std | 1.12×10+01 | 0.00×10+00 | 2.90×10-01 | 1.77×10+02 | 5.47×10+08 | 1.23×10-01 | 2.38×10-02 | 1.64×10-01 | 2.12×10+02 | ||
F6 | 30 | Best | 0.00×10+00 | 4.68×10+00 | 1.81×10-02 | 4.80×10-05 | 4.83×10+00 | 2.42×10+00 | 6.02×10+00 | 1.03×10+00 | 0.00×10+00 |
Mean | 1.01×10-03 | 7.24×10+00 | 9.90×10-02 | 1.07×10+00 | 1.81×10+01 | 3.22×10+00 | 6.72×10+00 | 1.96×10+00 | 0.00×10+00 | ||
Std | 5.50×10-03 | 6.04×10-01 | 8.75×10-02 | 2.57×10+00 | 3.14×10+01 | 3.37×10-01 | 3.04×10-01 | 5.00×10-01 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 5.00×10+01 | 2.09×10+00 | 4.89×10-03 | 1.87×10+04 | 4.10×10+01 | 4.82×10+01 | 3.22×10+01 | 0.00×10+00 | |
Mean | 5.43×10-02 | 5.00×10+01 | 5.18×10+00 | 1.41×10+01 | 5.22×10+04 | 4.20×10+01 | 4.89×10+01 | 3.61×10+01 | 0.00×10+00 | ||
Std | 1.73×10-01 | 0.00×10+00 | 2.12×10+00 | 2.21×10+01 | 2.61×10+04 | 8.18×10-01 | 4.88×10-01 | 2.36×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 1.25×10+02 | 8.06×10+00 | 2.25×10-02 | 1.19×10+05 | 1.15×10+02 | 1.23×10+02 | 1.00×10+02 | 0.00×10+00 | |
Mean | 3.41×10-01 | 1.25×10+02 | 1.56×10+01 | 3.12×10+01 | 2.06×10+05 | 1.16×10+02 | 1.24×10+02 | 1.05×10+02 | 4.14×10-31 | ||
Std | 5.95×10-01 | 0.00×10+00 | 7.91×10+00 | 5.28×10+01 | 8.98×10+04 | 1.26×10+00 | 5.69×10-01 | 4.18×10+00 | 1.58×10-30 | ||
F7 | 30 | Best | 3.10×10-07 | 8.91×10-06 | 4.40×10-06 | 5.25×10-04 | 8.75×10-03 | 3.39×10-06 | 1.54×10-02 | 1.24×10-05 | 5.17×10-06 |
Mean | 5.82×10-05 | 1.27×10-04 | 1.91×10-04 | 5.13×10-03 | 1.29×10-01 | 8.45×10-05 | 6.74×10-02 | 1.46×10-04 | 9.79×10-05 | ||
Std | 4.72×10-05 | 1.09×10-04 | 1.52×10-04 | 4.13×10-03 | 1.64×10-01 | 6.81×10-05 | 3.94×10-02 | 1.72×10-04 | 9.68×10-05 | ||
200 | Best | 2.41×10-08 | 6.53×10-06 | 3.45×10-06 | 2.81×10-04 | 7.24×10+02 | 3.51×10-06 | 2.71×10-02 | 1.74×10-05 | 1.76×10-05 | |
Mean | 6.82×10-05 | 1.39×10-04 | 1.45×10-04 | 6.29×10-03 | 1.53×10+03 | 7.49×10-05 | 1.54×10-01 | 2.40×10-04 | 2.49×10-04 | ||
Std | 6.40×10-05 | 1.26×10-04 | 1.31×10-04 | 3.51×10-03 | 4.22×10+02 | 6.49×10-05 | 1.08×10-01 | 3.15×10-04 | 2.40×10-04 | ||
500 | Best | 5.52×10-07 | 6.78×10-06 | 9.84×10-06 | 7.36×10-04 | 7.65×10+03 | 1.39×10-05 | 3.78×10-02 | 2.08×10-05 | 1.61×10-06 | |
Mean | 5.62×10-05 | 1.69×10-04 | 2.55×10-04 | 6.82×10-03 | 1.53×10+04 | 8.39×10-05 | 1.73×10-01 | 1.71×10-04 | 1.72×10-04 | ||
Std | 4.91×10-05 | 1.78×10-04 | 2.49×10-04 | 3.24×10-03 | 3.80×10+03 | 6.87×10-05 | 1.33×10-01 | 2.39×10-04 | 1.36×10-04 | ||
F8 | 30 | Best | -1.26×10+04 | -5.65×10+03 | -1.26×10+04 | -1.25×10+04 | -4.57×10+03 | -6.22×10+03 | -5.04×10+03 | -8.70×10+03 | -1.08×10+04 |
Mean | -1.26×10+04 | -5.27×10+03 | -1.23×10+04 | -9.73×10+03 | -3.80×10+03 | -5.18×10+03 | -4.06×10+03 | -6.62×10+03 | -1.01×10+04 | ||
Std | 3.36×10-12 | 5.22×10+02 | 4.58×10+02 | 1.71×10+03 | 3.49×10+02 | 4.40×10+02 | 5.53×10+02 | 8.50×10+02 | 4.21×10+02 | ||
200 | Best | -8.38×10+04 | -3.17×10+04 | -8.38×10+04 | -8.01×10+04 | -1.14×10+04 | -1.66×10+04 | -3.62×10+04 | -3.60×10+04 | -4.28×10+04 | |
Mean | -8.38×10+04 | -2.80×10+04 | -8.27×10+04 | -6.11×10+04 | -1.01×10+04 | -1.46×10+04 | -1.26×10+04 | -3.22×10+04 | -3.73×10+04 | ||
Std | 8.55×10-12 | 2.17×10+03 | 2.09×10+03 | 1.13×10+04 | 8.52×10+02 | 1.01×10+03 | 6.70×10+03 | 2.74×10+03 | 2.90×10+03 | ||
500 | Best | -2.09×10+05 | -7.63×10+04 | -2.09×10+05 | -2.09×10+05 | -1.77×10+04 | -2.59×10+04 | -1.39×10+05 | -6.63×10+04 | -6.09×10+04 | |
Mean | -2.09×10+05 | -6.45×10+04 | -2.07×10+05 | -1.59×10+05 | -1.54×10+04 | -2.25×10+04 | -3.50×10+04 | -6.05×10+04 | -5.06×10+04 | ||
Std | 2.96×10-11 | 5.96×10+03 | 7.32×10+03 | 2.72×10+04 | 9.38×10+02 | 1.56×10+03 | 2.95×10+04 | 3.43×10+03 | 5.63×10+03 | ||
F9 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.26×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.74×10+01 | 4.61×10+01 | 0.00×10+00 | 8.73×10+01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.39×10+01 | 2.72×10+01 | 0.00×10+00 | 1.06×10+02 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.15×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.37×10+03 | 5.03×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.31×10+02 | 5.28×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
F10 | 30 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 5.58×10-02 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.46×10+01 | 8.88×10-16 | 5.51×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 8.68×10+00 | 0.00×10+00 | 1.90×10-15 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 7.65×10+00 | 3.02×10-03 | 4.44×10-15 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 9.52×10-02 | 1.88×10+01 | 4.92×10-03 | 5.98×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.21×10-01 | 4.28×10+00 | 7.67×10-04 | 1.79×10-15 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.08×10+01 | 7.53×10-03 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 2.01×10+01 | 8.07×10-03 | 6.22×10-15 | 8.88×10-16 | 7.05×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.45×10+00 | 3.26×10-04 | 2.03×10-15 | 0.00×10+00 | 1.60×10-15 | ||
F11 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.95×10-03 | 1.50×10-02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.26×10-01 | 1.63×10-01 | 2.56×10-01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.20×10-01 | 1.19×10-01 | 4.00×10-01 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.93×10+02 | 1.98×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.64×10+02 | 2.40×10+03 | 3.40×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.78×10+02 | 3.82×10+02 | 1.86×10-01 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.38×10+02 | 6.16×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+03 | 9.18×10+03 | 1.54×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 7.28×10+02 | 2.51×10+03 | 8.44×10-02 | 0.00×10+00 | 0.00×10+00 | ||
F12 | 30 | Best | 3.33×10-13 | 6.87×10-01 | 2.11×10-03 | 1.88×10-07 | 1.13×10+00 | 4.32×10-01 | 8.29×10-01 | 4.60×10-02 | 1.57×10-32 |
Mean | 1.10×10-07 | 1.58×10+00 | 1.05×10-02 | 1.82×10-01 | 3.29×10+04 | 5.15×10-01 | 1.17×10+00 | 9.66×10-02 | 1.57×10-32 | ||
Std | 4.40×10-07 | 2.56×10-01 | 5.24×10-03 | 3.95×10-01 | 1.63×10+05 | 4.86×10-02 | 2.02×10-01 | 3.91×10-02 | 5.57×10-48 | ||
200 | Best | 2.36×10-33 | 1.25×10+00 | 1.15×10-02 | 1.83×10-05 | 9.59×10+08 | 9.87×10-01 | 1.14×10+00 | 4.57×10-01 | 2.36×10-33 | |
Mean | 6.39×10-06 | 1.25×10+00 | 3.36×10-02 | 2.48×10-01 | 1.56×10+09 | 1.01×10+00 | 1.18×10+00 | 5.56×10-01 | 2.36×10-33 | ||
Std | 1.87×10-05 | 4.52×10-16 | 2.00×10-02 | 4.99×10-01 | 5.27×10+08 | 1.62×10-02 | 4.12×10-02 | 7.09×10-02 | 6.96×10-49 | ||
500 | Best | 9.42×10-34 | 1.21×10+00 | 1.29×10-02 | 8.11×10-06 | 4.66×10+09 | 1.07×10+00 | 1.16×10+00 | 6.68×10-01 | 9.42×10-34 | |
Mean | 1.62×10-05 | 1.21×10+00 | 4.20×10-02 | 2.03×10-01 | 5.90×10+09 | 1.08×10+00 | 1.18×10+00 | 7.87×10-01 | 3.08×10-33 | ||
Std | 3.01×10-05 | 4.52×10-16 | 2.29×10-02 | 4.56×10-01 | 1.42×10+09 | 1.23×10-02 | 1.70×10-02 | 5.70×10-02 | 6.70×10-33 | ||
F13 | 30 | Best | 6.16×10-32 | 1.89×10-30 | 6.03×10-02 | 6.34×10-04 | 3.67×10+00 | 2.61×10+00 | 2.84×10+00 | 9.25×10-01 | 1.35×10-32 |
Mean | 4.07×10-31 | 3.00×10-01 | 2.23×10-01 | 1.23×10+00 | 7.89×10+04 | 2.79×10+00 | 3.08×10+00 | 2.38×10+00 | 1.35×10-32 | ||
Std | 2.06×10-31 | 9.15×10-01 | 1.23×10-01 | 1.46×10+00 | 2.11×10+05 | 9.94×10-02 | 2.30×10-01 | 4.88×10-01 | 5.57×10-48 | ||
200 | Best | 5.67×10-31 | 2.00×10+01 | 1.28×10+00 | 2.39×10-03 | 1.64×10+09 | 2.00×10+01 | 2.00×10+01 | 1.96×10+01 | 1.35×10-32 | |
Mean | 1.05×10-30 | 2.00×10+01 | 3.07×10+00 | 6.75×10+00 | 2.70×10+09 | 2.00×10+01 | 2.00×10+01 | 1.98×10+01 | 1.35×10-32 | ||
Std | 1.20×10-31 | 0.00×10+00 | 1.58×10+00 | 9.40×10+00 | 7.19×10+08 | 2.20×10-02 | 1.02×10-02 | 1.04×10-01 | 5.57×10-48 | ||
500 | Best | 1.58×10-30 | 5.00×10+01 | 1.85×10+00 | 1.62×10-03 | 6.20×10+09 | 5.02×10+01 | 5.00×10+01 | 4.97×10+01 | 1.35×10-32 | |
Mean | 2.05×10-30 | 5.00×10+01 | 8.65×10+00 | 1.58×10+01 | 9.78×10+09 | 5.02×10+01 | 5.00×10+01 | 4.98×10+01 | 6.89×10-31 | ||
Std | 9.47×10-32 | 0.00×10+00 | 4.38×10+00 | 2.27×10+01 | 2.55×10+09 | 4.39×10-02 | 1.77×10-02 | 8.24×10-02 | 1.71×10-30 | ||
F14 | 2 | Best | 9.98×10-01 | 1.03×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 | 1.99×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 |
Mean | 9.98×10-01 | 4.24×10+00 | 3.93×10+00 | 2.98×10+00 | 1.92×10+00 | 1.09×10+01 | 2.88×10+00 | 3.16×10+00 | 6.50×10+00 | ||
Std | 4.86×10-15 | 3.25×10+00 | 4.68×10+00 | 1.60×10+00 | 1.91×10+00 | 3.21×10+00 | 2.34×10+00 | 3.18×10+00 | 4.75×10+00 | ||
F15 | 4 | Best | 3.07×10-04 | 9.09×10-04 | 3.08×10-04 | 3.27×10-04 | 5.97×10-04 | 3.64×10-04 | 1.02×10-03 | 3.08×10-04 | 3.07×10-04 |
Mean | 4.25×10-04 | 3.19×10-03 | 4.34×10-04 | 9.48×10-03 | 1.09×10-03 | 1.91×10-02 | 7.93×10-03 | 4.49×10-04 | 3.57×10-03 | ||
Std | 1.27×10-04 | 1.96×10-03 | 1.83×10-04 | 9.80×10-03 | 3.89×10-04 | 3.11×10-02 | 8.13×10-03 | 3.00×10-04 | 1.04×10-02 | ||
F16 | 2 | Best | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 |
Mean | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -9.27×10-01 | -1.03×10+00 | -1.03×10+00 | -9.88×10-01 | -1.03×10+00 | -1.03×10+00 | ||
Std | 2.00×10-14 | 7.38×10-04 | 4.09×10-08 | 2.62×10-01 | 4.21×10-05 | 1.24×10-07 | 4.39×10-02 | 6.46×10-10 | 6.12×10-16 | ||
F17 | 2 | Best | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 |
Mean | 3.98×10-01 | 4.24×10-01 | 3.98×10-01 | 6.01×10-01 | 4.00×10-01 | 3.98×10-01 | 3.99×10-01 | 3.98×10-01 | 3.98×10-01 | ||
Std | 5.98×10-14 | 2.87×10-02 | 9.11×10-06 | 3.41×10-01 | 1.56×10-03 | 5.33×10-08 | 1.08×10-03 | 1.66×10-08 | 0.00×10+00 | ||
F18 | 5 | Best | 3.00×10+00 | 3.00×10+00 | 3.00×10+00 | 3.04×10+00 | 3.00×10+00 | 3.00×10+00 | 3.02×10+00 | 3.00×10+00 | 3.00×10+00 |
Mean | 3.90×10+00 | 1.06×10+01 | 3.00×10+00 | 5.93×10+00 | 3.00×10+00 | 1.16×10+01 | 6.81×10+00 | 3.00×10+00 | 1.02×10+01 | ||
Std | 4.93×10+00 | 1.85×10+01 | 3.93×10-04 | 1.03×10+01 | 3.29×10-04 | 1.98×10+01 | 1.55×10+01 | 1.63×10-05 | 1.21×10+01 | ||
F19 | 3 | Best | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 |
Mean | -3.86×10+00 | -3.76×10+00 | -3.86×10+00 | -3.70×10+00 | -3.85×10+00 | -3.85×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | ||
Std | 8.74×10-13 | 8.82×10-02 | 2.40×10-03 | 2.57×10-01 | 8.46×10-03 | 3.82×10-03 | 6.12×10-04 | 4.17×10-03 | 2.55×10-15 | ||
F20 | 6 | Best | -3.32×10+00 | -2.90×10+00 | -3.32×10+00 | -3.13×10+00 | -3.11×10+00 | -3.14×10+00 | -3.31×10+00 | -3.32×10+00 | -3.32×10+00 |
Mean | -3.21×10+00 | -2.41×10+00 | -3.20×10+00 | -2.79×10+00 | -2.73×10+00 | -3.04×10+00 | -3.22×10+00 | -3.09×10+00 | -3.29×10+00 | ||
Std | 6.40×10-02 | 5.76×10-01 | 2.09×10-01 | 3.84×10-01 | 5.53×10-01 | 1.32×10-01 | 9.35×10-02 | 4.04×10-01 | 5.54×10-02 | ||
F21 | 4 | Best | -1.02×10+01 | -5.06×10+00 | -1.02×10+01 | -1.01×10+01 | -5.76×10+00 | -7.41×10+00 | -1.01×10+01 | -1.02×10+01 | -1.02×10+01 |
Mean | -1.02×10+01 | -5.02×10+00 | -1.01×10+01 | -6.43×10+00 | -2.74×10+00 | -3.85×10+00 | -9.55×10+00 | -5.40×10+00 | -1.02×10+01 | ||
Std | 2.74×10-11 | 1.96×10-01 | 3.12×10-02 | 2.66×10+00 | 1.86×10+00 | 1.09×10+00 | 9.82×10-01 | 1.29×10+00 | 5.56×10-15 | ||
F22 | 4 | Best | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -1.04×10+01 | -7.90×10+00 | -1.02×10+01 | -1.03×10+01 | -1.04×10+01 | -1.04×10+01 |
Mean | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -7.10×10+00 | -3.46×10+00 | -4.41×10+00 | -9.26×10+00 | -6.08×10+00 | -1.04×10+01 | ||
Std | 2.14×10-11 | 8.50×10-07 | 1.94×10-02 | 2.83×10+00 | 2.07×10+00 | 1.93×10+00 | 1.89×10+00 | 2.82×10+00 | 4.46×10-16 | ||
F23 | 4 | Best | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -1.05×10+01 | -8.73×10+00 | -7.88×10+00 | -1.05×10+01 | -1.05×10+01 | -1.05×10+01 |
Mean | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -6.04×10+00 | -3.26×10+00 | -4.27×10+00 | -9.90×10+00 | -6.31×10+00 | -1.05×10+01 | ||
Std | 3.40×10-11 | 1.65×10-06 | 2.32×10-02 | 2.91×10+00 | 1.87×10+00 | 1.60×10+00 | 5.74×10-01 | 2.73×10+00 | 3.28×10-15 |
In addition to statistical data, the convergence curve is a meaningful way to evaluate the performance of an algorithm. Figures 4–7 shows the convergence curve. MRSA has the fastest convergence rate in unimodal functions F1–F5 and F7 with different dimensions. And thanks to the multi-hunting coordination strategy, when solving F5 and F6, MRSA can converge continuously in the middle of an iteration. In F6, only LMRAOA can convergence. In the multimodal function F8–F13 of different dimensions, MRSA can constantly jump out of the local optimum and show excellent global performance. Although MRSA's convergence performance is poor in the early stage when solving some functions in the multimodal functions with fixed dimensions, it can still continue to converge in the later stage.
Table 4 shows the Wilcoxon rank-sum test results of MRSA and other algorithms. p < 0.05 indicates that the results obtained by the two algorithms are significantly different. Otherwise, it can be considered that the results are relatively similar. We have roughened the data with p ≥ 0.05. It is easy to see that, in F1–F4, F9–F11, most algorithms can find the optimal value, so there is no difference between the results of MRSA and the comparison algorithm. In other functions, there is only a small amount of p ≥ 0.05. Through the comprehensive analysis of Tables 3 and 4, MRSA has a good effect on 23 benchmark functions.
Function | Dim | MRSA VS RSA |
MRSA VS ROA |
MRSA VS B×10S |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
MRSA VS LMRAOA |
F1 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 2.50×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 5.00×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F2 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F3 | 30 | 1.00×10+00 | 2.56×10-06 | 5.00×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.25×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 3.13×10-02 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F4 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F5 | 30 | 3.65×10-03 | 2.13×10-06 | 9.32×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.61×10-04 |
200 | 4.18×10-07 | 1.73×10-06 | 3.18×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.89×10-04 | |
500 | 1.01×10-06 | 1.73×10-06 | 3.52×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.97×10-05 | |
F6 | 30 | 1.73×10-06 | 2.37×10-05 | 1.13×10-05 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.79×10-06 |
200 | 1.71×10-06 | 3.11×10-05 | 2.41×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
500 | 1.73×10-06 | 2.13×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
F7 | 30 | 6.27×10-02 | 6.42×10-03 | 1.73×10-06 | 1.73×10-06 | 8.61×10-01 | 1.73×10-06 | 2.30×10-02 | 6.84×10-03 |
200 | 3.11×10-05 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 | 8.22×10-02 | 1.73×10-06 | 7.52×10-02 | 2.77×10-03 | |
500 | 1.25×10-02 | 6.04×10-03 | 1.73×10-06 | 1.73×10-06 | 3.33×10-02 | 1.73×10-06 | 1.16×10-01 | 1.74×10-04 | |
F8 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F9 | 30 | 1.00×10+00 | 1.00×10+00 | 5.00×10-01 | 1.73×10-06 | 1.00×10+00 | 1.95×10-03 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 4.38×10-04 | 2.50×10-01 | 1.00×10+00 | 1.00×10+00 | |
F10 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 9.03×10-07 | 1.00×10+00 | 4.32×10-08 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.12×10-07 | 1.00×10+00 | 4.32×10-08 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.21×10-07 | 1.00×10+00 | 6.25×10-07 | |
F11 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 6.25×10-02 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 5.00×10-01 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
F12 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 5.61×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 4.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F13 | 30 | 1.70×10-06 | 1.73×10-06 | 1.70×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
200 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.59×10-04 | |
F14 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.31×10-05 |
F15 | 4 | 1.73×10-06 | 1.59×10-01 | 2.88×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.17×10-02 | 6.42×10-03 |
F16 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.58×10-06 |
F17 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
F18 | 5 | 2.84×10-05 | 3.11×10-05 | 3.11×10-05 | 3.11×10-05 | 2.37×10-05 | 2.60×10-05 | 3.11×10-05 | 2.03×10-02 |
F19 | 3 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F20 | 6 | 1.73×10-06 | 5.19×10-02 | 2.60×10-06 | 1.73×10-06 | 1.24×10-05 | 1.40×10-02 | 8.29×10-01 | 1.73×10-06 |
F21 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F22 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F23 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
Further analysis sotuions in the 23 benchmark functions, MRSA has excellent performance compared with other MAs and improved MAs. In unimodal functions, MRSA has a faster convergence rate. For example, In F1–F5, although statistical data show that most algorithms can get the optimal solution, but in the convergence curve, MRSA converges faster. In the multimodal function, benefiting from the multi-hunting cooperation strategy, MRSA can continue to converge when it falls into the local optimum in the medium term. In the convergence curves of F12 and F13, MRSA can continue to converge in the medium term and beyond.
To further verify MRSA's performance, this section gives the statistical results of MRSA running 30 times in CEC2020 functions. Table 5 gives the specific results. CEC1 is a unimodal function, CEC2–4 are essential functions, CEC5–7 are hybrid functions, and CEC8–10 are composition functions. The dimension is 10. It is not difficult to see that MRSA is very effective in most measurement functions. Especially in CEC1, MRSA's effect is better than the compared algorithm. Only in CEC5 the effect of MRSA is not very ideal. In order to show the statistical results' distribution of MRSA and compared algorithm, Figure 8 shows the box chart of statistical data. In Figure 8, the lines above and below the box represent the data set's maximum and minimum. The box's upper and lower sides represent the upper and lower quadrant, respectively. The lines in the middle of the box represent the median value, and '+' represent abnormal values. It can be seen that MRSA's fluctuation amplitude in most functions is small. The fluctuation range in CEC9 is extensive, and the reason is that MRSA can frequently jump out of the local optimum.
Function | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO |
CEC1 | Best | 1.00×10+02 | 5.99×10+09 | 1.82×10+07 | 9.82×10+08 | 3.81×10+08 | 3.75×10+09 | 1.41×10+08 | 6.40×10+03 |
Mean | 2.23×10+03 | 1.14×10+10 | 1.38×10+09 | 4.65×10+09 | 1.03×10+09 | 9.57×10+09 | 3.45×10+08 | 7.53×10+07 | |
Std | 2.08×10+03 | 3.90×10+09 | 1.67×10+09 | 3.98×10+09 | 3.72×10+08 | 3.75×10+09 | 1.63×10+08 | 1.92×10+08 | |
CEC2 | Best | 1.34×10+03 | 2.56×10+03 | 1.75×10+03 | 2.30×10+03 | 2.34×10+03 | 1.90×10+03 | 2.40×10+03 | 1.49×10+03 |
Mean | 1.91×10+03 | 2.87×10+03 | 2.20×10+03 | 2.64×10+03 | 2.60×10+03 | 2.30×10+03 | 2.84×10+03 | 2.06×10+03 | |
Std | 1.45×10+02 | 1.80×10+02 | 3.10×10+02 | 2.76×10+02 | 2.51×10+02 | 2.66×10+02 | 2.37×10+02 | 3.27×10+02 | |
CEC3 | Best | 7.17×10+02 | 8.01×10+02 | 7.70×10+02 | 7.76×10+02 | 7.73×10+02 | 7.88×10+02 | 7.68×10+02 | 7.43×10+02 |
Mean | 7.70×10+02 | 8.15×10+02 | 7.96×10+02 | 8.13×10+02 | 7.87×10+02 | 8.05×10+02 | 7.83×10+02 | 7.76×10+02 | |
Std | 2.03×10+01 | 1.30×10+01 | 2.30×10+01 | 2.48×10+01 | 1.52×10+01 | 1.91×10+01 | 1.55×10+01 | 2.56×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.98×10-01 | 1.07×10+00 | 0.00×10+00 | 2.21×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.76×10+05 | 4.34×10+03 | 5.97×10+04 | 1.70×10+04 | 2.24×10+05 | 1.86×10+04 | 3.67×10+03 |
Mean | 1.17×10+05 | 5.24×10+05 | 1.70×10+05 | 3.01×10+06 | 1.13×10+05 | 5.39×10+05 | 4.91×10+05 | 8.62×10+04 | |
Std | 7.97×10+04 | 1.55×10+05 | 2.45×10+05 | 9.72×10+06 | 2.01×10+05 | 4.93×10+05 | 2.82×10+05 | 2.09×10+05 | |
CEC6 | Best | 1.60×10+03 | 2.06×10+03 | 1.75×10+03 | 1.80×10+03 | 1.77×10+03 | 1.90×10+03 | 1.92×10+03 | 1.72×10+03 |
Mean | 1.83×10+03 | 2.34×10+03 | 1.88×10+03 | 2.00×10+03 | 1.86×10+03 | 2.19×10+03 | 2.18×10+03 | 1.84×10+03 | |
Std | 1.23×10+02 | 2.58×10+02 | 1.39×10+02 | 1.36×10+02 | 1.02×10+02 | 2.48×10+02 | 1.46×10+02 | 1.27×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.99×10+04 | 3.35×10+03 | 4.81×10+03 | 7.27×10+03 | 5.57×10+03 | 7.27×10+03 | 3.10×10+03 |
Mean | 7.88×10+03 | 1.92×10+06 | 1.62×10+04 | 3.70×10+05 | 2.12×10+04 | 1.54×10+06 | 1.87×10+04 | 1.45×10+04 | |
Std | 8.17×10+03 | 3.27×10+06 | 3.45×10+04 | 7.20×10+05 | 1.99×10+04 | 2.72×10+06 | 1.95×10+04 | 3.59×10+04 | |
CEC8 | Best | 2.21×10+03 | 2.87×10+03 | 2.32×10+03 | 2.49×10+03 | 2.36×10+03 | 2.74×10+03 | 2.30×10+03 | 2.30×10+03 |
Mean | 2.31×10+03 | 3.33×10+03 | 2.47×10+03 | 2.82×10+03 | 2.47×10+03 | 3.18×10+03 | 2.38×10+03 | 2.36×10+03 | |
Std | 1.24×10+01 | 4.28×10+02 | 2.18×10+02 | 4.38×10+02 | 3.16×10+02 | 3.67×10+02 | 1.53×10+02 | 1.80×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.83×10+03 | 2.75×10+03 | 2.77×10+03 | 2.78×10+03 | 2.78×10+03 | 2.60×10+03 | 2.74×10+03 |
Mean | 2.66×10+03 | 2.90×10+03 | 2.76×10+03 | 2.79×10+03 | 2.80×10+03 | 2.89×10+03 | 2.79×10+03 | 2.77×10+03 | |
Std | 1.46×10+02 | 8.32×10+01 | 7.55×10+01 | 5.52×10+01 | 9.77×10+00 | 9.35×10+01 | 1.14×10+02 | 5.43×10+01 | |
CEC10 | Best | 2.60×10+03 | 3.25×10+03 | 2.95×10+03 | 3.00×10+03 | 2.96×10+03 | 3.17×10+03 | 2.94×10+03 | 2.92×10+03 |
Mean | 2.93×10+03 | 3.47×10+03 | 3.07×10+03 | 3.25×10+03 | 2.98×10+03 | 3.48×10+03 | 2.97×10+03 | 2.96×10+03 | |
Std | 2.25×10+01 | 2.29×10+02 | 1.59×10+02 | 2.66×10+02 | 3.88×10+01 | 2.91×10+02 | 3.23×10+01 | 4.32×10+01 |
Figure 9 shows MRSA's convergence performance in the CEC2020 function. From the convergence curve of CEC1, 2, 5, 6, 7, 8, 9 and 10, it is not difficult to see that although MRSA's convergence ability is insufficient in the early stage, it can jump out of the local optimum in the middle and late stages.
Table 6 shows the wilcoxon rank-sum test results of MRSA and compared algorithms in CEC2020 functions. In CEC4, several algorithms' p-value is 1. As can be seen from Table 5, most algorithms can find the optimal value stably, so the difference is slight. In other functions, the data set obtained by MRSA is almost significantly different from that obtained by other algorithms. Combining Table 5 and Table 6, it is not difficult to see that MRSA can solve complex functions.
Function | MRSA VS RSA |
MRSA VS ROA |
MRSA VS BES |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
CEC1 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
CEC2 | 1.73×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 |
CEC3 | 4.73×10-06 | 1.99×10-01 | 1.20×10-03 | 8.94×10-01 | 1.59×10-03 | 3.29×10-01 | 6.34×10-06 |
CEC4 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 5.96×10-05 | 1.00×10+00 | 6.10×10-05 | 1.00×10+00 |
CEC5 | 2.13×10-06 | 8.73×10-03 | 1.04×10-03 | 4.07×10-05 | 1.60×10-04 | 8.19×10-05 | 2.13×10-06 |
CEC6 | 1.80×10-05 | 3.87×10-02 | 1.20×10-01 | 3.87×10-02 | 1.71×10-03 | 1.15×10-04 | 1.02×10-05 |
CEC7 | 1.49×10-05 | 3.68×10-02 | 8.19×10-05 | 1.96×10-03 | 5.79×10-05 | 4.68×10-03 | 2.60×10-05 |
CEC8 | 1.73×10-06 | 1.89×10-04 | 1.73×10-06 | 2.37×10-05 | 1.73×10-06 | 4.07×10-05 | 1.73×10-06 |
CEC9 | 1.80×10-05 | 2.30×10-02 | 2.70×10-02 | 1.29×10-03 | 6.89×10-05 | 4.39×10-03 | 2.84×10-05 |
CEC10 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 4.45×10-05 | 1.73×10-06 | 4.11×10-03 | 1.73×10-06 |
In CEC2020 funtions, from in-depth analysis of statistical results, the statistics obtained by MRSA are significantly better than other comparison algorithms. It can be seen from the convergence curve that MRSA can continue to converge in the middle and later stages thanks to the multi-hunting cooperation strategy after it stagnates in the early stage.
This paper adopts three strategies to improve RSA. To reflect the impact of a single strategy on RSA, this paper uses the CEC2020 test functions to test. This section compares MRSA with MutiRSA, RSALOBL and RSALOBL. MutiRSA only adds the multi-hunting coordination strategy, RSALOBL only adds the LOBL strategy, and RSARS only adds the restart strategy. In addition, this section also introduces the variant of AOA (LMRAOA) for comparison, further reflecting MRSA's performance in solving CEC2020 test functions. The results of ablation experiment are shown in Table 7. It is not difficult to see that the three strategies have improved the RSA's performance. Moreover, the results of MRSA also have some advantages over the variant of AOA (LMRAOA).
Function | Statistics | MRSA | MutiRSA | RSALOBL | RSARS | LMRAOA | RSA |
CEC1 | Best | 1.00×10+02 | 1.01×10+02 | 4.20×10+09 | 7.87×10+09 | 2.24×10+02 | 5.99×10+09 |
Mean | 2.23×10+03 | 5.44×10+07 | 1.34×10+10 | 1.61×10+10 | 3.79×10+03 | 1.14×10+10 | |
Std | 2.08×10+03 | 2.98×10+08 | 3.96×10+09 | 3.71×10+09 | 3.46×10+03 | 3.90×10+09 | |
CEC2 | Best | 1.34×10+03 | 1.51×10+03 | 2.34×10+03 | 2.47×10+03 | 1.45×10+03 | 2.56×10+03 |
Mean | 1.91×10+03 | 2.31×10+03 | 2.81×10+03 | 2.80×10+03 | 1.72×10+03 | 2.87×10+03 | |
Std | 1.45×10+02 | 4.53×10+02 | 2.09×10+02 | 6.80×10+01 | 2.83×10+02 | 1.80×10+02 | |
CEC3 | Best | 7.17×10+02 | 7.28×10+02 | 7.97×10+02 | 7.93×10+02 | 7.49×10+02 | 8.01×10+02 |
Mean | 7.70×10+02 | 7.82×10+02 | 8.15×10+02 | 8.17×10+02 | 7.80×10+02 | 8.15×10+02 | |
Std | 2.03×10+01 | 2.52×10+01 | 8.57×10+00 | 1.11×10+01 | 1.75×10+01 | 1.30×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.78×10+03 | 2.04×10+05 | 3.55×10+05 | 2.03×10+03 | 3.76×10+05 |
Mean | 1.17×10+05 | 1.96×10+05 | 4.80×10+05 | 5.24×10+05 | 4.25×10+03 | 5.24×10+05 | |
Std | 7.97×10+04 | 1.39×10+05 | 1.03×10+05 | 6.45×10+04 | 4.58×10+03 | 1.55×10+05 | |
CEC6 | Best | 1.60×10+03 | 1.60×10+03 | 2.02×10+03 | 1.85×10+03 | 1.60×10+03 | 2.06×10+03 |
Mean | 1.83×10+03 | 1.95×10+03 | 2.33×10+03 | 2.26×10+03 | 1.88×10+03 | 2.34×10+03 | |
Std | 1.23×10+02 | 2.11×10+02 | 2.19×10+02 | 2.17×10+02 | 1.44×10+02 | 2.58×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.12×10+03 | 3.19×10+04 | 1.67×10+04 | 2.12×10+03 | 2.99×10+04 |
Mean | 7.88×10+03 | 5.75×10+05 | 2.66×10+06 | 1.94×10+06 | 2.45×10+03 | 1.92×10+06 | |
Std | 8.17×10+03 | 2.87×10+06 | 2.67×10+06 | 1.84×10+06 | 3.86×10+02 | 3.27×10+06 | |
CEC8 | Best | 2.21×10+03 | 2.23×10+03 | 2.83×10+03 | 2.75×10+03 | 2.30×10+03 | 2.87×10+03 |
Mean | 2.31×10+03 | 2.39×10+03 | 3.19×10+03 | 3.20×10+03 | 2.30×10+03 | 3.33×10+03 | |
Std | 1.24×10+01 | 2.68×10+02 | 2.34×10+02 | 2.86×10+02 | 1.04×10+00 | 4.28×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.50×10+03 | 2.73×10+03 | 2.82×10+03 | 2.50×10+03 | 2.83×10+03 |
Mean | 2.66×10+03 | 2.76×10+03 | 2.87×10+03 | 2.94×10+03 | 2.73×10+03 | 2.90×10+03 | |
Std | 1.46×10+02 | 1.09×10+02 | 5.54×10+01 | 6.07×10+01 | 9.95×10+01 | 8.32×10+01 | |
CEC10 | Best | 2.60×10+03 | 2.90×10+03 | 3.22×10+03 | 3.27×10+03 | 2.90×10+03 | 3.25×10+03 |
Mean | 2.93×10+03 | 2.97×10+03 | 3.45×10+03 | 3.51×10+03 | 2.91×10+03 | 3.47×10+03 | |
Std | 2.25×10+01 | 1.28×10+02 | 1.89×10+02 | 2.08×10+02 | 8.68×10+01 | 2.29×10+02 |
The main goal of improving existing MAs is to solve practical problems. To verify the engineering applicability of MRSA, six classical engineering problems are selected in this section. The problems are welding beam design, pressure vessel design, tension/compression spring design, speed reducer design, corrugated bulkhead design and multiple disc clutch brake design.
The problem with the welded beam is finding the minimum weight to reduce the cost. It includes four variables: the length of the beam (x1), the height of the beam (x2), the thickness of the beam (x3) and the thickness of the weld (x4). At the same time, the shear stress, bending stress, beam bending load, end deviation, etc., also need to meet the constraints. The model of the welded beam design problem is shown in Figure 10.
The mathematical model of welded beam design is as follows:
Construct objective function:
f(x)=1.10471x21x2+0.04811x3x4(14.0+x2) | (22) |
Constraint condition:
g1(→x)=τ(→x)−τmax⩽0 | (23) |
g2(→x)=σ(→x)−σmax⩽0 | (24) |
g3(→x)=δ(→x)−δmax⩽0 | (25) |
g4(→x)=x1−x4⩽0 | (26) |
g5(→x)=P−Pc(→x)⩽0 | (27) |
g6(→x)=0.125−x1⩽0 | (28) |
g7(→x)=1.10471x21+0.04811x3x4(14.0+x2)−0.5⩽0 | (29) |
Parameter solving:
τ(→x)=√(τ')2+2τ'τ"x22R+(τ"),τ'=P√2x1x2,τ"=MRJ | (30) |
M=P(L+x22),R=√x224+(x1+x32)2,σ(→x)=6PLx4x23 | (31) |
J=2{√2x1x2[x2x4+(x1+x32)2]},δ(→x)=6PL3Ex4x23 | (32) |
Pc(→x)=4.013E√x23x640L2,(1−x32L√E4G),(1−x32L√E4G) | (33) |
P=6000lb,L=14in,δmax=0.25in,E=30×106psi | (34) |
τmax=13600psi,andσmax=30000psi | (35) |
Boundary constraint:
0.1⩽xi⩽2,i=1,4;0.1⩽xi⩽10,i=2.3 | (36) |
Table 8 shows the experimental results of MRSA in solving the welded beams design problem. When x1 = 0.205739392, x2 = 3.252967354, x3 = 9.036552395, x4 = 0.205732954, MRSA obtained the best result (1.695257579). The solution obtained by other algorithms is obviously inferior to those obtained by MRSA.
Algorithm | Optimal values for variables | Optimum weight | |||
x1 | x2 | x3 | x4 | ||
MRSA | 0.205739392 | 3.252967354 | 9.036552395 | 0.205732954 | 1.695257579 |
ROA [44] | 0.200077 | 3.365754 | 9.011182 | 0.206893 | 1.706447 |
GWO [8] | 0.205676 | 3.478377 | 9.03681 | 0.205778 | 1.72624 |
WOA [49] | 0.205396 | 3.484293 | 9.037426 | 0.206276 | 1.730499 |
RO [50] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
MPA [51] | 0.205728 | 3.470509 | 9.036624 | 0.20573 | 1.724853 |
MVO [52] | 0.205463 | 3.473193 | 9.044502 | 0.205695 | 1.72645 |
AOA [17] | 0.194475 | 2.57092 | 10 | 0.201827 | 1.7164 |
HHO [53] | 0.204039 | 3.531061 | 9.027463 | 0.206147 | 1.73199057 |
IHS [54] | 0.20573 | 3.47049 | 9.03662 | 0.2057 | 1.7248 |
RSA [34] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
The pressure vessel design is to meet the production demand and reduce the cost. The problem includes four variables: shell thickness (Ts), head thickness (Th), inner radius (R) and vessel length (L). Ts and Th are integral multiples of 0.625. R and L are continuous variables. The model of the pressure vessel design problem is shown in Figure 11.
The mathematical model of the pressure vessel design problem is as follows:
We consider:
→x=[x1x2x3x4]=[TsThR L] | (37) |
Construct objective function:
f(→x)=0.6224x1x2x3+1.7781x2x23+3.1661x21x4+19.84x21x3 | (38) |
Constraint condition:
g1(→x)=−x1+0.0193x3⩽0 | (39) |
g2(→x)=−x3+0.00954x3⩽0 | (40) |
g3(→x)=−πx23x4+23πx33+1296000⩽0 | (41) |
g4(→x)=−x4−240⩽0 | (42) |
Boundaries constraint:
0⩽x1⩽99,0⩽x2⩽99,10⩽x3⩽20010⩽x4⩽200 | (42) |
Table 9 gives the results of MRSA and other algorithms in pressure vessel design. When Ts is 0.758460965, Th is 0.377162354, R is 41.10831839 and L is 189.3046068, MRSA obtained the lowest cost.
Algorithm | Optimal values for variables | Optimum cost | |||
Ts | Th | R | L | ||
MRSA | 0.758460965 | 0.377162354 | 41.10831839 | 189.3046068 | 5765.42006 |
SHO [55] | 0.77821 | 0.384889 | 40.31504 | 200 | 5885.5773 |
MPA [51] | 0.77816876 | 0.38464966 | 40.31962084 | 199.9999935 | 5885.3353 |
SMA [56] | 0.7931 | 0.3932 | 40.6711 | 196.2178 | 5994.1857 |
HPSO [57] | 0.8125 | 0.4375 | 42.0984 | 176.6366 | 6059.7143 |
GWO [8] | 0.8125 | 0.4345 | 42.089181 | 176.758731 | 6051.5639 |
DE [58] | 0.8125 | 0.4375 | 42.098411 | 176.63769 | 6059.7340 |
COOT [59] | 0.77817 | 0.384651 | 40.319618 | 200 | 5885.3487 |
AEO [60] | 0.8374205 | 0.413937 | 43.389597 | 161.268592 | 5994.5070 |
CSS [61] | 0.8125 | 0.4375 | 42.103624 | 176.572656 | 6059.0888 |
The tension/compression spring design is to obtain the minimum weight of the spring under four constraints. The problem has three variables: the average diameter of the spring coil (D), the diameter of the spring wire (d) and the adequate number of the spring coils (N). The specific model of the pressure spring problem is shown in Figure 12.
The mathematical model of the tension/compression spring problem is as follows:
We consider:
x=[x1x2x3]=[d D N] | (43) |
Objective function:
f(x)=(x3+2)×x2×x21 | (44) |
Subject to:
g1(x)=1−x3×x3271785×x41⩽0 | (45) |
g2(x)=4×x22−x1×x212566×x41+15108×x21−1⩽0 | (46) |
g3(x)=1−140.45×x1x22×x3⩽0 | (47) |
g4(x)=x1+x21.5−1⩽0 | (48) |
Boundaries:
0.05⩽x1⩽2.0;0.25⩽x2⩽1.3;2.0⩽x3⩽15.0 | (49) |
Table 10 shows the results of MRSA and other algorithms for the tension/compression spring design. It can be seen that MRSA has a great effect on the tension/compression spring design. MRSA obtained the optimal solution of 0.009913786, which is obviously superior to the basic RSA.
Algorithm | Optimal values for variables | Optimum Value | ||
D | d | n | ||
MRSA | 0.05 | 0.373434558 | 8.619033937 | 0.009913786 |
RSA [34] | 0.057814 | 0.58478 | 4.0167 | 0.01176 |
MVO [52] | 0.05251 | 0.37602 | 10.33513 | 0.01279 |
WOA [49] | 0.051207 | 0.345215 | 12.004032 | 0.0126763 |
CSCA [52] | 0.051609 | 0.354714 | 11.410831 | 0.0126702 |
AOA [17] | 0.05 | 0.349809 | 11.8637 | 0.012124 |
RO [50] | 0.05137 | 0.349096 | 11.76279 | 0.0126788 |
PFA [63] | 0.051726 | 0.357629 | 11.235724 | 0.012665 |
The model of the speed reducer design problem is shown in Figure 13. This problem ensures that the speed reducer can meet the constraint conditions and achieve the minimum mass. There are seven design variables in this problem. We set the width of the tooth surface (x1), gear module (x2), the number of teeth on the pinion (x3), length of the first shaft between bearings (x4), length of the second shaft between bearings (x5), the diameter of the first shaft (x6) and diameter of the second shaft (x7).
The mathematical model and constraints of the speed reducer problem are as follows:
Objective function:
f(→x)=07854×x1×x22×(3.3333×x32+14.9334×x3−43.0934)−1.508×x1×(x62+x72)+7.4777×x63+x73+0.7854×x4×x62+x5×x72 | (50) |
Subject to:
g1(→x)=27x1×x22×x3−1⩽0 | (52) |
g2(→x)=397.5x1×x22×x32−1⩽0 | (53) |
g3(→x)=1.93×x43x2×x3×x64−1⩽0 | (54) |
g4(→x)=1.93×x53x2×x3×x74−1⩽0 | (55) |
g5(→x)=1110×x63×√(745×x4x2×x3)2+16.9×106−1⩽0 | (56) |
g6(→x)=185×x73×√(745×x5x2×x3)2+16.9×106−1⩽0 | (57) |
g7(→x)=x2×x340−1⩽0 | (58) |
g8(→x)=5×x2x1−1⩽0 | (59) |
g9(→x)=x112×x2−1⩽0 | (60) |
g10(→x)=1.5×x6+1.9x4−1⩽0 | (61) |
g11(→x)=1.1×x7+1.9x5−1⩽0 | (62) |
Boundaries:
2.6⩽x1⩽3.6,0.7⩽x2⩽0.8,17⩽x3⩽28,7.3⩽x4⩽8.3,7.3⩽x5⩽8.3,2.9⩽x6⩽3.9,5⩽x7⩽5.5 | (63) |
It is not difficult to see that MRSA has a good effect on speed reducer design. Table 11 shows MRSA's solution in speed reducer design. The solution obtained by MRSA is X = [3.476415091, 0.7, 17, 7.3, 7.8, 3.348630145, 5.276783057], which is obviously superior to RSA's and other comparison algorithms.
Algorithm | Optimal values for variables | Optimal weight |
||||||
x1 | x2 | x3 | x4 | x5 | x6 | x7 | ||
MRSA | 3.476415091 | 0.7 | 17 | 7.3 | 7.8 | 3.348630145 | 5.276783057 | 2988.271359 |
RSA [34] | 3.50279 | 0.7 | 17 | 7.30812 | 7.74715 | 3.35067 | 5.28675 | 2996.5157 |
hHHO-SCA [64] | 3.506119 | 0.7 | 17 | 7.3 | 7.99141 | 3.452569 | 5.286749 | 3029.873076 |
MROA [65] | 3.497571 | 0.7 | 17 | 7.3 | 7.8 | 3.350057265 | 5.28553957 | 2995.437447 |
AAO [66] | 3.499 | 0.6999 | 17 | 7.3 | 7.8 | 3.3502 | 5.2872 | 2996.783 |
APSO [67] | 3.501313 | 0.7 | 18 | 8.127814 | 8.042121 | 3.352446 | 5.287076 | 3187.630486 |
MFO [68] | 3.497455 | 0.7 | 17 | 7.82775 | 7.712457 | 3.351787 | 5.286352 | 2998.94083 |
WSA [69] | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.350215 | 5.286683 | 2996.348225 |
CS [70] | 3.5015 | 0.7 | 17 | 7.605 | 7.8181 | 3.352 | 5.2875 | 3000.981 |
PDO [71] | 3.497777468 | 0.7 | 17.00002761 | 7.300100314 | 7.800675175 | 3.351095015 | 5.296455378 | 2993.7 |
DMOA [72] | 3.497599093 | 0.7 | 17 | 7.3 | 7.713534977 | 3.350055806 | 5.285631197 | 3010.4 |
The corrugated bulkhead design is a problem of minimizing the corrugated bulkhead's mass. It includes four design variables: width (x1), depth (x2), length (x3) and plate thickness (x4). The model of this problem is shown in Figure 14.
Its mathematical model and constraints are as follows:
Objective function:
f(x)=5.885x4(x1+x3)x1+√|x23−x22| | (64) |
Constraints:
g1(X)=−x4x2(0.4x1+x36)+8.94(x1+√∣x23−x22∣)⩽0 | (65) |
g2(X)=−x4x22(0.2x1+x312)+2.2(8.94(x1+√∣x23−x22∣))4/3⩽0 | (66) |
g3(X)=−x4+0.0156x1+0.15⩽0 | (67) |
g4(X)=−x4+0.0156x3+0.15⩽0 | (68) |
g5(X)=−x4+1.05⩽0 | (69) |
g6(X)=−x3+x2⩽0 | (70) |
Boundaries constraints:
0≤x1,x2,x3≤100, 0≤x4≤5 | (71) |
Table 12 shows that when X = [57.69230749, 34.14762033, 57.69230747, 1.05], MRSA obtained the optimal solution (6.842958018).
Algorithm | Optimal values for variables | Optimal cost | |||
x1 | x2 | x3 | x4 | ||
MRSA | 57.69230749 | 34.14762033 | 57.69230747 | 1.05 | 6.842958018 |
PDO [71] | 48.31191 | 54.78270401 | 61.92983 | 0.424913 | 6.9821 |
FA [73] | 37.1179498 | 33.035021 | 37.1939476 | 0.7306255 | 7.21 |
LF-FA [73] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 6.95 |
LS-LF-FA [73] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 6.86 |
AOA [72] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 481.97 |
BBO [74] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 2.79 × 1012 |
The multiple disc clutch brake design is a problem in finding the minimum mass and meeting some constraints. It has five variables: the inner radius (x1), the outer radius (x2), the disc thickness (x3), the driving force (x4) and the number of skin friction (x5). The specific model is shown in Figure 15.
The mathematical model of multiple disc clutch brake design is as follows:
Objective function:
→x=[x1x2x3x4x5]=[rirotFZ] | (72) |
Objective function:
f(x)=II(r2o−r2i)t(Z+1)ρ (ρ=0.0000078) | (73) |
Subject to:
g1(x)=ro−ri−Δr⩾0 | (74) |
g2(x)=lmax−(Z+1)(t+δ)⩾0 | (75) |
g3(x)=Pmax−Prz⩾0 | (76) |
g4(x)=Pmaxνsrmax−Przυsr⩾0 | (77) |
g5(x)=νsrmax−υsr⩾0 | (78) |
g6(x)=Tmax−T⩾0 | (79) |
g7(x)=Mh−sMs⩾0 | (80) |
g8(x)=T⩾0 | (81) |
Variable range:
60⩽x1⩽80,90⩽x2⩽110,1⩽x3⩽3,600⩽x4⩽1000,2⩽x5⩽9 | (82) |
Parameters:
Mh=23μFZr3o−r2ir2o−r3i,Prz=FII(r2o−r2i) | (83) |
υrz=2II(r3o−r3i)90(r2o−r2i),T=IzIIn30(Mh+Mf) | (84) |
Δr=20mm,Iz=55kgmm2,Pmax=1MPa,Fmax=1000N | (85) |
Tmax=15s,μ=0.5,s=1.5,Ms=40Nm,Mf=3Nm | (86) |
n=250rpm,υsrmax=10m/ms,s,lmax=30mm | (87) |
Table 13 shows the solutions of MRSA and other algorithms on the multiple disc clutch brake design. MRSA obtained the minimum mass of 0.235242553 when X = [69.99999072, 90, 1,635.6851083, 2].
Algorithm | Optimal values for variables | Optimum weight | ||||
x1 | x2 | x3 | x4 | x5 | ||
MRSA | 69.99999072 | 90 | 1 | 635.6851083 | 2 | 0.235242553 |
TLBO [38] | 70 | 90 | 1 | 810 | 3 | 0.313656611 |
WCA [75] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
HHO [53] | 70 | 90 | 1 | 1000 | 2.3128 | 0.259768993 |
CMVO [76] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
QSMFO [77] | 80 | 101.3002 | 3 | 600 | 9 | 0.2902 |
RSA [34] | 70.0347 | 90.0349 | 1 | 801.7285 | 2.974 | 0.31176 |
This paper proposed a multi-hunting coordination strategy by combining Lagrange interpolation with TLBO's student stage. Replace the original hunting coordination stage with the proposed multi-hunting coordination strategy. It both enhanced the algorithm's exploration and exploitation. At the same time, the LOBL strategy and restart strategy are added to improve the global performance of the algorithm. Through solving the test functions of different dimensions, the statistical data shows that MRSA has great advantages in low dimensional simple problems and high dimensional complex problems compared with other original algorithms and improved algorithms. When solving engineering problems, the results obtained by MRSA are also significantly better than other algorithms.
Although the MRSA proposed in this paper has greatly improved its performance compared with RSA. However, MRSA also increases the computational complexity. In the future, we will continue to improve the performance of MRSA and reduce its complexity. We also try to enable it to solve more engineering problems such as path planning and multiple image segmentation. In addition, in order to solve more practical problems, we will try to propose the multi-objective version of MRSA in the future.
This work was funded by National Education Science Planning Key Topics of the Ministry of Education—"Research on the core quality of applied undergraduate teachers in the intelligent age" (DIA220374).
On behalf of all authors, the corresponding author states that there is no conflict of interest.
[1] |
Meites J (1988) Neuroendocrine biomarkers of aging in the rat. Exp Gerontol 23: 349-358. doi: 10.1016/0531-5565(88)90037-X
![]() |
[2] | Bellinger DL, Lorton D, Lubahn C, et al. (2001) Innervation of lymphoid organs—Association of nerves with cells of the immune system and their implications in disease. Psychoneuroimmunology San Diego: Academic Press, 5-111. |
[3] |
Downs JL, Wise PM (2009) The role of the brain in female reproductive aging. Mol Cell Endocrinol 299: 32-38. doi: 10.1016/j.mce.2008.11.012
![]() |
[4] |
Banks WA (2015) The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun 44: 1-8. doi: 10.1016/j.bbi.2014.08.007
![]() |
[5] |
Bellinger DL, Millar BA, Perez S, et al. (2008) Sympathetic modulation of immunity: relevance to disease. Cell Immunol 252: 27-56. doi: 10.1016/j.cellimm.2007.09.005
![]() |
[6] | ThyagaRajan S, Priyanka HP (2012) Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci 19: 40-46. |
[7] | Pratap U, Hima L, Kannan T, et al. (2020) Sex-Based Differences in the Cytokine Production and Intracellular Signaling Pathways in Patients With Rheumatoid Arthritis. Arch Rheumatol 35: i-xiii. |
[8] |
Hima L, Patel MN, Kannan T, et al. (2020) Age-associated decline in neural, endocrine, and immune responses in men and women: Involvement of intracellular signaling pathways. J Neuroimmunol 345: 577290. doi: 10.1016/j.jneuroim.2020.577290
![]() |
[9] |
ThyagaRajan S, Hima L, Pratap UP, et al. (2019) Estrogen-induced neuroimmunomodulation as facilitator of and barrier to reproductive aging in brain and lymphoid organs. J Chem Neuroanat 95: 6-12. doi: 10.1016/j.jchemneu.2018.02.008
![]() |
[10] |
Randolph JF, Sowers M, Bondarenko IV, et al. (2004) Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab 89: 1555-1561. doi: 10.1210/jc.2003-031183
![]() |
[11] |
Kermath BA, Gore AC (2012) Neuroendocrine control of the transition to reproductive senescence: lessons learned from the female rodent model. Neuroendocrinol 96: 1-12. doi: 10.1159/000335994
![]() |
[12] |
Harlow SD, Mitchell ES, Crawford S, et al. (2008) The ReSTAGE Collaboration: defining optimal bleeding criteria for onset of early menopausal transition. Fertil Steril 89: 129-40. doi: 10.1016/j.fertnstert.2007.02.015
![]() |
[13] |
Wang Y, Mishra A, Brinton RD (2020) Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000 Res 9: 68. doi: 10.12688/f1000research.21599.1
![]() |
[14] |
Finkelstein JS, Brockwell SE, Mehta V, et al. (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93: 861-868. doi: 10.1210/jc.2007-1876
![]() |
[15] |
Brann DW, Mahesh VB (2005) The aging reproductive neuroendocrine axis. Steroids 70: 273-283. doi: 10.1016/j.steroids.2004.12.008
![]() |
[16] |
Wise PM (2005) Estrogens and cerebrovascular stroke: what do animal models teach us? Ann N Y Acad Sci 1052: 225-232. doi: 10.1196/annals.1347.017
![]() |
[17] |
Wise PM, Scarbrough K, Lloyd J, et al. (1994) Neuroendocrine concomitants of reproductive aging. Exp Gerontol 29: 275-283. doi: 10.1016/0531-5565(94)90007-8
![]() |
[18] |
MohanKumar PS, ThyagaRajan S, Quadri SK (1995) Cyclic and age-related changes in norepinephrine concentrations in the medial preoptic area and arcuate nucleus. Brain Res Bull 38: 561-564. doi: 10.1016/0361-9230(95)02031-4
![]() |
[19] |
MohanKumar PS, ThyagaRajan S, Quadri SK (1997) Tyrosine hydroxylase and DOPA decarboxylase activities in the medial preoptic area and arcuate nucleus during the estrus cycle: effects of aging. Brain Res Bull 42: 265-271. doi: 10.1016/S0361-9230(96)00210-9
![]() |
[20] |
Wise PM (1982) Norepinephrine and dopamine activity in micro dissected brain areas of the middle-aged and young rat on proestrus. Biol Reprod 27: 562-574. doi: 10.1095/biolreprod27.3.562
![]() |
[21] |
Wise PM (1984) Estradiol-induced daily luteinizing hormone and prolactin surges in young and middle-aged rats: correlations with age-related changes in pituitary responsiveness and catecholamine turnover rates in micro dissected brain areas. Endocrinology 115: 801-809. doi: 10.1210/endo-115-2-801
![]() |
[22] |
ThyagaRajan S, Madden KS, Teruya B, et al. (2011) Age-associated alterations in sympathetic noradrenergic innervation of primary and secondary lymphoid organs in female Fischer 344 rats. J Neuroimmunol 233: 54-64. doi: 10.1016/j.jneuroim.2010.11.012
![]() |
[23] |
Chakrabarti M, Haque A, Banik NL, et al. (2014) Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 109: 22-31. doi: 10.1016/j.brainresbull.2014.09.004
![]() |
[24] |
Ravichandran KA, Karrunanithi S, Hima L, et al. (2017) Estrogen differentially regulates the expression of tyrosine hydroxylase and nerve growth factor through free radical generation in the thymus and mesenteric lymph nodes of middle-aged ovariectomized female Sprague-Dawley rats. Clin Exp Neuroimmunol 8: 341-350. doi: 10.1111/cen3.12415
![]() |
[25] |
Priyanka HP, Sharma U, Gopinath S, et al. (2013) Menstrual cycle and reproductive aging alters immune reactivity, NGF expression, antioxidant enzyme activities, and intracellular signalling pathways in the peripheral blood mononuclear cells of healthy women. Brain Behav Immun 32: 131-143. doi: 10.1016/j.bbi.2013.03.008
![]() |
[26] |
Wise PM, Smith MJ, Dubal DB, et al. (2002) Neuroendocrine modulation and repercussions of female reproductive aging. Recent Prog Horm Res 57: 235-256. doi: 10.1210/rp.57.1.235
![]() |
[27] |
Murray RW (2001) Estrogen, prolactin, and autoimmunity: actions and interactions. Int Immunopharmacol 1: 995-1008. doi: 10.1016/S1567-5769(01)00045-5
![]() |
[28] |
Salem ML (2004) Estrogen, a double-edged sword: modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy 3: 97-104. doi: 10.2174/1568010043483944
![]() |
[29] |
Lang TJ (2004) Estrogen as an immunomodulator. Clin Immunol 113: 224-230. doi: 10.1016/j.clim.2004.05.011
![]() |
[30] | Krzych U, Strausser HR, Bressler JP, et al. (1978) Quantitative differences in immune responses during the various stages of the estrus cycle in female BALB/c mice. J Immunol 121: 1603-1605. |
[31] |
Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28: 521-574. doi: 10.1210/er.2007-0001
![]() |
[32] |
Lasarte S, Elsner D, Sanchez-Elsner T, et al. (2013) Estradiol down regulates NF-κB translocation by Ikbkg transcriptional repression in dendritic cells. Genes Immun 14: 462-469. doi: 10.1038/gene.2013.35
![]() |
[33] |
Maret A, Coudert JD, Garidou L, et al. (2003) Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor alpha expression in hematopoietic cells. Eur J Immunol 33: 512-521. doi: 10.1002/immu.200310027
![]() |
[34] |
Priyanka HP, Krishnan HC, Singh RV, et al. (2013) Estrogen modulates in vitro T cell responses in a concentration- and receptor-dependent manner: effects on intracellular molecular targets and antioxidant enzymes. Mol Immunol 56: 328-339. doi: 10.1016/j.molimm.2013.05.226
![]() |
[35] |
Maglione A, Rolla S, Mercanti SF, et al. (2019) The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells 8: 1280. doi: 10.3390/cells8101280
![]() |
[36] |
Ysrraelit MC, Correale J (2019) Impact of sex hormones on immune function and multiple sclerosis development. Immunology 156: 9-22. doi: 10.1111/imm.13004
![]() |
[37] |
Cutolo M, Sulli A, Capellino S, et al. (2004) Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus 13: 635-638. doi: 10.1191/0961203304lu1094oa
![]() |
[38] |
Chakrabarti M, Haque A, Banik NL, et al. (2014) Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 109: 22-31. doi: 10.1016/j.brainresbull.2014.09.004
![]() |
[39] |
Babayan AH, Kramár EA (2013) Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 25: 1163-1172. doi: 10.1111/jne.12108
![]() |
[40] |
Mónica Brauer M, Smith PG (2015) Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 187: 1-17. doi: 10.1016/j.autneu.2014.11.009
![]() |
[41] |
Priyanka HP, ThyagaRajan S (2013) Selective modulation of lymphoproliferation and cytokine production via intracellular signalling targets by α1- and α2-adrenoceptors and estrogen in splenocytes. Int Immunopharmacol 17: 774-784. doi: 10.1016/j.intimp.2013.08.020
![]() |
[42] |
Priyanka HP, Pratap UP, Singh RV, et al. (2014) Estrogen modulates β2-adrenoceptor-induced cell-mediated and inflammatory immune responses through ER-α involving distinct intracellular signaling pathways, antioxidant enzymes, and nitric oxide. Cell Immunol 292: 1-8. doi: 10.1016/j.cellimm.2014.08.001
![]() |
[43] |
Scanzano A, Schembri L, Rasini E, et al. (2015) Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm Res 64: 127-135. doi: 10.1007/s00011-014-0791-8
![]() |
[44] |
Prey S, Leaute-Labreze C, Pain C, et al. (2014) Mast cells as possible targets of propranolol therapy: an immunohistological study of beta-adrenergic receptors in infantile haemangiomas. Histopathology 65: 436-439. doi: 10.1111/his.12421
![]() |
[45] |
Du Y, Yan L, Du H, et al. (2012) β1-adrenergic receptor autoantibodies from heart failure patients enhanced TNF-α secretion in RAW264.7 macrophages in a largely PKA-dependent fashion. J Cell Biochem 113: 3218-3228. doi: 10.1002/jcb.24198
![]() |
[46] |
Yang H, Du RZ, Qiu JP, et al. (2013) Bisoprolol reverses epinephrine-mediated inhibition of cell emigration through increases in the expression of β-arrestin 2 and CCR7 and PI3K phosphorylation, in dendritic cells loaded with cholesterol. Thromb Res 131: 230-237. doi: 10.1016/j.thromres.2012.12.009
![]() |
[47] |
Markus T, Hansson SR, Cronberg T, et al. (2010) β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices. J Neuroinflammation 7: 94. doi: 10.1186/1742-2094-7-94
![]() |
[48] |
Cunningham M, Gilkeson G (2011) Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol 40: 66-73. doi: 10.1007/s12016-010-8203-5
![]() |
[49] |
Geserick C, Meyer HA, Haendler B (2005) The role of DNA response elements as allosteric modulators of steroid receptor function. Mol Cell Endocrinol 236: 1-7. doi: 10.1016/j.mce.2005.03.007
![]() |
[50] |
Li J, McMurray RW (2006) Effects of estrogen receptor subtype-selective agonists on immune functions in ovariectomized mice. Int Immunopharmacol 6: 1413-1423. doi: 10.1016/j.intimp.2006.04.019
![]() |
[51] |
Li J, McMurray RW (2010) Effects of cyclic versus sustained estrogen administration on peripheral immune functions in ovariectomized mice. Am J Reprod Immunol 63: 274-281. doi: 10.1111/j.1600-0897.2009.00784.x
![]() |
[52] |
Delpy L, Douin-Echinard V, Garidou L, et al. (2005) Estrogen enhances susceptibility to experimental autoimmune myasthenia gravis by promoting type 1-polarized immune responses. J Immunol 175: 5050-5057. doi: 10.4049/jimmunol.175.8.5050
![]() |
[53] |
Murphy AJ, Guyre PM, Pioli PA (2010) Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 184: 5029-5037. doi: 10.4049/jimmunol.0903463
![]() |
[54] |
Tiwari-Woodruff S, Voskuhl RR (2009) Neuroprotective and anti-inflammatory effects of estrogen receptor ligand treatment in mice. J Neurol Sci 286: 81-85. doi: 10.1016/j.jns.2009.04.023
![]() |
[55] |
Hildebrand F, Hubbard WJ, Choudhry MA, et al. (2006) Are the protective effects of 17 beta-estradiol on splenic macrophages and splenocytes after trauma-haemorrhage mediated via estrogen-receptor (ER)-alpha or ER-beta? J Leukoc Biol 79: 1173-1180. doi: 10.1189/jlb.0106029
![]() |
[56] |
Kawasaki T, Suzuki T, Choudhry MA, et al. (2010) Salutary effects of 17 beta-estradiol on Peyer's patch T cell functions following trauma-haemorrhage. Cytokine 51: 166-172. doi: 10.1016/j.cyto.2010.03.016
![]() |
[57] |
Suzuki T, Yu HP, Hsieh YC, et al. (2008) Mitogen activated protein kinase (MAPK) mediates non-genomic pathway of estrogen on T cell cytokine production following trauma-haemorrhage. Cytokine 42: 32-38. doi: 10.1016/j.cyto.2008.02.002
![]() |
[58] |
Liao ZH, Huang T, Xiao JW, et al. (2019) Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skeletal Muscle 9: 20. doi: 10.1186/s13395-019-0205-2
![]() |
[59] | Khan D, Ansar Ahmed S (2015) The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front Immunol 6: 635. |
[60] | Spengler RN, Allen RM, Remick DG, et al. (1990) Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumour necrosis factor. J Immunol 145: 1430-1434. |
[61] |
Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7: 715-726. doi: 10.1038/nrendo.2011.122
![]() |
[62] |
Bourque M, Dluzen DE, Di Paolo T (2012) Signalling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson's disease. Front Neuroendocrinol 33: 169-178. doi: 10.1016/j.yfrne.2012.02.003
![]() |
[63] |
Lebesgue D, Chevaleyre V, Zukin RS, et al. (2009) Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids 74: 555-561. doi: 10.1016/j.steroids.2009.01.003
![]() |
[64] |
Thomas W, Coen N, Faherty S, et al. (2006) Estrogen induces phospholipase A2 activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids 71: 256-265. doi: 10.1016/j.steroids.2005.10.010
![]() |
[65] |
Titolo D, Mayer CM, Dhillon SS, et al. (2008) Estrogen facilitates both phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase membrane signalling required for long-term neuropeptide Y transcriptional regulation in clonal, immortalized neurons. J Neurosci 28: 6473-6482. doi: 10.1523/JNEUROSCI.0514-08.2008
![]() |
[66] |
Milette S, Hashimoto M, Perrino S, et al. (2019) Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases. Nat Commun 10: 5745. doi: 10.1038/s41467-019-13571-x
![]() |
[67] |
Wade CB, Dorsa DM (2003) Estrogen activation of cyclic adenosine 5′-monophosphate response element mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway. Endocrinology 144: 832-838. doi: 10.1210/en.2002-220899
![]() |
[68] |
Fernandez SM, Lewis MC, Pechenino AS, et al. (2008) Estradiol-induced enhancement of object memory consolidation involves hippocampal ERK activation and membrane-bound estrogen receptors. J Neurosci 28: 8660-8667. doi: 10.1523/JNEUROSCI.1968-08.2008
![]() |
[69] |
Carlstrom L, Ke ZJ, Unnerstall JR, et al. (2001) Estrogen modulation of the cyclic AMP response element-binding protein pathway. Effects of long-term and acute treatments. Neuroendocrinology 74: 227-243. doi: 10.1159/000054690
![]() |
[70] |
Grove-Strawser D, Boulware MI, Mermelstein PG (2010) Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience 170: 1045-1055. doi: 10.1016/j.neuroscience.2010.08.012
![]() |
[71] |
Sanchez MG, Morissette M, Di Paolo T (2012) Effect of a chronic treatment with 17 β-estradiol on striatal dopamine neurotransmission and the Akt/GSK3 signalling pathway in the brain of ovariectomized monkeys. Psychoneuroendocrinology 37: 280-291. doi: 10.1016/j.psyneuen.2011.06.012
![]() |
[72] |
Zhang QG, Wang R, Tang H, et al. (2014) Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. Mol Cell Endocrinol 389: 84-91. doi: 10.1016/j.mce.2013.12.019
![]() |
[73] |
Pratap UP, Patil A, Sharma HR, et al. (2016) Estrogen-induced neuroprotective and anti-inflammatory effects are dependent on the brain areas of middle-aged female rats. Brain Res Bull 124: 238-253. doi: 10.1016/j.brainresbull.2016.05.015
![]() |
[74] |
Maharjan S, Serova LI, Sabban EL (2010) Membrane-initiated estradiol signalling increases tyrosine hydroxylase promoter activity with ER alpha in PC12 cells. J Neurochem 112: 42-55. doi: 10.1111/j.1471-4159.2009.06430.x
![]() |
[75] |
Pendergast JS, Tuesta LM, Bethea JR (2008) Oestrogen receptor beta contributes to the transient sex difference in tyrosine hydroxylase expression in the mouse locus coeruleus. J Neuroendocrinol 20: 1155-1164. doi: 10.1111/j.1365-2826.2008.01776.x
![]() |
[76] |
Thanky NR, Son JH, Herbison AE (2002) Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. Brain Res Mol Brain Res 104: 220-226. doi: 10.1016/S0169-328X(02)00383-2
![]() |
[77] |
Yamaguchi N, Yuri K (2014) Estrogen-dependent changes in estrogen receptor-β mRNA expression in middle-aged female rat brain. Brain Res 1543: 49-57. doi: 10.1016/j.brainres.2013.11.010
![]() |
[78] |
Foster TC (2012) Role of estrogen receptor alpha and beta expression and signalling on cognitive function during aging. Hippocampus 22: 656-669. doi: 10.1002/hipo.20935
![]() |
[79] | Coyoy-Salgado A, Segura-Uribe JJ, Manuel Gallardo J, et al. (2020) Tibolone regulates systemic metabolism and the expression of sex hormone receptors in the central nervous system of ovariectomised rats fed with high-fat and high-fructose diet. Brain Res 6: 1748. |
[80] | Zoubina EV, Mize AL, Alper RH, et al. (2001) Acute and chronic estrogen supplementation decreases uterine sympathetic innervation in ovariectomized adult virgin rats. Histol Histopathol 16: 989-996. |
[81] |
Chisholm NC, Packard AR, Koss WA, et al. (2012) The Effects of Long-Term Treatment with Estradiol and Medroxyprogesterone Acetate on Tyrosine Hydroxylase Fibers and Neuron Number in the Medial Prefrontal Cortex of Aged Female Rats. Endocrinology 153: 4874-4882. doi: 10.1210/en.2012-1412
![]() |
[82] |
Kale P, Mohanty A, Patil A, et al. (2014) Estrogen modulates neural-immune interactions through intracellular signalling pathways and antioxidant enzyme activity in the spleen of middle-aged ovariectomized female rats. J Neuroimmunol 267: 7-15. doi: 10.1016/j.jneuroim.2013.11.003
![]() |
[83] |
Tang MX, Jacobs D, Stern Y, et al. (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. Lancet 348: 429-432. doi: 10.1016/S0140-6736(96)03356-9
![]() |
[84] |
Jacome LF, Gautreaux C, Inagaki T, et al. (2010) Estradiol and ERβ agonists enhance recognition memory, and DPN, an ERβ agonist, alters brain monoamines. Neurobiol Learn Mem 94: 488-498. doi: 10.1016/j.nlm.2010.08.016
![]() |
[85] |
Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31: 224-253. doi: 10.1210/er.2009-0036
![]() |
[86] |
Norbury R, Cutter WJ, Compton J, et al. (2003) The neuroprotective effects of estrogen on the aging brain. Exp Gerontol 38: 109-117. doi: 10.1016/S0531-5565(02)00166-3
![]() |
[87] | Paul V, Ekambaram P (2011) Involvement of nitric oxide in learning & memory processes. Indian J Med Res 133: 471-478. |
[88] |
Kopf SR, Benton RS, Kalfin R, et al. (2001) NO synthesis inhibition decreases cortical ACH release and impairs retention of conditioned response. Brain Res 894: 141-144. doi: 10.1016/S0006-8993(00)03148-6
![]() |
[89] |
Ghisletti S, Meda C, Maggi A, et al. (2005) 17 Beta-estradiol inhibits inflammatory gene expression by controlling NF-kappa B intracellular localization. Mol Cell Biol 25: 2957-2968. doi: 10.1128/MCB.25.8.2957-2968.2005
![]() |
[90] |
Walf AA, Paris JJ, Rhodes ME, et al. (2011) Divergent mechanisms for trophic actions of estrogens in the brain and peripheral tissues. Brain Res 1379: 119-136. doi: 10.1016/j.brainres.2010.11.081
![]() |
[91] |
Hasan W, Smith HJ, Ting AY, et al. (2005) Estrogen alters trkA and p75 neurotrophin receptor expression within sympathetic neurons. J Neurobiol 65: 192-204. doi: 10.1002/neu.20183
![]() |
[92] |
Arbogast LA, Hyde JF (2000) Estradiol attenuates the forskolin-induced increase in hypothalamic tyrosine hydroxylase activity. Neuroendocrinology 71: 219-227. doi: 10.1159/000054539
![]() |
[93] |
Kritzer MF, Kohama SG (1998) Ovarian hormones influence the morphology, distribution, and density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult rhesus monkeys. J Comp Neurol 395: 1-17. doi: 10.1002/(SICI)1096-9861(19980525)395:1<1::AID-CNE1>3.0.CO;2-4
![]() |
[94] |
Babu GN, Vijayan E (1984) Hypothalamic tyrosine hydroxylase activity and plasma gonadotropin and prolactin levels in ovariectomized-steroid treated rats. Brain Res Bull 12: 555-558. doi: 10.1016/0361-9230(84)90171-0
![]() |
[95] |
Chisholm NC, Packard AR, Koss WA, et al. (2012) The effects of long-Term treatment with estradiol and medroxyprogesterone acetate on tyrosine hydroxylase fibers and neuron number in the medial prefrontal cortex of aged female rats. Endocrinology 153: 4874-4882. doi: 10.1210/en.2012-1412
![]() |
[96] |
Turcano P, Savica R (2020) Sex differences in movement disorders. Handb Clin Neurol 175: 275-282. doi: 10.1016/B978-0-444-64123-6.00019-9
![]() |
[97] |
Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81-128. doi: 10.1016/0891-5849(91)90192-6
![]() |
[98] |
Viveros MP, Arranz L, Hernanz A, et al. (2007) A model of premature aging in mice based on altered stress-related behavioural response and immunosenescence. Neuroimmunomodulation 14: 157-162. doi: 10.1159/000110640
![]() |
[99] |
Tian L, Cai Q, Bowen R, et al. (1995) Effects of caloric restriction on age-related oxidative modifications of macromolecules and lymphocyte proliferation in rats. Free Radic Biol Med 19: 859-865. doi: 10.1016/0891-5849(95)00090-K
![]() |
[100] |
Baeza I, Alvarado C, Alvarez P, et al. (2009) Improvement of leucocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol 80: 70-79. doi: 10.1016/j.jri.2009.02.002
![]() |
[101] |
Baeza I, De Castro NM, Giménez-Llort L, et al. (2010) Ovariectomy, a model of menopause in rodents, causes a premature aging of the nervous and immune systems. J Neuroimmunol 219: 90-99. doi: 10.1016/j.jneuroim.2009.12.008
![]() |
[102] |
Baeza I, Fdez-Tresguerres J, Ariznavarreta C, et al. (2010) Effects of growth hormone, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG)/reduced glutathione (GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology 11: 687-701. doi: 10.1007/s10522-010-9282-7
![]() |
[103] |
Vina J, Gambini J, Lopez-Grueso R, et al. (2011) Females live longer than males: role of oxidative stress. Curr Pharm Des 17: 3959-3965. doi: 10.2174/138161211798764942
![]() |
[104] |
Germain D (2016) Sirtuins and the Estrogen Receptor as Regulators of the Mammalian Mitochondrial UPR in Cancer and Aging. Adv Cancer Res 130: 211-256. doi: 10.1016/bs.acr.2016.01.004
![]() |
[105] |
Brann D, Raz L, Wang R, et al. (2012) Oestrogen signalling and neuroprotection in cerebral ischaemia. J Neuroendocrinol 24: 34-47. doi: 10.1111/j.1365-2826.2011.02185.x
![]() |
[106] |
Simpkins JW, Green PS, Gridley KE, et al. (1997) Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease. Am J Med 103: 19S-25S. doi: 10.1016/S0002-9343(97)00260-X
![]() |
[107] | Shulman GI, Barrett EJ, Sherwin RS (2003) Integrated fuel metabolism. Ellenberg & Rifkin's diabetes mellitus NewYork: McGraw-Hill, 1-13. |
[108] | Shi J, Simpkins JW (1997) 17 beta-Estradiol modulation of glucose transporter 1 expression in blood-brain barrier. Am J Physiol 272: E1016-E1022. |
[109] |
Kostanyan A, Nazaryan A (1992) Rat brain glycolysis regulation by estradiol-17 beta. Biochim Biophys Acta 1133: 301-306. doi: 10.1016/0167-4889(92)90051-C
![]() |
[110] | Magistretti P (2008) Brain energy metabolism. Fundamental neuroscience San Diego: Academic, 271-296. |
[111] |
Hernández-R J (1992) Na+/K(+)-ATPase regulation by neurotransmitters. Neurochem Int 20: 1-10. doi: 10.1016/0197-0186(92)90119-C
![]() |
[112] |
Brinton RD (2008) Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer's disease. Adv Drug Deliv Rev 60: 1504-1511. doi: 10.1016/j.addr.2008.06.003
![]() |
[113] |
Kostanyan A, Nazaryan A (1992) Rat brain glycolysis regulation by estradiol-17 beta. Biochim Biophys Acta 1133: 301-306. doi: 10.1016/0167-4889(92)90051-C
![]() |
[114] |
Moorthy K, Yadav UC, Siddiqui MR, et al. (2004) Effect of estradiol and progesterone treatment on carbohydrate metabolizing enzymes in tissues of aging female rats. Biogerontology 5: 249-259. doi: 10.1023/B:BGEN.0000038026.89337.02
![]() |
[115] |
Rasgon NL, Silverman D, Siddarth P, et al. (2005) Estrogen use and brain metabolic change in postmenopausal women. Neurobiol Aging 26: 229-235. doi: 10.1016/j.neurobiolaging.2004.03.003
![]() |
[116] |
Monteiro R, Teixeira D, Calhau C (2014) Estrogen signaling in metabolic inflammation. Mediators Inflamm 2014: 615917. doi: 10.1155/2014/615917
![]() |
[117] |
Villa A, Rizzi N, Vegeto E, et al. (2015) Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep 5: 15224. doi: 10.1038/srep15224
![]() |
[118] |
Bagger YZ, Tankó LB, Alexandersen P, et al. (2005) Early postmenopausal hormone therapy may prevent cognitive impairment later in life. Menopause 12: 12-7. doi: 10.1097/00042192-200512010-00005
![]() |
[119] |
Maki PM (2006) Hormone therapy and cognitive function: is there a critical period for benefit? Neuroscience 138: 1027-1030. doi: 10.1016/j.neuroscience.2006.01.001
![]() |
[120] |
Keller JN, Germeyer A, Begley JG, et al. (1997) 17 Beta-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport, and glutamate transport induced by amyloid beta-peptide and iron. J Neurosci Res 50: 522-530. doi: 10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G
![]() |
[121] |
Kumar P, Kale RK, McLean P, et al. (2011) Protective effects of 17 β-estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett 502: 56-60. doi: 10.1016/j.neulet.2011.07.024
![]() |
[122] |
Shi C, Xu J (2008) Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. J Bioenerg Biomembr 40: 625-630. doi: 10.1007/s10863-008-9195-1
![]() |
[123] |
Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94-101. doi: 10.1016/0166-2236(89)90165-3
![]() |
[124] |
Bettini E, Maggi A (1992) Estrogen induction of cytochrome c oxidase subunit III in rat hippocampus. J Neurochem 58: 1923-1929. doi: 10.1111/j.1471-4159.1992.tb10070.x
![]() |
[125] |
Soane L, Kahraman S, Kristian T, et al. (2007) Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85: 3407-3415. doi: 10.1002/jnr.21498
![]() |
[126] |
Atamna H, Frey WH (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion 7: 297-310. doi: 10.1016/j.mito.2007.06.001
![]() |
1. | Laith Abualigah, Suhier Odah, Abiodun M. Ikotun, Anas Ratib Alsoud, Agostino Forestiero, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, Mohsen Zare, 2024, 9780443139253, 133, 10.1016/B978-0-443-13925-3.00010-8 | |
2. | Laith Abualigah, Laith Elkhalaifa, Abiodun M. Ikotun, Faisal AL-Saqqar, Mohammad El-Bashir, Putra Sumari, Mohammad Shehab, Diaa Salama Abd Elminaam, Absalom E. Ezugwu, 2024, 9780443139253, 221, 10.1016/B978-0-443-13925-3.00002-9 | |
3. | Laith Abualigah, Roa’a Abualigah, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, 2024, 9780443139253, 105, 10.1016/B978-0-443-13925-3.00015-7 | |
4. | Laith Abualigah, Sahar M. Alshatti, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, Mohsen Zare, 2024, 9780443139253, 117, 10.1016/B978-0-443-13925-3.00003-0 | |
5. | Laith Abualigah, Aya Abusaleem, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, 2024, 9780443139253, 73, 10.1016/B978-0-443-13925-3.00012-1 | |
6. | Laith Abualigah, Mohammad Al-Zyod, Abiodun M. Ikotun, Mohammad Shehab, Mohammed Otair, Absalom E. Ezugwu, Essam Said Hanandeh, Ali Raza, El-Sayed M. El-kenawy, 2024, 9780443139253, 231, 10.1016/B978-0-443-13925-3.00017-0 | |
7. | Laith Abualigah, Sabreen Faweer, Ali Raza, Faiza Gul, Absalom E. Ezugwu, Mohammad Alshinwan, Mohammad Rustom Al Nasar, Ala Mughaid, Shadi AlZu’bi, 2024, 9780443139253, 167, 10.1016/B978-0-443-13925-3.00004-2 | |
8. | Jeyaganesh Kumar Kailasam, Rajkumar Nalliah, Saravanakumar Nallagoundanpalayam Muthusamy, Premkumar Manoharan, MLBRSA: Multi-Learning-Based Reptile Search Algorithm for Global Optimization and Software Requirement Prioritization Problems, 2023, 8, 2313-7673, 615, 10.3390/biomimetics8080615 | |
9. | Laith Abualigah, Esraa Nasser Ahmad, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Heming Jia, 2024, 9780443139253, 33, 10.1016/B978-0-443-13925-3.00008-X | |
10. | Laith Abualigah, Eman Abu-Dalhoum, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, 2024, 9780443139253, 59, 10.1016/B978-0-443-13925-3.00016-9 | |
11. | Laith Abualigah, Farah Mahadeen, Absalom E. Ezugwu, Khaled Aldiabat, Mofleh Al-diabat, Davut Izci, Ahmad MohdAziz Hussein, Peiying Zhang, Canan Batur Şahin, 2024, 9780443139253, 193, 10.1016/B978-0-443-13925-3.00005-4 | |
12. | Laith Abualigah, Batool Sbenaty, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, 2024, 9780443139253, 89, 10.1016/B978-0-443-13925-3.00001-7 | |
13. | Laith Abualigah, Ahmad A. Al Turk, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Abdelazim G. Hussien, Heming Jia, 2024, 9780443139253, 15, 10.1016/B978-0-443-13925-3.00011-X | |
14. | Laith Abualigah, Worod Hawamdeh, Raed Abu Zitar, Shadi AlZu’bi, Ala Mughaid, Essam Said Hanandeh, Anas Ratib Alsoud, El-Sayed M. El-kenawy, 2024, 9780443139253, 241, 10.1016/B978-0-443-13925-3.00009-1 | |
15. | Laith Abualigah, Ashraf Ababneh, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Nima Khodadadi, Absalom E. Ezugwu, Essam Said Hanandeh, Heming Jia, 2024, 9780443139253, 45, 10.1016/B978-0-443-13925-3.00018-2 | |
16. | Laith Abualigah, Ghada Al-Hilo, Ali Raza, Absalom E. Ezugwu, Mohammad Rustom Al Nasar, Ala Mughaid, Shadi AlZu’bi, Khaled Aldiabat, Mofleh Al-diabat, 2024, 9780443139253, 177, 10.1016/B978-0-443-13925-3.00013-3 | |
17. | Laith Abualigah, Saif AlNajdawi, Abiodun M. Ikotun, Agostino Forestiero, Faiza Gul, Absalom E. Ezugwu, Heming Jia, Mohsen Zare, Shubham Mahajan, Mohammad Alshinwan, 2024, 9780443139253, 147, 10.1016/B978-0-443-13925-3.00007-8 | |
18. | Laith Abualigah, Laheeb Al-Abadi, Abiodun M. Ikotun, Faisal AL-Saqqar, Davut Izci, Peiying Zhang, Canan Batur Şahin, Mohammad El-Bashir, Putra Sumari, 2024, 9780443139253, 205, 10.1016/B978-0-443-13925-3.00006-6 | |
19. | Buddhadev Sasmal, Abdelazim G. Hussien, Arunita Das, Krishna Gopal Dhal, Ramesh Saha, Reptile Search Algorithm: Theory, Variants, Applications, and Performance Evaluation, 2024, 31, 1134-3060, 521, 10.1007/s11831-023-09990-1 | |
20. | Laith Abualigah, Ahlam Sheikhan, Abiodun M. Ikotun, Raed Abu Zitar, Anas Ratib Alsoud, Ibrahim Al-Shourbaji, Abdelazim G. Hussien, Heming Jia, 2024, 9780443139253, 1, 10.1016/B978-0-443-13925-3.00019-4 | |
21. | Muhannad A. Abu‐Hashem, Mohammad Shehab, Mohd Khaled Shambour, Laith Abualigah, Integrated Local Search Technique With Reptile Search Algorithm for Solving Large‐Scale Bound Constrained Global Optimization Problems, 2024, 0143-2087, 10.1002/oca.3230 | |
22. | R. Verma, M. M. Agarwal, Enhancing Road Accident Classification with Capsule Recurrent Neural Network and Improved Reptile Search Algorithm, 2025, 0377-2063, 1, 10.1080/03772063.2025.2464239 | |
23. | Hui Wang, Li Zhao, Qihui Peng, An improved sand cat swarm optimization algorithm and its application to agricultural robot path planning, 2025, 0264-4401, 10.1108/EC-08-2024-0709 |
Algorithm 1. RSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population(X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. For each index by i |
8. For each dim index by j |
9. Using Formula (3 and 4) to update parameters η, P, and R. |
10. If t ≤ T/4 then |
11. Do high walking by Formula (2) |
12. Else if t > T/4 and t ≤ T/2 then |
13. Do belly walking by Formula (5) |
14. Else if t ≤ 3T/4 and t > T/2 then |
15. Do hunting coordination by Formula (7) |
16. Else |
17. Do hunting cooperation by Formula (8) |
18. End if |
19. End for |
20. End for |
21. t = t + 1 |
22. End while |
23. Return the best solution |
Algorithm 2. MRSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population((X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. Update population through LOBL strategy by Formula (17) |
8. For each index by i |
9. For each dim index by j |
10. Using Formula (3, 4) to update parameters η and R, respectively |
11. If t ≤ T/4 then |
12. Do high walking by Formula (2) |
13. Else if t > T/4 and t ≤ T/2 then |
14. Do belly walking by Formula (5) |
15. Else if t ≤ 3T/4 and t > T/2 then |
16. Use Formula (12) to generate Xnew (Lagrange interpolation) |
17. Use Formula (14) to generate XTLBO |
18. Select the position with a better fitness value |
19. Else |
20. Do hunting cooperation by Formula (8) |
21. End if |
22. End for |
23. Update s(i) for each individual |
24. If s(i) > limit |
25. Generate New1 and New2 by Formulas (19–21) |
26. Select the position with a better fitness value |
27. End if |
28. End for |
29. t = t + 1 |
30. End while |
31. Return the best solution |
Algorithm | Parameters Setting |
MRSA | α = 0.1; β = 0.005 |
RSA [34] | α = 0.1; β = 0.005 |
ROA [44] | C = 0.1 |
BES [45] | α = [1.5, 2.0]; r = [0, 1] |
SCA [16] | α = 2 |
AOA [17] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
HOA [46] | w = 1; phiD = 0.2; phi = 0.2 |
SCSO [47] | SM = 2 |
LMRAOA [48] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
Function | Dim | Boundary | optimal value |
F1(x)=∑ni=1x2i | 30/100/500 | [−100,100] | 0 |
F2(x)=∑ni=1|xi|+∏ni=1|xi| | [−10, 10] | ||
F3(x)=∑ni=1(∑ij−1xj)2 | [−100,100] | ||
F4(x)=max{|xi|,1⩽i⩽n} | [−100,100] | ||
F5(x)=∑n−1i=1[100(xi+1−x2i)2+(xi−1)2] | [−30, 30] | ||
F6(x)=∑ni=1(xi+5)2 | [−100,100] | ||
F7(x)=∑ni=1i×x4i+random[0,1) | [−1.28, 1.28] | ||
F8(x)=∑ni=1−xisin(√|xi|) | [−500,500] | −418.9829 × dim | |
F9(x)=∑ni=1[x2i−10cos(2πxi)+10] | [−5.12, 5.12] | 0 | |
F10(x)=−20exp(−0.2√1n∑ni=1x2i−exp(1n∑ni=1cos(2πxi))+20+e) | [−32, 32] | ||
F11(x)=1400∑ni=1x2i−Πni=1cos(xi√i)+1 | [−600,600] | ||
F12(x)=πn{10sin(πy1)+∑n−1i=1(yi−1)2[1+10sin2(πyi+1)]+(yn−1)2} +∑ni=1u(xi,10,100,4),where yi=1+xi+14, u(xi,a,k,m)={k(xi−a)m xi>a0 −a<xi<ak(−xi−a)m xi<−a | [−50, 50] | ||
F13(x)=0.1(sin2(3πx1)+∑ni=1(xi−1)2[1+sin2(3πxi+1)] +(xn−1)2[1+sin2(2πxn)])+∑ni=1u(xi,5,100,4) | |||
F14(x)=(1500+∑25j=11j+∑2i=1(xi−aij)6)−1 | 2 | [−65, 65] | 1 |
F15(x)=∑11i=1[ai−x1(b2i+bix2)b2i+bix3+x4]2 | 4 | [−5, 5] | 0.00030 |
F16(x)=4x21−2.1x41+13x61+x1x2−4x22+x42 | 2 | −1.0316 | |
F17(x)=(x2−5.14π2x21+5πx1−6)2+10(1−18π)cosx1+10 | 0.398 | ||
F18(x)=[1+(x1+x2+1)2(19−14x1+3x21−14x2+6x1x2+322)]×[30+(2x1−3x2)2×(18−32x2+12x21+48x2−36x1x2+27x22)] | 5 | [−2, 2] | 3 |
F19(x)=−∑4i=1ciexp(−∑3j=1aij(xj−pij)2) | 3 | [−1, 2] | −3.86 |
F20(x)=−∑4i=1ciexp(−∑6j=1aij(xj−pij)2) | 6 | [0, 1] | −3.32 |
F21(x)=−∑5i=1[(X−ai)(X−ai)T+ci]−1 | 4 | [0, 10] | −10.1532 |
F22(x)=−∑7i=1[(X−ai)(X−ai)T+ci]−1 | −10.4028 | ||
F23(x)=−∑10i=1[(X−ai)(X−ai)T+ci]−1 | −10.5363 |
Function | Dim | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO | LMRAOA |
F1 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.58×10-02 | 8.05×10-155 | 7.90×10-239 | 5.70×10-125 | 2.93×10-91 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.13×10-313 | 9.96×10-312 | 1.58×10+01 | 6.42×10-66 | 9.56×10-129 | 2.79×10-111 | 3.53×10-84 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.61×10+01 | 3.52×10-65 | 5.17×10-128 | 1.37×10-110 | 1.93×10-83 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.37×10+03 | 1.08×10-01 | 7.35×10-227 | 3.97×10-111 | 1.16×10-48 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.49×10-315 | 0.00×10+00 | 4.68×10+04 | 1.32×10-01 | 7.10×10-140 | 4.90×10-100 | 4.46×10-44 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.41×10+04 | 1.71×10-02 | 3.89×10-139 | 2.56×10-99 | 1.70×10-43 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.47×10+04 | 5.60×10-01 | 3.86×10-225 | 6.39×10-111 | 4.51×10-39 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.01×10-314 | 0.00×10+00 | 2.16×10+05 | 6.39×10-01 | 1.50×10-143 | 1.31×10-99 | 3.31×10-34 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.75×10+04 | 4.64×10-02 | 8.19×10-143 | 5.33×10-99 | 1.00×10-33 | ||
F2 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.70×10-183 | 9.15×10-229 | 8.12×10-04 | 0.00×10+00 | 8.44×10-125 | 2.26×10-66 | 9.75×10-229 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.24×10-165 | 2.53×10-536 | 1.33×10-02 | 0.00×10+00 | 6.00×10-76 | 6.28×10-59 | 3.78×10-141 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.53×10-02 | 0.00×10+00 | 1.89×10-75 | 3.31×10-58 | 2.07×10-140 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.81×10-538 | 5.55×10-238 | 6.08×10+00 | 5.23×10-57 | 9.12×10-122 | 2.69×10-59 | 8.89×10-20 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.00×10-161 | 2.01×10-533 | 3.18×10+01 | 2.02×10-20 | 1.03×10-84 | 8.20×10-53 | 1.31×10-53 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.64×10-160 | 0.00×10+00 | 1.68×10+01 | 1.09×10-19 | 5.63×10-84 | 3.19×10-52 | 2.34×10-53 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 2.17×10-538 | 1.10×10-235 | 3.43×10+01 | 2.77×10-14 | 6.11×10-120 | 1.14×10-57 | 3.63×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 7.17×10-161 | 6.09×10-533 | 9.81×10+01 | 1.03×10-03 | 2.96×10-71 | 8.15×10-50 | 2.86×10-11 | ||
Std | 0.00×10+00 | 0.00×10+00 | 2.72×10-160 | 0.00×10+00 | 3.20×10+01 | 1.31×10-03 | 1.62×10-70 | 3.33×10-49 | 6.51×10-11 | ||
F3 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 1.50×10-323 | 0.00×10+00 | 6.88×10+02 | 1.03×10-121 | 1.95×10-25 | 3.16×10-113 | 6.94×10-164 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.43×10-283 | 1.07×10-28 | 9.99×10+03 | 6.06×10-03 | 8.23×10+01 | 1.12×10-97 | 1.08×10-20 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.84×10-28 | 7.20×10+03 | 1.04×10-02 | 2.60×10+02 | 6.05×10-97 | 4.22×10-20 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.14×10-303 | 0.00×10+00 | 7.65×10+05 | 1.64×10+00 | 2.84×10-26 | 6.68×10-98 | 3.25×10-161 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.34×10-257 | 8.84×10-145 | 1.03×10+06 | 4.13×10+00 | 6.27×10+03 | 5.74×10-90 | 5.34×10-06 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10-144 | 1.84×10+05 | 2.34×10+00 | 1.42×10+04 | 1.97×10-89 | 2.61×10-05 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 3.38×10-294 | 0.00×10+00 | 4.71×10+06 | 1.39×10+01 | 1.67×10-111 | 7.76×10-96 | 1.57×10-160 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.95×10-252 | 1.61×10+03 | 7.10×10+06 | 9.97×10+03 | 8.48×10+04 | 2.18×10-84 | 1.12×10-159 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.95×10+03 | 1.24×10+06 | 5.45×10+04 | 1.33×10+05 | 1.13×10-83 | 7.25×10-160 | ||
F4 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.66×10-538 | 3.54×10-245 | 1.11×10+01 | 3.33×10-40 | 1.44×10-96 | 8.70×10-56 | 8.89×10-16 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.64×10-158 | 1.02×10-182 | 3.64×10+01 | 3.08×10-02 | 5.42×10-62 | 9.61×10-51 | 3.00×10-12 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.45×10-157 | 0.00×10+00 | 1.18×10+01 | 1.82×10-02 | 2.96×10-61 | 3.54×10-50 | 9.03×10-12 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-539 | 4.71×10-236 | 9.33×10+01 | 1.12×10-01 | 3.16×10-106 | 2.90×10-51 | 1.18×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.86×10-158 | 4.45×10-164 | 9.64×10+01 | 1.33×10-01 | 2.70×10-63 | 1.04×10-44 | 2.73×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 8.40×10-158 | 0.00×10+00 | 1.07×10+00 | 1.48×10-02 | 1.06×10-62 | 5.62×10-44 | 5.41×10-03 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-538 | 2.59×10-230 | 9.82×10+01 | 1.62×10-01 | 1.52×10-102 | 1.05×10-50 | 4.54×10-07 | |
Mean | 0.00×10+00 | 0.00×10+00 | 9.84×10-158 | 1.21×10-534 | 9.91×10+01 | 1.85×10-01 | 7.58×10-62 | 1.83×10-45 | 3.34×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 3.93×10-157 | 0.00×10+00 | 2.27×10-01 | 2.08×10-02 | 3.35×10-61 | 7.23×10-45 | 5.47×10-03 | ||
F5 | 30 | Best | 0.00×10+00 | 2.28×10-25 | 2.66×10+01 | 1.44×10+01 | 8.85×10+02 | 2.80×10+01 | 2.89×10+01 | 2.72×10+01 | 2.17×10-09 |
Mean | 6.01×10-01 | 1.55×10+01 | 2.72×10+01 | 2.51×10+01 | 1.27×10+05 | 2.85×10+01 | 2.90×10+01 | 2.82×10+01 | 1.67×10+01 | ||
Std | 1.25×10+00 | 1.47×10+01 | 6.09×10-01 | 9.89×10+00 | 5.09×10+05 | 3.34×10-01 | 5.28×10-02 | 8.01×10-01 | 1.02×10+01 | ||
200 | Best | 0.00×10+00 | 1.99×10+02 | 1.97×10+02 | 1.10×10+00 | 3.43×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 7.18×10-02 | |
Mean | 1.26×10+01 | 1.99×10+02 | 1.97×10+02 | 1.61×10+02 | 5.84×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 1.23×10+02 | ||
Std | 2.75×10+01 | 0.00×10+00 | 1.70×10-01 | 7.57×10+01 | 2.05×10+08 | 5.24×10-02 | 2.74×10-02 | 4.09×10-01 | 9.33×10+01 | ||
500 | Best | 0.00×10+00 | 4.99×10+02 | 4.94×10+02 | 9.67×10+00 | 1.39×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 9.41×10-02 | |
Mean | 4.46×10+00 | 4.99×10+02 | 4.95×10+02 | 4.19×10+02 | 1.90×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 3.78×10+02 | ||
Std | 1.12×10+01 | 0.00×10+00 | 2.90×10-01 | 1.77×10+02 | 5.47×10+08 | 1.23×10-01 | 2.38×10-02 | 1.64×10-01 | 2.12×10+02 | ||
F6 | 30 | Best | 0.00×10+00 | 4.68×10+00 | 1.81×10-02 | 4.80×10-05 | 4.83×10+00 | 2.42×10+00 | 6.02×10+00 | 1.03×10+00 | 0.00×10+00 |
Mean | 1.01×10-03 | 7.24×10+00 | 9.90×10-02 | 1.07×10+00 | 1.81×10+01 | 3.22×10+00 | 6.72×10+00 | 1.96×10+00 | 0.00×10+00 | ||
Std | 5.50×10-03 | 6.04×10-01 | 8.75×10-02 | 2.57×10+00 | 3.14×10+01 | 3.37×10-01 | 3.04×10-01 | 5.00×10-01 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 5.00×10+01 | 2.09×10+00 | 4.89×10-03 | 1.87×10+04 | 4.10×10+01 | 4.82×10+01 | 3.22×10+01 | 0.00×10+00 | |
Mean | 5.43×10-02 | 5.00×10+01 | 5.18×10+00 | 1.41×10+01 | 5.22×10+04 | 4.20×10+01 | 4.89×10+01 | 3.61×10+01 | 0.00×10+00 | ||
Std | 1.73×10-01 | 0.00×10+00 | 2.12×10+00 | 2.21×10+01 | 2.61×10+04 | 8.18×10-01 | 4.88×10-01 | 2.36×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 1.25×10+02 | 8.06×10+00 | 2.25×10-02 | 1.19×10+05 | 1.15×10+02 | 1.23×10+02 | 1.00×10+02 | 0.00×10+00 | |
Mean | 3.41×10-01 | 1.25×10+02 | 1.56×10+01 | 3.12×10+01 | 2.06×10+05 | 1.16×10+02 | 1.24×10+02 | 1.05×10+02 | 4.14×10-31 | ||
Std | 5.95×10-01 | 0.00×10+00 | 7.91×10+00 | 5.28×10+01 | 8.98×10+04 | 1.26×10+00 | 5.69×10-01 | 4.18×10+00 | 1.58×10-30 | ||
F7 | 30 | Best | 3.10×10-07 | 8.91×10-06 | 4.40×10-06 | 5.25×10-04 | 8.75×10-03 | 3.39×10-06 | 1.54×10-02 | 1.24×10-05 | 5.17×10-06 |
Mean | 5.82×10-05 | 1.27×10-04 | 1.91×10-04 | 5.13×10-03 | 1.29×10-01 | 8.45×10-05 | 6.74×10-02 | 1.46×10-04 | 9.79×10-05 | ||
Std | 4.72×10-05 | 1.09×10-04 | 1.52×10-04 | 4.13×10-03 | 1.64×10-01 | 6.81×10-05 | 3.94×10-02 | 1.72×10-04 | 9.68×10-05 | ||
200 | Best | 2.41×10-08 | 6.53×10-06 | 3.45×10-06 | 2.81×10-04 | 7.24×10+02 | 3.51×10-06 | 2.71×10-02 | 1.74×10-05 | 1.76×10-05 | |
Mean | 6.82×10-05 | 1.39×10-04 | 1.45×10-04 | 6.29×10-03 | 1.53×10+03 | 7.49×10-05 | 1.54×10-01 | 2.40×10-04 | 2.49×10-04 | ||
Std | 6.40×10-05 | 1.26×10-04 | 1.31×10-04 | 3.51×10-03 | 4.22×10+02 | 6.49×10-05 | 1.08×10-01 | 3.15×10-04 | 2.40×10-04 | ||
500 | Best | 5.52×10-07 | 6.78×10-06 | 9.84×10-06 | 7.36×10-04 | 7.65×10+03 | 1.39×10-05 | 3.78×10-02 | 2.08×10-05 | 1.61×10-06 | |
Mean | 5.62×10-05 | 1.69×10-04 | 2.55×10-04 | 6.82×10-03 | 1.53×10+04 | 8.39×10-05 | 1.73×10-01 | 1.71×10-04 | 1.72×10-04 | ||
Std | 4.91×10-05 | 1.78×10-04 | 2.49×10-04 | 3.24×10-03 | 3.80×10+03 | 6.87×10-05 | 1.33×10-01 | 2.39×10-04 | 1.36×10-04 | ||
F8 | 30 | Best | -1.26×10+04 | -5.65×10+03 | -1.26×10+04 | -1.25×10+04 | -4.57×10+03 | -6.22×10+03 | -5.04×10+03 | -8.70×10+03 | -1.08×10+04 |
Mean | -1.26×10+04 | -5.27×10+03 | -1.23×10+04 | -9.73×10+03 | -3.80×10+03 | -5.18×10+03 | -4.06×10+03 | -6.62×10+03 | -1.01×10+04 | ||
Std | 3.36×10-12 | 5.22×10+02 | 4.58×10+02 | 1.71×10+03 | 3.49×10+02 | 4.40×10+02 | 5.53×10+02 | 8.50×10+02 | 4.21×10+02 | ||
200 | Best | -8.38×10+04 | -3.17×10+04 | -8.38×10+04 | -8.01×10+04 | -1.14×10+04 | -1.66×10+04 | -3.62×10+04 | -3.60×10+04 | -4.28×10+04 | |
Mean | -8.38×10+04 | -2.80×10+04 | -8.27×10+04 | -6.11×10+04 | -1.01×10+04 | -1.46×10+04 | -1.26×10+04 | -3.22×10+04 | -3.73×10+04 | ||
Std | 8.55×10-12 | 2.17×10+03 | 2.09×10+03 | 1.13×10+04 | 8.52×10+02 | 1.01×10+03 | 6.70×10+03 | 2.74×10+03 | 2.90×10+03 | ||
500 | Best | -2.09×10+05 | -7.63×10+04 | -2.09×10+05 | -2.09×10+05 | -1.77×10+04 | -2.59×10+04 | -1.39×10+05 | -6.63×10+04 | -6.09×10+04 | |
Mean | -2.09×10+05 | -6.45×10+04 | -2.07×10+05 | -1.59×10+05 | -1.54×10+04 | -2.25×10+04 | -3.50×10+04 | -6.05×10+04 | -5.06×10+04 | ||
Std | 2.96×10-11 | 5.96×10+03 | 7.32×10+03 | 2.72×10+04 | 9.38×10+02 | 1.56×10+03 | 2.95×10+04 | 3.43×10+03 | 5.63×10+03 | ||
F9 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.26×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.74×10+01 | 4.61×10+01 | 0.00×10+00 | 8.73×10+01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.39×10+01 | 2.72×10+01 | 0.00×10+00 | 1.06×10+02 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.15×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.37×10+03 | 5.03×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.31×10+02 | 5.28×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
F10 | 30 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 5.58×10-02 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.46×10+01 | 8.88×10-16 | 5.51×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 8.68×10+00 | 0.00×10+00 | 1.90×10-15 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 7.65×10+00 | 3.02×10-03 | 4.44×10-15 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 9.52×10-02 | 1.88×10+01 | 4.92×10-03 | 5.98×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.21×10-01 | 4.28×10+00 | 7.67×10-04 | 1.79×10-15 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.08×10+01 | 7.53×10-03 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 2.01×10+01 | 8.07×10-03 | 6.22×10-15 | 8.88×10-16 | 7.05×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.45×10+00 | 3.26×10-04 | 2.03×10-15 | 0.00×10+00 | 1.60×10-15 | ||
F11 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.95×10-03 | 1.50×10-02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.26×10-01 | 1.63×10-01 | 2.56×10-01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.20×10-01 | 1.19×10-01 | 4.00×10-01 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.93×10+02 | 1.98×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.64×10+02 | 2.40×10+03 | 3.40×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.78×10+02 | 3.82×10+02 | 1.86×10-01 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.38×10+02 | 6.16×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+03 | 9.18×10+03 | 1.54×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 7.28×10+02 | 2.51×10+03 | 8.44×10-02 | 0.00×10+00 | 0.00×10+00 | ||
F12 | 30 | Best | 3.33×10-13 | 6.87×10-01 | 2.11×10-03 | 1.88×10-07 | 1.13×10+00 | 4.32×10-01 | 8.29×10-01 | 4.60×10-02 | 1.57×10-32 |
Mean | 1.10×10-07 | 1.58×10+00 | 1.05×10-02 | 1.82×10-01 | 3.29×10+04 | 5.15×10-01 | 1.17×10+00 | 9.66×10-02 | 1.57×10-32 | ||
Std | 4.40×10-07 | 2.56×10-01 | 5.24×10-03 | 3.95×10-01 | 1.63×10+05 | 4.86×10-02 | 2.02×10-01 | 3.91×10-02 | 5.57×10-48 | ||
200 | Best | 2.36×10-33 | 1.25×10+00 | 1.15×10-02 | 1.83×10-05 | 9.59×10+08 | 9.87×10-01 | 1.14×10+00 | 4.57×10-01 | 2.36×10-33 | |
Mean | 6.39×10-06 | 1.25×10+00 | 3.36×10-02 | 2.48×10-01 | 1.56×10+09 | 1.01×10+00 | 1.18×10+00 | 5.56×10-01 | 2.36×10-33 | ||
Std | 1.87×10-05 | 4.52×10-16 | 2.00×10-02 | 4.99×10-01 | 5.27×10+08 | 1.62×10-02 | 4.12×10-02 | 7.09×10-02 | 6.96×10-49 | ||
500 | Best | 9.42×10-34 | 1.21×10+00 | 1.29×10-02 | 8.11×10-06 | 4.66×10+09 | 1.07×10+00 | 1.16×10+00 | 6.68×10-01 | 9.42×10-34 | |
Mean | 1.62×10-05 | 1.21×10+00 | 4.20×10-02 | 2.03×10-01 | 5.90×10+09 | 1.08×10+00 | 1.18×10+00 | 7.87×10-01 | 3.08×10-33 | ||
Std | 3.01×10-05 | 4.52×10-16 | 2.29×10-02 | 4.56×10-01 | 1.42×10+09 | 1.23×10-02 | 1.70×10-02 | 5.70×10-02 | 6.70×10-33 | ||
F13 | 30 | Best | 6.16×10-32 | 1.89×10-30 | 6.03×10-02 | 6.34×10-04 | 3.67×10+00 | 2.61×10+00 | 2.84×10+00 | 9.25×10-01 | 1.35×10-32 |
Mean | 4.07×10-31 | 3.00×10-01 | 2.23×10-01 | 1.23×10+00 | 7.89×10+04 | 2.79×10+00 | 3.08×10+00 | 2.38×10+00 | 1.35×10-32 | ||
Std | 2.06×10-31 | 9.15×10-01 | 1.23×10-01 | 1.46×10+00 | 2.11×10+05 | 9.94×10-02 | 2.30×10-01 | 4.88×10-01 | 5.57×10-48 | ||
200 | Best | 5.67×10-31 | 2.00×10+01 | 1.28×10+00 | 2.39×10-03 | 1.64×10+09 | 2.00×10+01 | 2.00×10+01 | 1.96×10+01 | 1.35×10-32 | |
Mean | 1.05×10-30 | 2.00×10+01 | 3.07×10+00 | 6.75×10+00 | 2.70×10+09 | 2.00×10+01 | 2.00×10+01 | 1.98×10+01 | 1.35×10-32 | ||
Std | 1.20×10-31 | 0.00×10+00 | 1.58×10+00 | 9.40×10+00 | 7.19×10+08 | 2.20×10-02 | 1.02×10-02 | 1.04×10-01 | 5.57×10-48 | ||
500 | Best | 1.58×10-30 | 5.00×10+01 | 1.85×10+00 | 1.62×10-03 | 6.20×10+09 | 5.02×10+01 | 5.00×10+01 | 4.97×10+01 | 1.35×10-32 | |
Mean | 2.05×10-30 | 5.00×10+01 | 8.65×10+00 | 1.58×10+01 | 9.78×10+09 | 5.02×10+01 | 5.00×10+01 | 4.98×10+01 | 6.89×10-31 | ||
Std | 9.47×10-32 | 0.00×10+00 | 4.38×10+00 | 2.27×10+01 | 2.55×10+09 | 4.39×10-02 | 1.77×10-02 | 8.24×10-02 | 1.71×10-30 | ||
F14 | 2 | Best | 9.98×10-01 | 1.03×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 | 1.99×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 |
Mean | 9.98×10-01 | 4.24×10+00 | 3.93×10+00 | 2.98×10+00 | 1.92×10+00 | 1.09×10+01 | 2.88×10+00 | 3.16×10+00 | 6.50×10+00 | ||
Std | 4.86×10-15 | 3.25×10+00 | 4.68×10+00 | 1.60×10+00 | 1.91×10+00 | 3.21×10+00 | 2.34×10+00 | 3.18×10+00 | 4.75×10+00 | ||
F15 | 4 | Best | 3.07×10-04 | 9.09×10-04 | 3.08×10-04 | 3.27×10-04 | 5.97×10-04 | 3.64×10-04 | 1.02×10-03 | 3.08×10-04 | 3.07×10-04 |
Mean | 4.25×10-04 | 3.19×10-03 | 4.34×10-04 | 9.48×10-03 | 1.09×10-03 | 1.91×10-02 | 7.93×10-03 | 4.49×10-04 | 3.57×10-03 | ||
Std | 1.27×10-04 | 1.96×10-03 | 1.83×10-04 | 9.80×10-03 | 3.89×10-04 | 3.11×10-02 | 8.13×10-03 | 3.00×10-04 | 1.04×10-02 | ||
F16 | 2 | Best | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 |
Mean | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -9.27×10-01 | -1.03×10+00 | -1.03×10+00 | -9.88×10-01 | -1.03×10+00 | -1.03×10+00 | ||
Std | 2.00×10-14 | 7.38×10-04 | 4.09×10-08 | 2.62×10-01 | 4.21×10-05 | 1.24×10-07 | 4.39×10-02 | 6.46×10-10 | 6.12×10-16 | ||
F17 | 2 | Best | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 |
Mean | 3.98×10-01 | 4.24×10-01 | 3.98×10-01 | 6.01×10-01 | 4.00×10-01 | 3.98×10-01 | 3.99×10-01 | 3.98×10-01 | 3.98×10-01 | ||
Std | 5.98×10-14 | 2.87×10-02 | 9.11×10-06 | 3.41×10-01 | 1.56×10-03 | 5.33×10-08 | 1.08×10-03 | 1.66×10-08 | 0.00×10+00 | ||
F18 | 5 | Best | 3.00×10+00 | 3.00×10+00 | 3.00×10+00 | 3.04×10+00 | 3.00×10+00 | 3.00×10+00 | 3.02×10+00 | 3.00×10+00 | 3.00×10+00 |
Mean | 3.90×10+00 | 1.06×10+01 | 3.00×10+00 | 5.93×10+00 | 3.00×10+00 | 1.16×10+01 | 6.81×10+00 | 3.00×10+00 | 1.02×10+01 | ||
Std | 4.93×10+00 | 1.85×10+01 | 3.93×10-04 | 1.03×10+01 | 3.29×10-04 | 1.98×10+01 | 1.55×10+01 | 1.63×10-05 | 1.21×10+01 | ||
F19 | 3 | Best | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 |
Mean | -3.86×10+00 | -3.76×10+00 | -3.86×10+00 | -3.70×10+00 | -3.85×10+00 | -3.85×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | ||
Std | 8.74×10-13 | 8.82×10-02 | 2.40×10-03 | 2.57×10-01 | 8.46×10-03 | 3.82×10-03 | 6.12×10-04 | 4.17×10-03 | 2.55×10-15 | ||
F20 | 6 | Best | -3.32×10+00 | -2.90×10+00 | -3.32×10+00 | -3.13×10+00 | -3.11×10+00 | -3.14×10+00 | -3.31×10+00 | -3.32×10+00 | -3.32×10+00 |
Mean | -3.21×10+00 | -2.41×10+00 | -3.20×10+00 | -2.79×10+00 | -2.73×10+00 | -3.04×10+00 | -3.22×10+00 | -3.09×10+00 | -3.29×10+00 | ||
Std | 6.40×10-02 | 5.76×10-01 | 2.09×10-01 | 3.84×10-01 | 5.53×10-01 | 1.32×10-01 | 9.35×10-02 | 4.04×10-01 | 5.54×10-02 | ||
F21 | 4 | Best | -1.02×10+01 | -5.06×10+00 | -1.02×10+01 | -1.01×10+01 | -5.76×10+00 | -7.41×10+00 | -1.01×10+01 | -1.02×10+01 | -1.02×10+01 |
Mean | -1.02×10+01 | -5.02×10+00 | -1.01×10+01 | -6.43×10+00 | -2.74×10+00 | -3.85×10+00 | -9.55×10+00 | -5.40×10+00 | -1.02×10+01 | ||
Std | 2.74×10-11 | 1.96×10-01 | 3.12×10-02 | 2.66×10+00 | 1.86×10+00 | 1.09×10+00 | 9.82×10-01 | 1.29×10+00 | 5.56×10-15 | ||
F22 | 4 | Best | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -1.04×10+01 | -7.90×10+00 | -1.02×10+01 | -1.03×10+01 | -1.04×10+01 | -1.04×10+01 |
Mean | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -7.10×10+00 | -3.46×10+00 | -4.41×10+00 | -9.26×10+00 | -6.08×10+00 | -1.04×10+01 | ||
Std | 2.14×10-11 | 8.50×10-07 | 1.94×10-02 | 2.83×10+00 | 2.07×10+00 | 1.93×10+00 | 1.89×10+00 | 2.82×10+00 | 4.46×10-16 | ||
F23 | 4 | Best | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -1.05×10+01 | -8.73×10+00 | -7.88×10+00 | -1.05×10+01 | -1.05×10+01 | -1.05×10+01 |
Mean | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -6.04×10+00 | -3.26×10+00 | -4.27×10+00 | -9.90×10+00 | -6.31×10+00 | -1.05×10+01 | ||
Std | 3.40×10-11 | 1.65×10-06 | 2.32×10-02 | 2.91×10+00 | 1.87×10+00 | 1.60×10+00 | 5.74×10-01 | 2.73×10+00 | 3.28×10-15 |
Function | Dim | MRSA VS RSA |
MRSA VS ROA |
MRSA VS B×10S |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
MRSA VS LMRAOA |
F1 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 2.50×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 5.00×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F2 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F3 | 30 | 1.00×10+00 | 2.56×10-06 | 5.00×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.25×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 3.13×10-02 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F4 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F5 | 30 | 3.65×10-03 | 2.13×10-06 | 9.32×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.61×10-04 |
200 | 4.18×10-07 | 1.73×10-06 | 3.18×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.89×10-04 | |
500 | 1.01×10-06 | 1.73×10-06 | 3.52×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.97×10-05 | |
F6 | 30 | 1.73×10-06 | 2.37×10-05 | 1.13×10-05 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.79×10-06 |
200 | 1.71×10-06 | 3.11×10-05 | 2.41×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
500 | 1.73×10-06 | 2.13×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
F7 | 30 | 6.27×10-02 | 6.42×10-03 | 1.73×10-06 | 1.73×10-06 | 8.61×10-01 | 1.73×10-06 | 2.30×10-02 | 6.84×10-03 |
200 | 3.11×10-05 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 | 8.22×10-02 | 1.73×10-06 | 7.52×10-02 | 2.77×10-03 | |
500 | 1.25×10-02 | 6.04×10-03 | 1.73×10-06 | 1.73×10-06 | 3.33×10-02 | 1.73×10-06 | 1.16×10-01 | 1.74×10-04 | |
F8 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F9 | 30 | 1.00×10+00 | 1.00×10+00 | 5.00×10-01 | 1.73×10-06 | 1.00×10+00 | 1.95×10-03 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 4.38×10-04 | 2.50×10-01 | 1.00×10+00 | 1.00×10+00 | |
F10 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 9.03×10-07 | 1.00×10+00 | 4.32×10-08 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.12×10-07 | 1.00×10+00 | 4.32×10-08 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.21×10-07 | 1.00×10+00 | 6.25×10-07 | |
F11 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 6.25×10-02 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 5.00×10-01 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
F12 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 5.61×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 4.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F13 | 30 | 1.70×10-06 | 1.73×10-06 | 1.70×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
200 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.59×10-04 | |
F14 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.31×10-05 |
F15 | 4 | 1.73×10-06 | 1.59×10-01 | 2.88×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.17×10-02 | 6.42×10-03 |
F16 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.58×10-06 |
F17 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
F18 | 5 | 2.84×10-05 | 3.11×10-05 | 3.11×10-05 | 3.11×10-05 | 2.37×10-05 | 2.60×10-05 | 3.11×10-05 | 2.03×10-02 |
F19 | 3 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F20 | 6 | 1.73×10-06 | 5.19×10-02 | 2.60×10-06 | 1.73×10-06 | 1.24×10-05 | 1.40×10-02 | 8.29×10-01 | 1.73×10-06 |
F21 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F22 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F23 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
Function | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO |
CEC1 | Best | 1.00×10+02 | 5.99×10+09 | 1.82×10+07 | 9.82×10+08 | 3.81×10+08 | 3.75×10+09 | 1.41×10+08 | 6.40×10+03 |
Mean | 2.23×10+03 | 1.14×10+10 | 1.38×10+09 | 4.65×10+09 | 1.03×10+09 | 9.57×10+09 | 3.45×10+08 | 7.53×10+07 | |
Std | 2.08×10+03 | 3.90×10+09 | 1.67×10+09 | 3.98×10+09 | 3.72×10+08 | 3.75×10+09 | 1.63×10+08 | 1.92×10+08 | |
CEC2 | Best | 1.34×10+03 | 2.56×10+03 | 1.75×10+03 | 2.30×10+03 | 2.34×10+03 | 1.90×10+03 | 2.40×10+03 | 1.49×10+03 |
Mean | 1.91×10+03 | 2.87×10+03 | 2.20×10+03 | 2.64×10+03 | 2.60×10+03 | 2.30×10+03 | 2.84×10+03 | 2.06×10+03 | |
Std | 1.45×10+02 | 1.80×10+02 | 3.10×10+02 | 2.76×10+02 | 2.51×10+02 | 2.66×10+02 | 2.37×10+02 | 3.27×10+02 | |
CEC3 | Best | 7.17×10+02 | 8.01×10+02 | 7.70×10+02 | 7.76×10+02 | 7.73×10+02 | 7.88×10+02 | 7.68×10+02 | 7.43×10+02 |
Mean | 7.70×10+02 | 8.15×10+02 | 7.96×10+02 | 8.13×10+02 | 7.87×10+02 | 8.05×10+02 | 7.83×10+02 | 7.76×10+02 | |
Std | 2.03×10+01 | 1.30×10+01 | 2.30×10+01 | 2.48×10+01 | 1.52×10+01 | 1.91×10+01 | 1.55×10+01 | 2.56×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.98×10-01 | 1.07×10+00 | 0.00×10+00 | 2.21×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.76×10+05 | 4.34×10+03 | 5.97×10+04 | 1.70×10+04 | 2.24×10+05 | 1.86×10+04 | 3.67×10+03 |
Mean | 1.17×10+05 | 5.24×10+05 | 1.70×10+05 | 3.01×10+06 | 1.13×10+05 | 5.39×10+05 | 4.91×10+05 | 8.62×10+04 | |
Std | 7.97×10+04 | 1.55×10+05 | 2.45×10+05 | 9.72×10+06 | 2.01×10+05 | 4.93×10+05 | 2.82×10+05 | 2.09×10+05 | |
CEC6 | Best | 1.60×10+03 | 2.06×10+03 | 1.75×10+03 | 1.80×10+03 | 1.77×10+03 | 1.90×10+03 | 1.92×10+03 | 1.72×10+03 |
Mean | 1.83×10+03 | 2.34×10+03 | 1.88×10+03 | 2.00×10+03 | 1.86×10+03 | 2.19×10+03 | 2.18×10+03 | 1.84×10+03 | |
Std | 1.23×10+02 | 2.58×10+02 | 1.39×10+02 | 1.36×10+02 | 1.02×10+02 | 2.48×10+02 | 1.46×10+02 | 1.27×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.99×10+04 | 3.35×10+03 | 4.81×10+03 | 7.27×10+03 | 5.57×10+03 | 7.27×10+03 | 3.10×10+03 |
Mean | 7.88×10+03 | 1.92×10+06 | 1.62×10+04 | 3.70×10+05 | 2.12×10+04 | 1.54×10+06 | 1.87×10+04 | 1.45×10+04 | |
Std | 8.17×10+03 | 3.27×10+06 | 3.45×10+04 | 7.20×10+05 | 1.99×10+04 | 2.72×10+06 | 1.95×10+04 | 3.59×10+04 | |
CEC8 | Best | 2.21×10+03 | 2.87×10+03 | 2.32×10+03 | 2.49×10+03 | 2.36×10+03 | 2.74×10+03 | 2.30×10+03 | 2.30×10+03 |
Mean | 2.31×10+03 | 3.33×10+03 | 2.47×10+03 | 2.82×10+03 | 2.47×10+03 | 3.18×10+03 | 2.38×10+03 | 2.36×10+03 | |
Std | 1.24×10+01 | 4.28×10+02 | 2.18×10+02 | 4.38×10+02 | 3.16×10+02 | 3.67×10+02 | 1.53×10+02 | 1.80×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.83×10+03 | 2.75×10+03 | 2.77×10+03 | 2.78×10+03 | 2.78×10+03 | 2.60×10+03 | 2.74×10+03 |
Mean | 2.66×10+03 | 2.90×10+03 | 2.76×10+03 | 2.79×10+03 | 2.80×10+03 | 2.89×10+03 | 2.79×10+03 | 2.77×10+03 | |
Std | 1.46×10+02 | 8.32×10+01 | 7.55×10+01 | 5.52×10+01 | 9.77×10+00 | 9.35×10+01 | 1.14×10+02 | 5.43×10+01 | |
CEC10 | Best | 2.60×10+03 | 3.25×10+03 | 2.95×10+03 | 3.00×10+03 | 2.96×10+03 | 3.17×10+03 | 2.94×10+03 | 2.92×10+03 |
Mean | 2.93×10+03 | 3.47×10+03 | 3.07×10+03 | 3.25×10+03 | 2.98×10+03 | 3.48×10+03 | 2.97×10+03 | 2.96×10+03 | |
Std | 2.25×10+01 | 2.29×10+02 | 1.59×10+02 | 2.66×10+02 | 3.88×10+01 | 2.91×10+02 | 3.23×10+01 | 4.32×10+01 |
Function | MRSA VS RSA |
MRSA VS ROA |
MRSA VS BES |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
CEC1 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
CEC2 | 1.73×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 |
CEC3 | 4.73×10-06 | 1.99×10-01 | 1.20×10-03 | 8.94×10-01 | 1.59×10-03 | 3.29×10-01 | 6.34×10-06 |
CEC4 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 5.96×10-05 | 1.00×10+00 | 6.10×10-05 | 1.00×10+00 |
CEC5 | 2.13×10-06 | 8.73×10-03 | 1.04×10-03 | 4.07×10-05 | 1.60×10-04 | 8.19×10-05 | 2.13×10-06 |
CEC6 | 1.80×10-05 | 3.87×10-02 | 1.20×10-01 | 3.87×10-02 | 1.71×10-03 | 1.15×10-04 | 1.02×10-05 |
CEC7 | 1.49×10-05 | 3.68×10-02 | 8.19×10-05 | 1.96×10-03 | 5.79×10-05 | 4.68×10-03 | 2.60×10-05 |
CEC8 | 1.73×10-06 | 1.89×10-04 | 1.73×10-06 | 2.37×10-05 | 1.73×10-06 | 4.07×10-05 | 1.73×10-06 |
CEC9 | 1.80×10-05 | 2.30×10-02 | 2.70×10-02 | 1.29×10-03 | 6.89×10-05 | 4.39×10-03 | 2.84×10-05 |
CEC10 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 4.45×10-05 | 1.73×10-06 | 4.11×10-03 | 1.73×10-06 |
Function | Statistics | MRSA | MutiRSA | RSALOBL | RSARS | LMRAOA | RSA |
CEC1 | Best | 1.00×10+02 | 1.01×10+02 | 4.20×10+09 | 7.87×10+09 | 2.24×10+02 | 5.99×10+09 |
Mean | 2.23×10+03 | 5.44×10+07 | 1.34×10+10 | 1.61×10+10 | 3.79×10+03 | 1.14×10+10 | |
Std | 2.08×10+03 | 2.98×10+08 | 3.96×10+09 | 3.71×10+09 | 3.46×10+03 | 3.90×10+09 | |
CEC2 | Best | 1.34×10+03 | 1.51×10+03 | 2.34×10+03 | 2.47×10+03 | 1.45×10+03 | 2.56×10+03 |
Mean | 1.91×10+03 | 2.31×10+03 | 2.81×10+03 | 2.80×10+03 | 1.72×10+03 | 2.87×10+03 | |
Std | 1.45×10+02 | 4.53×10+02 | 2.09×10+02 | 6.80×10+01 | 2.83×10+02 | 1.80×10+02 | |
CEC3 | Best | 7.17×10+02 | 7.28×10+02 | 7.97×10+02 | 7.93×10+02 | 7.49×10+02 | 8.01×10+02 |
Mean | 7.70×10+02 | 7.82×10+02 | 8.15×10+02 | 8.17×10+02 | 7.80×10+02 | 8.15×10+02 | |
Std | 2.03×10+01 | 2.52×10+01 | 8.57×10+00 | 1.11×10+01 | 1.75×10+01 | 1.30×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.78×10+03 | 2.04×10+05 | 3.55×10+05 | 2.03×10+03 | 3.76×10+05 |
Mean | 1.17×10+05 | 1.96×10+05 | 4.80×10+05 | 5.24×10+05 | 4.25×10+03 | 5.24×10+05 | |
Std | 7.97×10+04 | 1.39×10+05 | 1.03×10+05 | 6.45×10+04 | 4.58×10+03 | 1.55×10+05 | |
CEC6 | Best | 1.60×10+03 | 1.60×10+03 | 2.02×10+03 | 1.85×10+03 | 1.60×10+03 | 2.06×10+03 |
Mean | 1.83×10+03 | 1.95×10+03 | 2.33×10+03 | 2.26×10+03 | 1.88×10+03 | 2.34×10+03 | |
Std | 1.23×10+02 | 2.11×10+02 | 2.19×10+02 | 2.17×10+02 | 1.44×10+02 | 2.58×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.12×10+03 | 3.19×10+04 | 1.67×10+04 | 2.12×10+03 | 2.99×10+04 |
Mean | 7.88×10+03 | 5.75×10+05 | 2.66×10+06 | 1.94×10+06 | 2.45×10+03 | 1.92×10+06 | |
Std | 8.17×10+03 | 2.87×10+06 | 2.67×10+06 | 1.84×10+06 | 3.86×10+02 | 3.27×10+06 | |
CEC8 | Best | 2.21×10+03 | 2.23×10+03 | 2.83×10+03 | 2.75×10+03 | 2.30×10+03 | 2.87×10+03 |
Mean | 2.31×10+03 | 2.39×10+03 | 3.19×10+03 | 3.20×10+03 | 2.30×10+03 | 3.33×10+03 | |
Std | 1.24×10+01 | 2.68×10+02 | 2.34×10+02 | 2.86×10+02 | 1.04×10+00 | 4.28×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.50×10+03 | 2.73×10+03 | 2.82×10+03 | 2.50×10+03 | 2.83×10+03 |
Mean | 2.66×10+03 | 2.76×10+03 | 2.87×10+03 | 2.94×10+03 | 2.73×10+03 | 2.90×10+03 | |
Std | 1.46×10+02 | 1.09×10+02 | 5.54×10+01 | 6.07×10+01 | 9.95×10+01 | 8.32×10+01 | |
CEC10 | Best | 2.60×10+03 | 2.90×10+03 | 3.22×10+03 | 3.27×10+03 | 2.90×10+03 | 3.25×10+03 |
Mean | 2.93×10+03 | 2.97×10+03 | 3.45×10+03 | 3.51×10+03 | 2.91×10+03 | 3.47×10+03 | |
Std | 2.25×10+01 | 1.28×10+02 | 1.89×10+02 | 2.08×10+02 | 8.68×10+01 | 2.29×10+02 |
Algorithm | Optimal values for variables | Optimum weight | |||
x1 | x2 | x3 | x4 | ||
MRSA | 0.205739392 | 3.252967354 | 9.036552395 | 0.205732954 | 1.695257579 |
ROA [44] | 0.200077 | 3.365754 | 9.011182 | 0.206893 | 1.706447 |
GWO [8] | 0.205676 | 3.478377 | 9.03681 | 0.205778 | 1.72624 |
WOA [49] | 0.205396 | 3.484293 | 9.037426 | 0.206276 | 1.730499 |
RO [50] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
MPA [51] | 0.205728 | 3.470509 | 9.036624 | 0.20573 | 1.724853 |
MVO [52] | 0.205463 | 3.473193 | 9.044502 | 0.205695 | 1.72645 |
AOA [17] | 0.194475 | 2.57092 | 10 | 0.201827 | 1.7164 |
HHO [53] | 0.204039 | 3.531061 | 9.027463 | 0.206147 | 1.73199057 |
IHS [54] | 0.20573 | 3.47049 | 9.03662 | 0.2057 | 1.7248 |
RSA [34] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
Algorithm | Optimal values for variables | Optimum cost | |||
Ts | Th | R | L | ||
MRSA | 0.758460965 | 0.377162354 | 41.10831839 | 189.3046068 | 5765.42006 |
SHO [55] | 0.77821 | 0.384889 | 40.31504 | 200 | 5885.5773 |
MPA [51] | 0.77816876 | 0.38464966 | 40.31962084 | 199.9999935 | 5885.3353 |
SMA [56] | 0.7931 | 0.3932 | 40.6711 | 196.2178 | 5994.1857 |
HPSO [57] | 0.8125 | 0.4375 | 42.0984 | 176.6366 | 6059.7143 |
GWO [8] | 0.8125 | 0.4345 | 42.089181 | 176.758731 | 6051.5639 |
DE [58] | 0.8125 | 0.4375 | 42.098411 | 176.63769 | 6059.7340 |
COOT [59] | 0.77817 | 0.384651 | 40.319618 | 200 | 5885.3487 |
AEO [60] | 0.8374205 | 0.413937 | 43.389597 | 161.268592 | 5994.5070 |
CSS [61] | 0.8125 | 0.4375 | 42.103624 | 176.572656 | 6059.0888 |
Algorithm | Optimal values for variables | Optimum Value | ||
D | d | n | ||
MRSA | 0.05 | 0.373434558 | 8.619033937 | 0.009913786 |
RSA [34] | 0.057814 | 0.58478 | 4.0167 | 0.01176 |
MVO [52] | 0.05251 | 0.37602 | 10.33513 | 0.01279 |
WOA [49] | 0.051207 | 0.345215 | 12.004032 | 0.0126763 |
CSCA [52] | 0.051609 | 0.354714 | 11.410831 | 0.0126702 |
AOA [17] | 0.05 | 0.349809 | 11.8637 | 0.012124 |
RO [50] | 0.05137 | 0.349096 | 11.76279 | 0.0126788 |
PFA [63] | 0.051726 | 0.357629 | 11.235724 | 0.012665 |
Algorithm | Optimal values for variables | Optimal weight |
||||||
x1 | x2 | x3 | x4 | x5 | x6 | x7 | ||
MRSA | 3.476415091 | 0.7 | 17 | 7.3 | 7.8 | 3.348630145 | 5.276783057 | 2988.271359 |
RSA [34] | 3.50279 | 0.7 | 17 | 7.30812 | 7.74715 | 3.35067 | 5.28675 | 2996.5157 |
hHHO-SCA [64] | 3.506119 | 0.7 | 17 | 7.3 | 7.99141 | 3.452569 | 5.286749 | 3029.873076 |
MROA [65] | 3.497571 | 0.7 | 17 | 7.3 | 7.8 | 3.350057265 | 5.28553957 | 2995.437447 |
AAO [66] | 3.499 | 0.6999 | 17 | 7.3 | 7.8 | 3.3502 | 5.2872 | 2996.783 |
APSO [67] | 3.501313 | 0.7 | 18 | 8.127814 | 8.042121 | 3.352446 | 5.287076 | 3187.630486 |
MFO [68] | 3.497455 | 0.7 | 17 | 7.82775 | 7.712457 | 3.351787 | 5.286352 | 2998.94083 |
WSA [69] | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.350215 | 5.286683 | 2996.348225 |
CS [70] | 3.5015 | 0.7 | 17 | 7.605 | 7.8181 | 3.352 | 5.2875 | 3000.981 |
PDO [71] | 3.497777468 | 0.7 | 17.00002761 | 7.300100314 | 7.800675175 | 3.351095015 | 5.296455378 | 2993.7 |
DMOA [72] | 3.497599093 | 0.7 | 17 | 7.3 | 7.713534977 | 3.350055806 | 5.285631197 | 3010.4 |
Algorithm | Optimal values for variables | Optimal cost | |||
x1 | x2 | x3 | x4 | ||
MRSA | 57.69230749 | 34.14762033 | 57.69230747 | 1.05 | 6.842958018 |
PDO [71] | 48.31191 | 54.78270401 | 61.92983 | 0.424913 | 6.9821 |
FA [73] | 37.1179498 | 33.035021 | 37.1939476 | 0.7306255 | 7.21 |
LF-FA [73] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 6.95 |
LS-LF-FA [73] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 6.86 |
AOA [72] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 481.97 |
BBO [74] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 2.79 × 1012 |
Algorithm | Optimal values for variables | Optimum weight | ||||
x1 | x2 | x3 | x4 | x5 | ||
MRSA | 69.99999072 | 90 | 1 | 635.6851083 | 2 | 0.235242553 |
TLBO [38] | 70 | 90 | 1 | 810 | 3 | 0.313656611 |
WCA [75] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
HHO [53] | 70 | 90 | 1 | 1000 | 2.3128 | 0.259768993 |
CMVO [76] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
QSMFO [77] | 80 | 101.3002 | 3 | 600 | 9 | 0.2902 |
RSA [34] | 70.0347 | 90.0349 | 1 | 801.7285 | 2.974 | 0.31176 |
Algorithm 1. RSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population(X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. For each index by i |
8. For each dim index by j |
9. Using Formula (3 and 4) to update parameters η, P, and R. |
10. If t ≤ T/4 then |
11. Do high walking by Formula (2) |
12. Else if t > T/4 and t ≤ T/2 then |
13. Do belly walking by Formula (5) |
14. Else if t ≤ 3T/4 and t > T/2 then |
15. Do hunting coordination by Formula (7) |
16. Else |
17. Do hunting cooperation by Formula (8) |
18. End if |
19. End for |
20. End for |
21. t = t + 1 |
22. End while |
23. Return the best solution |
Algorithm 2. MRSA's pseudo-code |
1. Initialization parameters: N, dim, T, α, β |
2. Initialize population((X(1), X(2), ..., X(i), ..., X(N)) |
3. While t < T |
4. Calculate each individual's fitness value of the population |
5. Find the optimal position so far |
6. Using Formula (6) to update ES |
7. Update population through LOBL strategy by Formula (17) |
8. For each index by i |
9. For each dim index by j |
10. Using Formula (3, 4) to update parameters η and R, respectively |
11. If t ≤ T/4 then |
12. Do high walking by Formula (2) |
13. Else if t > T/4 and t ≤ T/2 then |
14. Do belly walking by Formula (5) |
15. Else if t ≤ 3T/4 and t > T/2 then |
16. Use Formula (12) to generate Xnew (Lagrange interpolation) |
17. Use Formula (14) to generate XTLBO |
18. Select the position with a better fitness value |
19. Else |
20. Do hunting cooperation by Formula (8) |
21. End if |
22. End for |
23. Update s(i) for each individual |
24. If s(i) > limit |
25. Generate New1 and New2 by Formulas (19–21) |
26. Select the position with a better fitness value |
27. End if |
28. End for |
29. t = t + 1 |
30. End while |
31. Return the best solution |
Algorithm | Parameters Setting |
MRSA | α = 0.1; β = 0.005 |
RSA [34] | α = 0.1; β = 0.005 |
ROA [44] | C = 0.1 |
BES [45] | α = [1.5, 2.0]; r = [0, 1] |
SCA [16] | α = 2 |
AOA [17] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
HOA [46] | w = 1; phiD = 0.2; phi = 0.2 |
SCSO [47] | SM = 2 |
LMRAOA [48] | MOP_Max = 1; MOP_Min = 0.2; Α = 5; Mu = 0.499 |
Function | Dim | Boundary | optimal value |
F1(x)=∑ni=1x2i | 30/100/500 | [−100,100] | 0 |
F2(x)=∑ni=1|xi|+∏ni=1|xi| | [−10, 10] | ||
F3(x)=∑ni=1(∑ij−1xj)2 | [−100,100] | ||
F4(x)=max{|xi|,1⩽i⩽n} | [−100,100] | ||
F5(x)=∑n−1i=1[100(xi+1−x2i)2+(xi−1)2] | [−30, 30] | ||
F6(x)=∑ni=1(xi+5)2 | [−100,100] | ||
F7(x)=∑ni=1i×x4i+random[0,1) | [−1.28, 1.28] | ||
F8(x)=∑ni=1−xisin(√|xi|) | [−500,500] | −418.9829 × dim | |
F9(x)=∑ni=1[x2i−10cos(2πxi)+10] | [−5.12, 5.12] | 0 | |
F10(x)=−20exp(−0.2√1n∑ni=1x2i−exp(1n∑ni=1cos(2πxi))+20+e) | [−32, 32] | ||
F11(x)=1400∑ni=1x2i−Πni=1cos(xi√i)+1 | [−600,600] | ||
F12(x)=πn{10sin(πy1)+∑n−1i=1(yi−1)2[1+10sin2(πyi+1)]+(yn−1)2} +∑ni=1u(xi,10,100,4),where yi=1+xi+14, u(xi,a,k,m)={k(xi−a)m xi>a0 −a<xi<ak(−xi−a)m xi<−a | [−50, 50] | ||
F13(x)=0.1(sin2(3πx1)+∑ni=1(xi−1)2[1+sin2(3πxi+1)] +(xn−1)2[1+sin2(2πxn)])+∑ni=1u(xi,5,100,4) | |||
F14(x)=(1500+∑25j=11j+∑2i=1(xi−aij)6)−1 | 2 | [−65, 65] | 1 |
F15(x)=∑11i=1[ai−x1(b2i+bix2)b2i+bix3+x4]2 | 4 | [−5, 5] | 0.00030 |
F16(x)=4x21−2.1x41+13x61+x1x2−4x22+x42 | 2 | −1.0316 | |
F17(x)=(x2−5.14π2x21+5πx1−6)2+10(1−18π)cosx1+10 | 0.398 | ||
F18(x)=[1+(x1+x2+1)2(19−14x1+3x21−14x2+6x1x2+322)]×[30+(2x1−3x2)2×(18−32x2+12x21+48x2−36x1x2+27x22)] | 5 | [−2, 2] | 3 |
F19(x)=−∑4i=1ciexp(−∑3j=1aij(xj−pij)2) | 3 | [−1, 2] | −3.86 |
F20(x)=−∑4i=1ciexp(−∑6j=1aij(xj−pij)2) | 6 | [0, 1] | −3.32 |
F21(x)=−∑5i=1[(X−ai)(X−ai)T+ci]−1 | 4 | [0, 10] | −10.1532 |
F22(x)=−∑7i=1[(X−ai)(X−ai)T+ci]−1 | −10.4028 | ||
F23(x)=−∑10i=1[(X−ai)(X−ai)T+ci]−1 | −10.5363 |
Function | Dim | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO | LMRAOA |
F1 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.58×10-02 | 8.05×10-155 | 7.90×10-239 | 5.70×10-125 | 2.93×10-91 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.13×10-313 | 9.96×10-312 | 1.58×10+01 | 6.42×10-66 | 9.56×10-129 | 2.79×10-111 | 3.53×10-84 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.61×10+01 | 3.52×10-65 | 5.17×10-128 | 1.37×10-110 | 1.93×10-83 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.37×10+03 | 1.08×10-01 | 7.35×10-227 | 3.97×10-111 | 1.16×10-48 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.49×10-315 | 0.00×10+00 | 4.68×10+04 | 1.32×10-01 | 7.10×10-140 | 4.90×10-100 | 4.46×10-44 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.41×10+04 | 1.71×10-02 | 3.89×10-139 | 2.56×10-99 | 1.70×10-43 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.47×10+04 | 5.60×10-01 | 3.86×10-225 | 6.39×10-111 | 4.51×10-39 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.01×10-314 | 0.00×10+00 | 2.16×10+05 | 6.39×10-01 | 1.50×10-143 | 1.31×10-99 | 3.31×10-34 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.75×10+04 | 4.64×10-02 | 8.19×10-143 | 5.33×10-99 | 1.00×10-33 | ||
F2 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.70×10-183 | 9.15×10-229 | 8.12×10-04 | 0.00×10+00 | 8.44×10-125 | 2.26×10-66 | 9.75×10-229 |
Mean | 0.00×10+00 | 0.00×10+00 | 1.24×10-165 | 2.53×10-536 | 1.33×10-02 | 0.00×10+00 | 6.00×10-76 | 6.28×10-59 | 3.78×10-141 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.53×10-02 | 0.00×10+00 | 1.89×10-75 | 3.31×10-58 | 2.07×10-140 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.81×10-538 | 5.55×10-238 | 6.08×10+00 | 5.23×10-57 | 9.12×10-122 | 2.69×10-59 | 8.89×10-20 | |
Mean | 0.00×10+00 | 0.00×10+00 | 3.00×10-161 | 2.01×10-533 | 3.18×10+01 | 2.02×10-20 | 1.03×10-84 | 8.20×10-53 | 1.31×10-53 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.64×10-160 | 0.00×10+00 | 1.68×10+01 | 1.09×10-19 | 5.63×10-84 | 3.19×10-52 | 2.34×10-53 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 2.17×10-538 | 1.10×10-235 | 3.43×10+01 | 2.77×10-14 | 6.11×10-120 | 1.14×10-57 | 3.63×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 7.17×10-161 | 6.09×10-533 | 9.81×10+01 | 1.03×10-03 | 2.96×10-71 | 8.15×10-50 | 2.86×10-11 | ||
Std | 0.00×10+00 | 0.00×10+00 | 2.72×10-160 | 0.00×10+00 | 3.20×10+01 | 1.31×10-03 | 1.62×10-70 | 3.33×10-49 | 6.51×10-11 | ||
F3 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 1.50×10-323 | 0.00×10+00 | 6.88×10+02 | 1.03×10-121 | 1.95×10-25 | 3.16×10-113 | 6.94×10-164 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.43×10-283 | 1.07×10-28 | 9.99×10+03 | 6.06×10-03 | 8.23×10+01 | 1.12×10-97 | 1.08×10-20 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.84×10-28 | 7.20×10+03 | 1.04×10-02 | 2.60×10+02 | 6.05×10-97 | 4.22×10-20 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.14×10-303 | 0.00×10+00 | 7.65×10+05 | 1.64×10+00 | 2.84×10-26 | 6.68×10-98 | 3.25×10-161 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.34×10-257 | 8.84×10-145 | 1.03×10+06 | 4.13×10+00 | 6.27×10+03 | 5.74×10-90 | 5.34×10-06 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10-144 | 1.84×10+05 | 2.34×10+00 | 1.42×10+04 | 1.97×10-89 | 2.61×10-05 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 3.38×10-294 | 0.00×10+00 | 4.71×10+06 | 1.39×10+01 | 1.67×10-111 | 7.76×10-96 | 1.57×10-160 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.95×10-252 | 1.61×10+03 | 7.10×10+06 | 9.97×10+03 | 8.48×10+04 | 2.18×10-84 | 1.12×10-159 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 6.95×10+03 | 1.24×10+06 | 5.45×10+04 | 1.33×10+05 | 1.13×10-83 | 7.25×10-160 | ||
F4 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 2.66×10-538 | 3.54×10-245 | 1.11×10+01 | 3.33×10-40 | 1.44×10-96 | 8.70×10-56 | 8.89×10-16 |
Mean | 0.00×10+00 | 0.00×10+00 | 2.64×10-158 | 1.02×10-182 | 3.64×10+01 | 3.08×10-02 | 5.42×10-62 | 9.61×10-51 | 3.00×10-12 | ||
Std | 0.00×10+00 | 0.00×10+00 | 1.45×10-157 | 0.00×10+00 | 1.18×10+01 | 1.82×10-02 | 2.96×10-61 | 3.54×10-50 | 9.03×10-12 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-539 | 4.71×10-236 | 9.33×10+01 | 1.12×10-01 | 3.16×10-106 | 2.90×10-51 | 1.18×10-14 | |
Mean | 0.00×10+00 | 0.00×10+00 | 1.86×10-158 | 4.45×10-164 | 9.64×10+01 | 1.33×10-01 | 2.70×10-63 | 1.04×10-44 | 2.73×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 8.40×10-158 | 0.00×10+00 | 1.07×10+00 | 1.48×10-02 | 1.06×10-62 | 5.62×10-44 | 5.41×10-03 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 1.13×10-538 | 2.59×10-230 | 9.82×10+01 | 1.62×10-01 | 1.52×10-102 | 1.05×10-50 | 4.54×10-07 | |
Mean | 0.00×10+00 | 0.00×10+00 | 9.84×10-158 | 1.21×10-534 | 9.91×10+01 | 1.85×10-01 | 7.58×10-62 | 1.83×10-45 | 3.34×10-03 | ||
Std | 0.00×10+00 | 0.00×10+00 | 3.93×10-157 | 0.00×10+00 | 2.27×10-01 | 2.08×10-02 | 3.35×10-61 | 7.23×10-45 | 5.47×10-03 | ||
F5 | 30 | Best | 0.00×10+00 | 2.28×10-25 | 2.66×10+01 | 1.44×10+01 | 8.85×10+02 | 2.80×10+01 | 2.89×10+01 | 2.72×10+01 | 2.17×10-09 |
Mean | 6.01×10-01 | 1.55×10+01 | 2.72×10+01 | 2.51×10+01 | 1.27×10+05 | 2.85×10+01 | 2.90×10+01 | 2.82×10+01 | 1.67×10+01 | ||
Std | 1.25×10+00 | 1.47×10+01 | 6.09×10-01 | 9.89×10+00 | 5.09×10+05 | 3.34×10-01 | 5.28×10-02 | 8.01×10-01 | 1.02×10+01 | ||
200 | Best | 0.00×10+00 | 1.99×10+02 | 1.97×10+02 | 1.10×10+00 | 3.43×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 7.18×10-02 | |
Mean | 1.26×10+01 | 1.99×10+02 | 1.97×10+02 | 1.61×10+02 | 5.84×10+08 | 1.99×10+02 | 1.99×10+02 | 1.98×10+02 | 1.23×10+02 | ||
Std | 2.75×10+01 | 0.00×10+00 | 1.70×10-01 | 7.57×10+01 | 2.05×10+08 | 5.24×10-02 | 2.74×10-02 | 4.09×10-01 | 9.33×10+01 | ||
500 | Best | 0.00×10+00 | 4.99×10+02 | 4.94×10+02 | 9.67×10+00 | 1.39×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 9.41×10-02 | |
Mean | 4.46×10+00 | 4.99×10+02 | 4.95×10+02 | 4.19×10+02 | 1.90×10+09 | 4.99×10+02 | 4.99×10+02 | 4.98×10+02 | 3.78×10+02 | ||
Std | 1.12×10+01 | 0.00×10+00 | 2.90×10-01 | 1.77×10+02 | 5.47×10+08 | 1.23×10-01 | 2.38×10-02 | 1.64×10-01 | 2.12×10+02 | ||
F6 | 30 | Best | 0.00×10+00 | 4.68×10+00 | 1.81×10-02 | 4.80×10-05 | 4.83×10+00 | 2.42×10+00 | 6.02×10+00 | 1.03×10+00 | 0.00×10+00 |
Mean | 1.01×10-03 | 7.24×10+00 | 9.90×10-02 | 1.07×10+00 | 1.81×10+01 | 3.22×10+00 | 6.72×10+00 | 1.96×10+00 | 0.00×10+00 | ||
Std | 5.50×10-03 | 6.04×10-01 | 8.75×10-02 | 2.57×10+00 | 3.14×10+01 | 3.37×10-01 | 3.04×10-01 | 5.00×10-01 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 5.00×10+01 | 2.09×10+00 | 4.89×10-03 | 1.87×10+04 | 4.10×10+01 | 4.82×10+01 | 3.22×10+01 | 0.00×10+00 | |
Mean | 5.43×10-02 | 5.00×10+01 | 5.18×10+00 | 1.41×10+01 | 5.22×10+04 | 4.20×10+01 | 4.89×10+01 | 3.61×10+01 | 0.00×10+00 | ||
Std | 1.73×10-01 | 0.00×10+00 | 2.12×10+00 | 2.21×10+01 | 2.61×10+04 | 8.18×10-01 | 4.88×10-01 | 2.36×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 1.25×10+02 | 8.06×10+00 | 2.25×10-02 | 1.19×10+05 | 1.15×10+02 | 1.23×10+02 | 1.00×10+02 | 0.00×10+00 | |
Mean | 3.41×10-01 | 1.25×10+02 | 1.56×10+01 | 3.12×10+01 | 2.06×10+05 | 1.16×10+02 | 1.24×10+02 | 1.05×10+02 | 4.14×10-31 | ||
Std | 5.95×10-01 | 0.00×10+00 | 7.91×10+00 | 5.28×10+01 | 8.98×10+04 | 1.26×10+00 | 5.69×10-01 | 4.18×10+00 | 1.58×10-30 | ||
F7 | 30 | Best | 3.10×10-07 | 8.91×10-06 | 4.40×10-06 | 5.25×10-04 | 8.75×10-03 | 3.39×10-06 | 1.54×10-02 | 1.24×10-05 | 5.17×10-06 |
Mean | 5.82×10-05 | 1.27×10-04 | 1.91×10-04 | 5.13×10-03 | 1.29×10-01 | 8.45×10-05 | 6.74×10-02 | 1.46×10-04 | 9.79×10-05 | ||
Std | 4.72×10-05 | 1.09×10-04 | 1.52×10-04 | 4.13×10-03 | 1.64×10-01 | 6.81×10-05 | 3.94×10-02 | 1.72×10-04 | 9.68×10-05 | ||
200 | Best | 2.41×10-08 | 6.53×10-06 | 3.45×10-06 | 2.81×10-04 | 7.24×10+02 | 3.51×10-06 | 2.71×10-02 | 1.74×10-05 | 1.76×10-05 | |
Mean | 6.82×10-05 | 1.39×10-04 | 1.45×10-04 | 6.29×10-03 | 1.53×10+03 | 7.49×10-05 | 1.54×10-01 | 2.40×10-04 | 2.49×10-04 | ||
Std | 6.40×10-05 | 1.26×10-04 | 1.31×10-04 | 3.51×10-03 | 4.22×10+02 | 6.49×10-05 | 1.08×10-01 | 3.15×10-04 | 2.40×10-04 | ||
500 | Best | 5.52×10-07 | 6.78×10-06 | 9.84×10-06 | 7.36×10-04 | 7.65×10+03 | 1.39×10-05 | 3.78×10-02 | 2.08×10-05 | 1.61×10-06 | |
Mean | 5.62×10-05 | 1.69×10-04 | 2.55×10-04 | 6.82×10-03 | 1.53×10+04 | 8.39×10-05 | 1.73×10-01 | 1.71×10-04 | 1.72×10-04 | ||
Std | 4.91×10-05 | 1.78×10-04 | 2.49×10-04 | 3.24×10-03 | 3.80×10+03 | 6.87×10-05 | 1.33×10-01 | 2.39×10-04 | 1.36×10-04 | ||
F8 | 30 | Best | -1.26×10+04 | -5.65×10+03 | -1.26×10+04 | -1.25×10+04 | -4.57×10+03 | -6.22×10+03 | -5.04×10+03 | -8.70×10+03 | -1.08×10+04 |
Mean | -1.26×10+04 | -5.27×10+03 | -1.23×10+04 | -9.73×10+03 | -3.80×10+03 | -5.18×10+03 | -4.06×10+03 | -6.62×10+03 | -1.01×10+04 | ||
Std | 3.36×10-12 | 5.22×10+02 | 4.58×10+02 | 1.71×10+03 | 3.49×10+02 | 4.40×10+02 | 5.53×10+02 | 8.50×10+02 | 4.21×10+02 | ||
200 | Best | -8.38×10+04 | -3.17×10+04 | -8.38×10+04 | -8.01×10+04 | -1.14×10+04 | -1.66×10+04 | -3.62×10+04 | -3.60×10+04 | -4.28×10+04 | |
Mean | -8.38×10+04 | -2.80×10+04 | -8.27×10+04 | -6.11×10+04 | -1.01×10+04 | -1.46×10+04 | -1.26×10+04 | -3.22×10+04 | -3.73×10+04 | ||
Std | 8.55×10-12 | 2.17×10+03 | 2.09×10+03 | 1.13×10+04 | 8.52×10+02 | 1.01×10+03 | 6.70×10+03 | 2.74×10+03 | 2.90×10+03 | ||
500 | Best | -2.09×10+05 | -7.63×10+04 | -2.09×10+05 | -2.09×10+05 | -1.77×10+04 | -2.59×10+04 | -1.39×10+05 | -6.63×10+04 | -6.09×10+04 | |
Mean | -2.09×10+05 | -6.45×10+04 | -2.07×10+05 | -1.59×10+05 | -1.54×10+04 | -2.25×10+04 | -3.50×10+04 | -6.05×10+04 | -5.06×10+04 | ||
Std | 2.96×10-11 | 5.96×10+03 | 7.32×10+03 | 2.72×10+04 | 9.38×10+02 | 1.56×10+03 | 2.95×10+04 | 3.43×10+03 | 5.63×10+03 | ||
F9 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.26×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.74×10+01 | 4.61×10+01 | 0.00×10+00 | 8.73×10+01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.39×10+01 | 2.72×10+01 | 0.00×10+00 | 1.06×10+02 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.82×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.15×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.84×10+02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.37×10+03 | 5.03×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.31×10+02 | 5.28×10-06 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | ||
F10 | 30 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 5.58×10-02 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.46×10+01 | 8.88×10-16 | 5.51×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 8.68×10+00 | 0.00×10+00 | 1.90×10-15 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 7.65×10+00 | 3.02×10-03 | 4.44×10-15 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 9.52×10-02 | 1.88×10+01 | 4.92×10-03 | 5.98×10-15 | 8.88×10-16 | 4.44×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 5.21×10-01 | 4.28×10+00 | 7.67×10-04 | 1.79×10-15 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 1.08×10+01 | 7.53×10-03 | 8.88×10-16 | 8.88×10-16 | 4.44×10-15 | |
Mean | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 8.88×10-16 | 2.01×10+01 | 8.07×10-03 | 6.22×10-15 | 8.88×10-16 | 7.05×10-15 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 2.45×10+00 | 3.26×10-04 | 2.03×10-15 | 0.00×10+00 | 1.60×10-15 | ||
F11 | 30 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.95×10-03 | 1.50×10-02 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 9.26×10-01 | 1.63×10-01 | 2.56×10-01 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.20×10-01 | 1.19×10-01 | 4.00×10-01 | 0.00×10+00 | 0.00×10+00 | ||
200 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.93×10+02 | 1.98×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 4.64×10+02 | 2.40×10+03 | 3.40×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.78×10+02 | 3.82×10+02 | 1.86×10-01 | 0.00×10+00 | 0.00×10+00 | ||
500 | Best | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.38×10+02 | 6.16×10+03 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
Mean | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 1.82×10+03 | 9.18×10+03 | 1.54×10-02 | 0.00×10+00 | 0.00×10+00 | ||
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 7.28×10+02 | 2.51×10+03 | 8.44×10-02 | 0.00×10+00 | 0.00×10+00 | ||
F12 | 30 | Best | 3.33×10-13 | 6.87×10-01 | 2.11×10-03 | 1.88×10-07 | 1.13×10+00 | 4.32×10-01 | 8.29×10-01 | 4.60×10-02 | 1.57×10-32 |
Mean | 1.10×10-07 | 1.58×10+00 | 1.05×10-02 | 1.82×10-01 | 3.29×10+04 | 5.15×10-01 | 1.17×10+00 | 9.66×10-02 | 1.57×10-32 | ||
Std | 4.40×10-07 | 2.56×10-01 | 5.24×10-03 | 3.95×10-01 | 1.63×10+05 | 4.86×10-02 | 2.02×10-01 | 3.91×10-02 | 5.57×10-48 | ||
200 | Best | 2.36×10-33 | 1.25×10+00 | 1.15×10-02 | 1.83×10-05 | 9.59×10+08 | 9.87×10-01 | 1.14×10+00 | 4.57×10-01 | 2.36×10-33 | |
Mean | 6.39×10-06 | 1.25×10+00 | 3.36×10-02 | 2.48×10-01 | 1.56×10+09 | 1.01×10+00 | 1.18×10+00 | 5.56×10-01 | 2.36×10-33 | ||
Std | 1.87×10-05 | 4.52×10-16 | 2.00×10-02 | 4.99×10-01 | 5.27×10+08 | 1.62×10-02 | 4.12×10-02 | 7.09×10-02 | 6.96×10-49 | ||
500 | Best | 9.42×10-34 | 1.21×10+00 | 1.29×10-02 | 8.11×10-06 | 4.66×10+09 | 1.07×10+00 | 1.16×10+00 | 6.68×10-01 | 9.42×10-34 | |
Mean | 1.62×10-05 | 1.21×10+00 | 4.20×10-02 | 2.03×10-01 | 5.90×10+09 | 1.08×10+00 | 1.18×10+00 | 7.87×10-01 | 3.08×10-33 | ||
Std | 3.01×10-05 | 4.52×10-16 | 2.29×10-02 | 4.56×10-01 | 1.42×10+09 | 1.23×10-02 | 1.70×10-02 | 5.70×10-02 | 6.70×10-33 | ||
F13 | 30 | Best | 6.16×10-32 | 1.89×10-30 | 6.03×10-02 | 6.34×10-04 | 3.67×10+00 | 2.61×10+00 | 2.84×10+00 | 9.25×10-01 | 1.35×10-32 |
Mean | 4.07×10-31 | 3.00×10-01 | 2.23×10-01 | 1.23×10+00 | 7.89×10+04 | 2.79×10+00 | 3.08×10+00 | 2.38×10+00 | 1.35×10-32 | ||
Std | 2.06×10-31 | 9.15×10-01 | 1.23×10-01 | 1.46×10+00 | 2.11×10+05 | 9.94×10-02 | 2.30×10-01 | 4.88×10-01 | 5.57×10-48 | ||
200 | Best | 5.67×10-31 | 2.00×10+01 | 1.28×10+00 | 2.39×10-03 | 1.64×10+09 | 2.00×10+01 | 2.00×10+01 | 1.96×10+01 | 1.35×10-32 | |
Mean | 1.05×10-30 | 2.00×10+01 | 3.07×10+00 | 6.75×10+00 | 2.70×10+09 | 2.00×10+01 | 2.00×10+01 | 1.98×10+01 | 1.35×10-32 | ||
Std | 1.20×10-31 | 0.00×10+00 | 1.58×10+00 | 9.40×10+00 | 7.19×10+08 | 2.20×10-02 | 1.02×10-02 | 1.04×10-01 | 5.57×10-48 | ||
500 | Best | 1.58×10-30 | 5.00×10+01 | 1.85×10+00 | 1.62×10-03 | 6.20×10+09 | 5.02×10+01 | 5.00×10+01 | 4.97×10+01 | 1.35×10-32 | |
Mean | 2.05×10-30 | 5.00×10+01 | 8.65×10+00 | 1.58×10+01 | 9.78×10+09 | 5.02×10+01 | 5.00×10+01 | 4.98×10+01 | 6.89×10-31 | ||
Std | 9.47×10-32 | 0.00×10+00 | 4.38×10+00 | 2.27×10+01 | 2.55×10+09 | 4.39×10-02 | 1.77×10-02 | 8.24×10-02 | 1.71×10-30 | ||
F14 | 2 | Best | 9.98×10-01 | 1.03×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 | 1.99×10+00 | 9.98×10-01 | 9.98×10-01 | 9.98×10-01 |
Mean | 9.98×10-01 | 4.24×10+00 | 3.93×10+00 | 2.98×10+00 | 1.92×10+00 | 1.09×10+01 | 2.88×10+00 | 3.16×10+00 | 6.50×10+00 | ||
Std | 4.86×10-15 | 3.25×10+00 | 4.68×10+00 | 1.60×10+00 | 1.91×10+00 | 3.21×10+00 | 2.34×10+00 | 3.18×10+00 | 4.75×10+00 | ||
F15 | 4 | Best | 3.07×10-04 | 9.09×10-04 | 3.08×10-04 | 3.27×10-04 | 5.97×10-04 | 3.64×10-04 | 1.02×10-03 | 3.08×10-04 | 3.07×10-04 |
Mean | 4.25×10-04 | 3.19×10-03 | 4.34×10-04 | 9.48×10-03 | 1.09×10-03 | 1.91×10-02 | 7.93×10-03 | 4.49×10-04 | 3.57×10-03 | ||
Std | 1.27×10-04 | 1.96×10-03 | 1.83×10-04 | 9.80×10-03 | 3.89×10-04 | 3.11×10-02 | 8.13×10-03 | 3.00×10-04 | 1.04×10-02 | ||
F16 | 2 | Best | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 |
Mean | -1.03×10+00 | -1.03×10+00 | -1.03×10+00 | -9.27×10-01 | -1.03×10+00 | -1.03×10+00 | -9.88×10-01 | -1.03×10+00 | -1.03×10+00 | ||
Std | 2.00×10-14 | 7.38×10-04 | 4.09×10-08 | 2.62×10-01 | 4.21×10-05 | 1.24×10-07 | 4.39×10-02 | 6.46×10-10 | 6.12×10-16 | ||
F17 | 2 | Best | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 | 3.98×10-01 |
Mean | 3.98×10-01 | 4.24×10-01 | 3.98×10-01 | 6.01×10-01 | 4.00×10-01 | 3.98×10-01 | 3.99×10-01 | 3.98×10-01 | 3.98×10-01 | ||
Std | 5.98×10-14 | 2.87×10-02 | 9.11×10-06 | 3.41×10-01 | 1.56×10-03 | 5.33×10-08 | 1.08×10-03 | 1.66×10-08 | 0.00×10+00 | ||
F18 | 5 | Best | 3.00×10+00 | 3.00×10+00 | 3.00×10+00 | 3.04×10+00 | 3.00×10+00 | 3.00×10+00 | 3.02×10+00 | 3.00×10+00 | 3.00×10+00 |
Mean | 3.90×10+00 | 1.06×10+01 | 3.00×10+00 | 5.93×10+00 | 3.00×10+00 | 1.16×10+01 | 6.81×10+00 | 3.00×10+00 | 1.02×10+01 | ||
Std | 4.93×10+00 | 1.85×10+01 | 3.93×10-04 | 1.03×10+01 | 3.29×10-04 | 1.98×10+01 | 1.55×10+01 | 1.63×10-05 | 1.21×10+01 | ||
F19 | 3 | Best | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 |
Mean | -3.86×10+00 | -3.76×10+00 | -3.86×10+00 | -3.70×10+00 | -3.85×10+00 | -3.85×10+00 | -3.86×10+00 | -3.86×10+00 | -3.86×10+00 | ||
Std | 8.74×10-13 | 8.82×10-02 | 2.40×10-03 | 2.57×10-01 | 8.46×10-03 | 3.82×10-03 | 6.12×10-04 | 4.17×10-03 | 2.55×10-15 | ||
F20 | 6 | Best | -3.32×10+00 | -2.90×10+00 | -3.32×10+00 | -3.13×10+00 | -3.11×10+00 | -3.14×10+00 | -3.31×10+00 | -3.32×10+00 | -3.32×10+00 |
Mean | -3.21×10+00 | -2.41×10+00 | -3.20×10+00 | -2.79×10+00 | -2.73×10+00 | -3.04×10+00 | -3.22×10+00 | -3.09×10+00 | -3.29×10+00 | ||
Std | 6.40×10-02 | 5.76×10-01 | 2.09×10-01 | 3.84×10-01 | 5.53×10-01 | 1.32×10-01 | 9.35×10-02 | 4.04×10-01 | 5.54×10-02 | ||
F21 | 4 | Best | -1.02×10+01 | -5.06×10+00 | -1.02×10+01 | -1.01×10+01 | -5.76×10+00 | -7.41×10+00 | -1.01×10+01 | -1.02×10+01 | -1.02×10+01 |
Mean | -1.02×10+01 | -5.02×10+00 | -1.01×10+01 | -6.43×10+00 | -2.74×10+00 | -3.85×10+00 | -9.55×10+00 | -5.40×10+00 | -1.02×10+01 | ||
Std | 2.74×10-11 | 1.96×10-01 | 3.12×10-02 | 2.66×10+00 | 1.86×10+00 | 1.09×10+00 | 9.82×10-01 | 1.29×10+00 | 5.56×10-15 | ||
F22 | 4 | Best | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -1.04×10+01 | -7.90×10+00 | -1.02×10+01 | -1.03×10+01 | -1.04×10+01 | -1.04×10+01 |
Mean | -1.04×10+01 | -5.09×10+00 | -1.04×10+01 | -7.10×10+00 | -3.46×10+00 | -4.41×10+00 | -9.26×10+00 | -6.08×10+00 | -1.04×10+01 | ||
Std | 2.14×10-11 | 8.50×10-07 | 1.94×10-02 | 2.83×10+00 | 2.07×10+00 | 1.93×10+00 | 1.89×10+00 | 2.82×10+00 | 4.46×10-16 | ||
F23 | 4 | Best | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -1.05×10+01 | -8.73×10+00 | -7.88×10+00 | -1.05×10+01 | -1.05×10+01 | -1.05×10+01 |
Mean | -1.05×10+01 | -5.13×10+00 | -1.05×10+01 | -6.04×10+00 | -3.26×10+00 | -4.27×10+00 | -9.90×10+00 | -6.31×10+00 | -1.05×10+01 | ||
Std | 3.40×10-11 | 1.65×10-06 | 2.32×10-02 | 2.91×10+00 | 1.87×10+00 | 1.60×10+00 | 5.74×10-01 | 2.73×10+00 | 3.28×10-15 |
Function | Dim | MRSA VS RSA |
MRSA VS ROA |
MRSA VS B×10S |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
MRSA VS LMRAOA |
F1 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 2.50×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 5.00×10-01 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F2 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F3 | 30 | 1.00×10+00 | 2.56×10-06 | 5.00×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.25×10-01 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 3.13×10-02 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F4 | 30 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F5 | 30 | 3.65×10-03 | 2.13×10-06 | 9.32×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.61×10-04 |
200 | 4.18×10-07 | 1.73×10-06 | 3.18×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.89×10-04 | |
500 | 1.01×10-06 | 1.73×10-06 | 3.52×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.97×10-05 | |
F6 | 30 | 1.73×10-06 | 2.37×10-05 | 1.13×10-05 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.79×10-06 |
200 | 1.71×10-06 | 3.11×10-05 | 2.41×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
500 | 1.73×10-06 | 2.13×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 2.56×10-06 | |
F7 | 30 | 6.27×10-02 | 6.42×10-03 | 1.73×10-06 | 1.73×10-06 | 8.61×10-01 | 1.73×10-06 | 2.30×10-02 | 6.84×10-03 |
200 | 3.11×10-05 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 | 8.22×10-02 | 1.73×10-06 | 7.52×10-02 | 2.77×10-03 | |
500 | 1.25×10-02 | 6.04×10-03 | 1.73×10-06 | 1.73×10-06 | 3.33×10-02 | 1.73×10-06 | 1.16×10-01 | 1.74×10-04 | |
F8 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F9 | 30 | 1.00×10+00 | 1.00×10+00 | 5.00×10-01 | 1.73×10-06 | 1.00×10+00 | 1.95×10-03 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 4.38×10-04 | 2.50×10-01 | 1.00×10+00 | 1.00×10+00 | |
F10 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.00×10+00 | 9.03×10-07 | 1.00×10+00 | 4.32×10-08 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.12×10-07 | 1.00×10+00 | 4.32×10-08 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 8.21×10-07 | 1.00×10+00 | 6.25×10-07 | |
F11 | 30 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 6.25×10-02 | 1.00×10+00 | 1.00×10+00 |
200 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 5.00×10-01 | 1.00×10+00 | 1.00×10+00 | |
500 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 1.73×10-06 | 1.73×10-06 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | |
F12 | 30 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
200 | 1.73×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 5.61×10-06 | |
500 | 1.73×10-06 | 1.73×10-06 | 4.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
F13 | 30 | 1.70×10-06 | 1.73×10-06 | 1.70×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
200 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | |
500 | 4.32×10-08 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 3.59×10-04 | |
F14 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.31×10-05 |
F15 | 4 | 1.73×10-06 | 1.59×10-01 | 2.88×10-06 | 1.73×10-06 | 1.92×10-06 | 1.73×10-06 | 1.17×10-02 | 6.42×10-03 |
F16 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.58×10-06 |
F17 | 2 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.72×10-06 |
F18 | 5 | 2.84×10-05 | 3.11×10-05 | 3.11×10-05 | 3.11×10-05 | 2.37×10-05 | 2.60×10-05 | 3.11×10-05 | 2.03×10-02 |
F19 | 3 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F20 | 6 | 1.73×10-06 | 5.19×10-02 | 2.60×10-06 | 1.73×10-06 | 1.24×10-05 | 1.40×10-02 | 8.29×10-01 | 1.73×10-06 |
F21 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F22 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
F23 | 4 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
Function | Statistics | MRSA | RSA | ROA | BES | SCA | AOA | HOA | SCSO |
CEC1 | Best | 1.00×10+02 | 5.99×10+09 | 1.82×10+07 | 9.82×10+08 | 3.81×10+08 | 3.75×10+09 | 1.41×10+08 | 6.40×10+03 |
Mean | 2.23×10+03 | 1.14×10+10 | 1.38×10+09 | 4.65×10+09 | 1.03×10+09 | 9.57×10+09 | 3.45×10+08 | 7.53×10+07 | |
Std | 2.08×10+03 | 3.90×10+09 | 1.67×10+09 | 3.98×10+09 | 3.72×10+08 | 3.75×10+09 | 1.63×10+08 | 1.92×10+08 | |
CEC2 | Best | 1.34×10+03 | 2.56×10+03 | 1.75×10+03 | 2.30×10+03 | 2.34×10+03 | 1.90×10+03 | 2.40×10+03 | 1.49×10+03 |
Mean | 1.91×10+03 | 2.87×10+03 | 2.20×10+03 | 2.64×10+03 | 2.60×10+03 | 2.30×10+03 | 2.84×10+03 | 2.06×10+03 | |
Std | 1.45×10+02 | 1.80×10+02 | 3.10×10+02 | 2.76×10+02 | 2.51×10+02 | 2.66×10+02 | 2.37×10+02 | 3.27×10+02 | |
CEC3 | Best | 7.17×10+02 | 8.01×10+02 | 7.70×10+02 | 7.76×10+02 | 7.73×10+02 | 7.88×10+02 | 7.68×10+02 | 7.43×10+02 |
Mean | 7.70×10+02 | 8.15×10+02 | 7.96×10+02 | 8.13×10+02 | 7.87×10+02 | 8.05×10+02 | 7.83×10+02 | 7.76×10+02 | |
Std | 2.03×10+01 | 1.30×10+01 | 2.30×10+01 | 2.48×10+01 | 1.52×10+01 | 1.91×10+01 | 1.55×10+01 | 2.56×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 3.98×10-01 | 1.07×10+00 | 0.00×10+00 | 2.21×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.76×10+05 | 4.34×10+03 | 5.97×10+04 | 1.70×10+04 | 2.24×10+05 | 1.86×10+04 | 3.67×10+03 |
Mean | 1.17×10+05 | 5.24×10+05 | 1.70×10+05 | 3.01×10+06 | 1.13×10+05 | 5.39×10+05 | 4.91×10+05 | 8.62×10+04 | |
Std | 7.97×10+04 | 1.55×10+05 | 2.45×10+05 | 9.72×10+06 | 2.01×10+05 | 4.93×10+05 | 2.82×10+05 | 2.09×10+05 | |
CEC6 | Best | 1.60×10+03 | 2.06×10+03 | 1.75×10+03 | 1.80×10+03 | 1.77×10+03 | 1.90×10+03 | 1.92×10+03 | 1.72×10+03 |
Mean | 1.83×10+03 | 2.34×10+03 | 1.88×10+03 | 2.00×10+03 | 1.86×10+03 | 2.19×10+03 | 2.18×10+03 | 1.84×10+03 | |
Std | 1.23×10+02 | 2.58×10+02 | 1.39×10+02 | 1.36×10+02 | 1.02×10+02 | 2.48×10+02 | 1.46×10+02 | 1.27×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.99×10+04 | 3.35×10+03 | 4.81×10+03 | 7.27×10+03 | 5.57×10+03 | 7.27×10+03 | 3.10×10+03 |
Mean | 7.88×10+03 | 1.92×10+06 | 1.62×10+04 | 3.70×10+05 | 2.12×10+04 | 1.54×10+06 | 1.87×10+04 | 1.45×10+04 | |
Std | 8.17×10+03 | 3.27×10+06 | 3.45×10+04 | 7.20×10+05 | 1.99×10+04 | 2.72×10+06 | 1.95×10+04 | 3.59×10+04 | |
CEC8 | Best | 2.21×10+03 | 2.87×10+03 | 2.32×10+03 | 2.49×10+03 | 2.36×10+03 | 2.74×10+03 | 2.30×10+03 | 2.30×10+03 |
Mean | 2.31×10+03 | 3.33×10+03 | 2.47×10+03 | 2.82×10+03 | 2.47×10+03 | 3.18×10+03 | 2.38×10+03 | 2.36×10+03 | |
Std | 1.24×10+01 | 4.28×10+02 | 2.18×10+02 | 4.38×10+02 | 3.16×10+02 | 3.67×10+02 | 1.53×10+02 | 1.80×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.83×10+03 | 2.75×10+03 | 2.77×10+03 | 2.78×10+03 | 2.78×10+03 | 2.60×10+03 | 2.74×10+03 |
Mean | 2.66×10+03 | 2.90×10+03 | 2.76×10+03 | 2.79×10+03 | 2.80×10+03 | 2.89×10+03 | 2.79×10+03 | 2.77×10+03 | |
Std | 1.46×10+02 | 8.32×10+01 | 7.55×10+01 | 5.52×10+01 | 9.77×10+00 | 9.35×10+01 | 1.14×10+02 | 5.43×10+01 | |
CEC10 | Best | 2.60×10+03 | 3.25×10+03 | 2.95×10+03 | 3.00×10+03 | 2.96×10+03 | 3.17×10+03 | 2.94×10+03 | 2.92×10+03 |
Mean | 2.93×10+03 | 3.47×10+03 | 3.07×10+03 | 3.25×10+03 | 2.98×10+03 | 3.48×10+03 | 2.97×10+03 | 2.96×10+03 | |
Std | 2.25×10+01 | 2.29×10+02 | 1.59×10+02 | 2.66×10+02 | 3.88×10+01 | 2.91×10+02 | 3.23×10+01 | 4.32×10+01 |
Function | MRSA VS RSA |
MRSA VS ROA |
MRSA VS BES |
MRSA VS SCA |
MRSA VS AOA |
MRSA VS HOA |
MRSA VS SCSO |
CEC1 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 | 1.73×10-06 |
CEC2 | 1.73×10-06 | 4.90×10-04 | 1.73×10-06 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 1.73×10-06 |
CEC3 | 4.73×10-06 | 1.99×10-01 | 1.20×10-03 | 8.94×10-01 | 1.59×10-03 | 3.29×10-01 | 6.34×10-06 |
CEC4 | 1.00×10+00 | 1.00×10+00 | 1.00×10+00 | 5.96×10-05 | 1.00×10+00 | 6.10×10-05 | 1.00×10+00 |
CEC5 | 2.13×10-06 | 8.73×10-03 | 1.04×10-03 | 4.07×10-05 | 1.60×10-04 | 8.19×10-05 | 2.13×10-06 |
CEC6 | 1.80×10-05 | 3.87×10-02 | 1.20×10-01 | 3.87×10-02 | 1.71×10-03 | 1.15×10-04 | 1.02×10-05 |
CEC7 | 1.49×10-05 | 3.68×10-02 | 8.19×10-05 | 1.96×10-03 | 5.79×10-05 | 4.68×10-03 | 2.60×10-05 |
CEC8 | 1.73×10-06 | 1.89×10-04 | 1.73×10-06 | 2.37×10-05 | 1.73×10-06 | 4.07×10-05 | 1.73×10-06 |
CEC9 | 1.80×10-05 | 2.30×10-02 | 2.70×10-02 | 1.29×10-03 | 6.89×10-05 | 4.39×10-03 | 2.84×10-05 |
CEC10 | 1.73×10-06 | 1.48×10-04 | 1.73×10-06 | 4.45×10-05 | 1.73×10-06 | 4.11×10-03 | 1.73×10-06 |
Function | Statistics | MRSA | MutiRSA | RSALOBL | RSARS | LMRAOA | RSA |
CEC1 | Best | 1.00×10+02 | 1.01×10+02 | 4.20×10+09 | 7.87×10+09 | 2.24×10+02 | 5.99×10+09 |
Mean | 2.23×10+03 | 5.44×10+07 | 1.34×10+10 | 1.61×10+10 | 3.79×10+03 | 1.14×10+10 | |
Std | 2.08×10+03 | 2.98×10+08 | 3.96×10+09 | 3.71×10+09 | 3.46×10+03 | 3.90×10+09 | |
CEC2 | Best | 1.34×10+03 | 1.51×10+03 | 2.34×10+03 | 2.47×10+03 | 1.45×10+03 | 2.56×10+03 |
Mean | 1.91×10+03 | 2.31×10+03 | 2.81×10+03 | 2.80×10+03 | 1.72×10+03 | 2.87×10+03 | |
Std | 1.45×10+02 | 4.53×10+02 | 2.09×10+02 | 6.80×10+01 | 2.83×10+02 | 1.80×10+02 | |
CEC3 | Best | 7.17×10+02 | 7.28×10+02 | 7.97×10+02 | 7.93×10+02 | 7.49×10+02 | 8.01×10+02 |
Mean | 7.70×10+02 | 7.82×10+02 | 8.15×10+02 | 8.17×10+02 | 7.80×10+02 | 8.15×10+02 | |
Std | 2.03×10+01 | 2.52×10+01 | 8.57×10+00 | 1.11×10+01 | 1.75×10+01 | 1.30×10+01 | |
CEC4 | Best | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 |
Mean | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | 1.90×10+03 | |
Std | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | 0.00×10+00 | |
CEC5 | Best | 1.80×10+03 | 3.78×10+03 | 2.04×10+05 | 3.55×10+05 | 2.03×10+03 | 3.76×10+05 |
Mean | 1.17×10+05 | 1.96×10+05 | 4.80×10+05 | 5.24×10+05 | 4.25×10+03 | 5.24×10+05 | |
Std | 7.97×10+04 | 1.39×10+05 | 1.03×10+05 | 6.45×10+04 | 4.58×10+03 | 1.55×10+05 | |
CEC6 | Best | 1.60×10+03 | 1.60×10+03 | 2.02×10+03 | 1.85×10+03 | 1.60×10+03 | 2.06×10+03 |
Mean | 1.83×10+03 | 1.95×10+03 | 2.33×10+03 | 2.26×10+03 | 1.88×10+03 | 2.34×10+03 | |
Std | 1.23×10+02 | 2.11×10+02 | 2.19×10+02 | 2.17×10+02 | 1.44×10+02 | 2.58×10+02 | |
CEC7 | Best | 2.12×10+03 | 2.12×10+03 | 3.19×10+04 | 1.67×10+04 | 2.12×10+03 | 2.99×10+04 |
Mean | 7.88×10+03 | 5.75×10+05 | 2.66×10+06 | 1.94×10+06 | 2.45×10+03 | 1.92×10+06 | |
Std | 8.17×10+03 | 2.87×10+06 | 2.67×10+06 | 1.84×10+06 | 3.86×10+02 | 3.27×10+06 | |
CEC8 | Best | 2.21×10+03 | 2.23×10+03 | 2.83×10+03 | 2.75×10+03 | 2.30×10+03 | 2.87×10+03 |
Mean | 2.31×10+03 | 2.39×10+03 | 3.19×10+03 | 3.20×10+03 | 2.30×10+03 | 3.33×10+03 | |
Std | 1.24×10+01 | 2.68×10+02 | 2.34×10+02 | 2.86×10+02 | 1.04×10+00 | 4.28×10+02 | |
CEC9 | Best | 2.42×10+03 | 2.50×10+03 | 2.73×10+03 | 2.82×10+03 | 2.50×10+03 | 2.83×10+03 |
Mean | 2.66×10+03 | 2.76×10+03 | 2.87×10+03 | 2.94×10+03 | 2.73×10+03 | 2.90×10+03 | |
Std | 1.46×10+02 | 1.09×10+02 | 5.54×10+01 | 6.07×10+01 | 9.95×10+01 | 8.32×10+01 | |
CEC10 | Best | 2.60×10+03 | 2.90×10+03 | 3.22×10+03 | 3.27×10+03 | 2.90×10+03 | 3.25×10+03 |
Mean | 2.93×10+03 | 2.97×10+03 | 3.45×10+03 | 3.51×10+03 | 2.91×10+03 | 3.47×10+03 | |
Std | 2.25×10+01 | 1.28×10+02 | 1.89×10+02 | 2.08×10+02 | 8.68×10+01 | 2.29×10+02 |
Algorithm | Optimal values for variables | Optimum weight | |||
x1 | x2 | x3 | x4 | ||
MRSA | 0.205739392 | 3.252967354 | 9.036552395 | 0.205732954 | 1.695257579 |
ROA [44] | 0.200077 | 3.365754 | 9.011182 | 0.206893 | 1.706447 |
GWO [8] | 0.205676 | 3.478377 | 9.03681 | 0.205778 | 1.72624 |
WOA [49] | 0.205396 | 3.484293 | 9.037426 | 0.206276 | 1.730499 |
RO [50] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
MPA [51] | 0.205728 | 3.470509 | 9.036624 | 0.20573 | 1.724853 |
MVO [52] | 0.205463 | 3.473193 | 9.044502 | 0.205695 | 1.72645 |
AOA [17] | 0.194475 | 2.57092 | 10 | 0.201827 | 1.7164 |
HHO [53] | 0.204039 | 3.531061 | 9.027463 | 0.206147 | 1.73199057 |
IHS [54] | 0.20573 | 3.47049 | 9.03662 | 0.2057 | 1.7248 |
RSA [34] | 0.203687 | 3.528467 | 9.004233 | 0.207241 | 1.735344 |
Algorithm | Optimal values for variables | Optimum cost | |||
Ts | Th | R | L | ||
MRSA | 0.758460965 | 0.377162354 | 41.10831839 | 189.3046068 | 5765.42006 |
SHO [55] | 0.77821 | 0.384889 | 40.31504 | 200 | 5885.5773 |
MPA [51] | 0.77816876 | 0.38464966 | 40.31962084 | 199.9999935 | 5885.3353 |
SMA [56] | 0.7931 | 0.3932 | 40.6711 | 196.2178 | 5994.1857 |
HPSO [57] | 0.8125 | 0.4375 | 42.0984 | 176.6366 | 6059.7143 |
GWO [8] | 0.8125 | 0.4345 | 42.089181 | 176.758731 | 6051.5639 |
DE [58] | 0.8125 | 0.4375 | 42.098411 | 176.63769 | 6059.7340 |
COOT [59] | 0.77817 | 0.384651 | 40.319618 | 200 | 5885.3487 |
AEO [60] | 0.8374205 | 0.413937 | 43.389597 | 161.268592 | 5994.5070 |
CSS [61] | 0.8125 | 0.4375 | 42.103624 | 176.572656 | 6059.0888 |
Algorithm | Optimal values for variables | Optimum Value | ||
D | d | n | ||
MRSA | 0.05 | 0.373434558 | 8.619033937 | 0.009913786 |
RSA [34] | 0.057814 | 0.58478 | 4.0167 | 0.01176 |
MVO [52] | 0.05251 | 0.37602 | 10.33513 | 0.01279 |
WOA [49] | 0.051207 | 0.345215 | 12.004032 | 0.0126763 |
CSCA [52] | 0.051609 | 0.354714 | 11.410831 | 0.0126702 |
AOA [17] | 0.05 | 0.349809 | 11.8637 | 0.012124 |
RO [50] | 0.05137 | 0.349096 | 11.76279 | 0.0126788 |
PFA [63] | 0.051726 | 0.357629 | 11.235724 | 0.012665 |
Algorithm | Optimal values for variables | Optimal weight |
||||||
x1 | x2 | x3 | x4 | x5 | x6 | x7 | ||
MRSA | 3.476415091 | 0.7 | 17 | 7.3 | 7.8 | 3.348630145 | 5.276783057 | 2988.271359 |
RSA [34] | 3.50279 | 0.7 | 17 | 7.30812 | 7.74715 | 3.35067 | 5.28675 | 2996.5157 |
hHHO-SCA [64] | 3.506119 | 0.7 | 17 | 7.3 | 7.99141 | 3.452569 | 5.286749 | 3029.873076 |
MROA [65] | 3.497571 | 0.7 | 17 | 7.3 | 7.8 | 3.350057265 | 5.28553957 | 2995.437447 |
AAO [66] | 3.499 | 0.6999 | 17 | 7.3 | 7.8 | 3.3502 | 5.2872 | 2996.783 |
APSO [67] | 3.501313 | 0.7 | 18 | 8.127814 | 8.042121 | 3.352446 | 5.287076 | 3187.630486 |
MFO [68] | 3.497455 | 0.7 | 17 | 7.82775 | 7.712457 | 3.351787 | 5.286352 | 2998.94083 |
WSA [69] | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.350215 | 5.286683 | 2996.348225 |
CS [70] | 3.5015 | 0.7 | 17 | 7.605 | 7.8181 | 3.352 | 5.2875 | 3000.981 |
PDO [71] | 3.497777468 | 0.7 | 17.00002761 | 7.300100314 | 7.800675175 | 3.351095015 | 5.296455378 | 2993.7 |
DMOA [72] | 3.497599093 | 0.7 | 17 | 7.3 | 7.713534977 | 3.350055806 | 5.285631197 | 3010.4 |
Algorithm | Optimal values for variables | Optimal cost | |||
x1 | x2 | x3 | x4 | ||
MRSA | 57.69230749 | 34.14762033 | 57.69230747 | 1.05 | 6.842958018 |
PDO [71] | 48.31191 | 54.78270401 | 61.92983 | 0.424913 | 6.9821 |
FA [73] | 37.1179498 | 33.035021 | 37.1939476 | 0.7306255 | 7.21 |
LF-FA [73] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 6.95 |
LS-LF-FA [73] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 6.86 |
AOA [72] | 57.69277 | 34.13296 | 57.55294 | 1.05007 | 481.97 |
BBO [74] | 57.69231 | 34.14762 | 57.69231 | 1.05 | 2.79 × 1012 |
Algorithm | Optimal values for variables | Optimum weight | ||||
x1 | x2 | x3 | x4 | x5 | ||
MRSA | 69.99999072 | 90 | 1 | 635.6851083 | 2 | 0.235242553 |
TLBO [38] | 70 | 90 | 1 | 810 | 3 | 0.313656611 |
WCA [75] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
HHO [53] | 70 | 90 | 1 | 1000 | 2.3128 | 0.259768993 |
CMVO [76] | 70 | 90 | 1 | 910 | 3 | 0.313656 |
QSMFO [77] | 80 | 101.3002 | 3 | 600 | 9 | 0.2902 |
RSA [34] | 70.0347 | 90.0349 | 1 | 801.7285 | 2.974 | 0.31176 |