We examined the role of top exporters in sub-national export specialization using Spanish firm-level export data at the province (NUTS 3) level. Our results show that, on average, 28% of aggregate exports in each province are in sectors where the top exporter determines the revealed comparative advantage (RCA). Moreover, provinces with sectors where the top exporter determines the RCA exhibit a more unstable pattern of export specialization over time. This result suggests that the characteristics and strategies of large firms may affect regional specialization patterns.
Citation: Juan De Lucio, Raúl Mínguez, Asier Minondo, Francisco Requena. Top exporters and regional export specialization[J]. National Accounting Review, 2024, 6(4): 564-572. doi: 10.3934/NAR.2024026
[1] | Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699 |
[2] | Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001 |
[3] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[4] | Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243 |
[5] | András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43 |
[6] | Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i |
[7] | Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315 |
[8] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless -dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[9] | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647 |
[10] | Maria Teresa Chiri, Xiaoqian Gong, Benedetto Piccoli . Mean-field limit of a hybrid system for multi-lane car-truck traffic. Networks and Heterogeneous Media, 2023, 18(2): 723-752. doi: 10.3934/nhm.2023031 |
We examined the role of top exporters in sub-national export specialization using Spanish firm-level export data at the province (NUTS 3) level. Our results show that, on average, 28% of aggregate exports in each province are in sectors where the top exporter determines the revealed comparative advantage (RCA). Moreover, provinces with sectors where the top exporter determines the RCA exhibit a more unstable pattern of export specialization over time. This result suggests that the characteristics and strategies of large firms may affect regional specialization patterns.
[1] |
Bernard AB, Jensen JB, Redding SJ, et al. (2009) The margins of US trade. Am Econ Rev 99: 487–493. https://doi.org/10.1257/aer.99.2.487 doi: 10.1257/aer.99.2.487
![]() |
[2] |
de Lucio J, Mínguez R, Minondo A, et al. (2017) The granularity of Spanish exports. SERIEs 8:225–259. https://doi.org/10.1007/s13209-017-0157-x doi: 10.1007/s13209-017-0157-x
![]() |
[3] |
de Lucio J, Mínguez R, Minondo A, et al. (2023) The importance of the top exporter in regional exports. Investig Reg 57: 137–143. https://doi.org/10.38191/iirr-jorr.23.021 doi: 10.38191/iirr-jorr.23.021
![]() |
[4] |
di Giovanni JD, Levchenko AA (2012) Country Size, International Trade, and Aggregate Fluctuations in Granular Economies. J Polit Econ 120: 1083–1132. https://doi.org/10.1086/669161 doi: 10.1086/669161
![]() |
[5] |
Freund C, Pierola MD (2015) Export Superstars. Rev Econ Stat 97: 1023–32. https://doi.org/10.1162/REST_a_00511 doi: 10.1162/REST_a_00511
![]() |
[6] |
Gabaix X (2011) The Granular Origins of Aggregate Fluctuations. Econometrica 79: 733–772. https://doi.org/10.3982/ECTA8769 doi: 10.3982/ECTA8769
![]() |
[7] |
Laursen K (2015) Revealed comparative advantage and the alternatives as measures of international specialization. Euroasian Bus Rev 5: 99–115. https://doi.org/10.1007/s40821-015-0017-1 doi: 10.1007/s40821-015-0017-1
![]() |
![]() |
![]() |
1. | Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303 | |
2. | Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303 | |
3. | Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655 | |
4. | M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7 | |
5. | Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798 | |
6. | Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126 | |
7. | Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559 | |
8. | Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8 | |
9. | Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028 | |
10. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140 | |
11. | Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1 | |
12. | Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774 | |
13. | Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086 | |
14. | Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3 | |
15. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y | |
16. | Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5 | |
17. | A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933 | |
18. | Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5 | |
19. | Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111 | |
20. | Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029 | |
21. | Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2 | |
22. | Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629 | |
23. | Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280 | |
24. | Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172 | |
25. | Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871 | |
26. | Giacomo Albi, Sara Bicego, Michael Herty, Yuyang Huang, Dante Kalise, Chiara Segala, 2025, Chapter 2, 978-3-031-85255-8, 29, 10.1007/978-3-031-85256-5_2 | |
27. | Giacomo Albi, Sara Bicego, Dante Kalise, Control of high-dimensional collective dynamics by deep neural feedback laws and kinetic modelling, 2025, 539, 00219991, 114229, 10.1016/j.jcp.2025.114229 |