Commentary Topical Sections

Case fatalities due to COVID-19: Why there is a difference between the East and West?

  • Received: 11 January 2021 Accepted: 02 February 2021 Published: 07 February 2021
  • COVID-19 has caused significant morbidity and mortality around the world. However, it has been noticed that case-fatality rates have been significantly higher in Europe and North America compared to the Asia, Middle East and Africa. This could be due to several factors which include average age of the population, testing and tracing facilities, social distancing measures and difference in immunogenic response to SARS-COV-2. In this report, we have discussed the factors which may affect a population to develop herd immunity against COVID-19. We have hypothesized here that frequent prior exposure to other coronaviruses in Asian population might impart partial immunity to COVID-19. This may be the reason for significant lower number of case fatalities seen in this region compared to the west. We, therefore, propose molecular immunological studies to correlate prior exposure to coronaviruses with disease severity. This will help us to develop therapeutic targets to treat severe infection with COVID-19.

    Citation: Ahmed Yaqinuddin, Ayesha Rahman Ambia, Tasnim Atef Elgazzar. Case fatalities due to COVID-19: Why there is a difference between the East and West?[J]. AIMS Allergy and Immunology, 2021, 5(1): 56-63. doi: 10.3934/Allergy.2021005

    Related Papers:

    [1] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [2] Vivek Sreejithkumar, Kia Ghods, Tharusha Bandara, Maia Martcheva, Necibe Tuncer . Modeling the interplay between albumin-globulin metabolism and HIV infection. Mathematical Biosciences and Engineering, 2023, 20(11): 19527-19552. doi: 10.3934/mbe.2023865
    [3] Helen Moore, Weiqing Gu . A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences and Engineering, 2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363
    [4] B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223
    [5] Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815
    [6] Miguel Ángel Rodríguez-Parra, Cruz Vargas-De-León, Flaviano Godinez-Jaimes, Celia Martinez-Lázaro . Bayesian estimation of parameters in viral dynamics models with antiviral effect of interferons in a cell culture. Mathematical Biosciences and Engineering, 2023, 20(6): 11033-11062. doi: 10.3934/mbe.2023488
    [7] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [8] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [9] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [10] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
  • COVID-19 has caused significant morbidity and mortality around the world. However, it has been noticed that case-fatality rates have been significantly higher in Europe and North America compared to the Asia, Middle East and Africa. This could be due to several factors which include average age of the population, testing and tracing facilities, social distancing measures and difference in immunogenic response to SARS-COV-2. In this report, we have discussed the factors which may affect a population to develop herd immunity against COVID-19. We have hypothesized here that frequent prior exposure to other coronaviruses in Asian population might impart partial immunity to COVID-19. This may be the reason for significant lower number of case fatalities seen in this region compared to the west. We, therefore, propose molecular immunological studies to correlate prior exposure to coronaviruses with disease severity. This will help us to develop therapeutic targets to treat severe infection with COVID-19.





    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    Authors contribution



    AY: conceptualization, literature review, writing, review; AA: literature review, writing; TE: literature review, writing.

    [1] Delamater PL, Street EJ, Leslie TF, et al. (2019) Complexity of the basic reproduction number (R0). Emerg Infect Dis 25: 1-4. doi: 10.3201/eid2501.171901
    [2] Randolph HE, Barreiro LB (2020) Herd immunity: understanding COVID-19. Immunity 52: 737-741. doi: 10.1016/j.immuni.2020.04.012
    [3] Sarmadi M, Marufi N, Moghaddam VK (2020) Association of COVID-19 global distribution and environmental and demographic factors: An updated three-month study. Environ Res 188: 109748. doi: 10.1016/j.envres.2020.109748
    [4] Jin Y, Yang H, Ji W, et al. (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12: 372. doi: 10.3390/v12040372
    [5] Tu H, Tu S, Gao S, et al. (2020) Current epidemiological and clinical features of COVID-19; a global perspective from China. J Infect 81: 1-9. doi: 10.1016/j.jinf.2020.04.011
    [6] Shi Y, Wang G, Cai XP, et al. (2020) An overview of COVID-19. J Zhejiang Univ Sci B 21: 343-360. doi: 10.1631/jzus.B2000083
    [7] Algaissi AA, Alharbi NK, Hassanain M, et al. (2020) Preparedness and response to COVID-19 in Saudi Arabia: Building on MERS experience. J Infect Public Health 13: 834-838. doi: 10.1016/j.jiph.2020.04.016
    [8] COVID CDC, Team R (2020) Geographic differences in COVID-19 cases, deaths, and incidence—United States, February 12–April 7, 2020. MMWR Morb Mortal Wkly Rep 69: 465-471. doi: 10.15585/mmwr.mm6915e4
    [9] Dhama K, Khan S, Tiwari R, et al. (2020) Coronavirus disease 2019-COVID-19. Clin Microbiol Rev 33: e00028-20. doi: 10.1128/CMR.00028-20
    [10] Amariles P, Granados J, Ceballos M, et al. (2021) COVID-19 in Colombia endpoints. Are we different, like Europe? Res Social Adm Pharm 17: 2036-2039. doi: 10.1016/j.sapharm.2020.03.013
    [11] Shokoohi M, Osooli M, Stranges S (2020) COVID-19 pandemic: What can the West learn from the East? Int J Health Policy Manag 9: 436.
    [12] Coccia M (2020) Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci Total Environ 729: 138474. doi: 10.1016/j.scitotenv.2020.138474
    [13] Chersich MF, Gray G, Fairlie L, et al. (2020) COVID-19 in Africa: care and protection for frontline healthcare workers. Glob Health 16: 46. doi: 10.1186/s12992-020-00574-3
    [14] Rosenthal PJ, Breman JG, Djimde AA, et al. (2020) COVID-19: Shining the light on Africa. Am J Trop Med Hyg 102: 1145-1148. doi: 10.4269/ajtmh.20-0380
    [15] Alwahaibi N, Al-Maskari M, Al-Dhahli B, et al. (2020) A review of the prevalence of COVID-19 in the Arab world. J Infect Dev Ctries 14: 1238-1245. doi: 10.3855/jidc.13270
    [16] Khanna RC, Cicinelli MV, Gilbert SS, et al. (2020) COVID-19 pandemic: Lessons learned and future directions. Indian J Ophthalmol 68: 703-710. doi: 10.4103/ijo.IJO_843_20
    [17] Smith DR (2019) Herd Immunity. Vet Clin North Am Food Anim Pract 35: 593-604. doi: 10.1016/j.cvfa.2019.07.001
    [18] Fine P, Eames K, Heymann DL (2011) “Herd immunity”: a rough guide. Clin Infect Dis 52: 911-916. doi: 10.1093/cid/cir007
    [19] Meyer B, Drosten C, Muller MA (2014) Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res 194: 175-183. doi: 10.1016/j.virusres.2014.03.018
    [20] Hu Z, Song C, Xu C, et al. (2020) Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 63: 706-711. doi: 10.1007/s11427-020-1661-4
    [21] Lipsitch M, Grad YH, Sette A, et al. (2020) Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol 20: 709-713. doi: 10.1038/s41577-020-00460-4
    [22] Grifoni A, Weiskopf D, Ramirez SI, et al. (2020) Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181: 1489-1501. doi: 10.1016/j.cell.2020.05.015
    [23] Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. (2020) Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183: 158-168. doi: 10.1016/j.cell.2020.08.017
    [24] Shrock E, Fujimura E, Kula T, et al. (2020) Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370: eabd4250. doi: 10.1126/science.abd4250
    [25] Fontanet A, Cauchemez S (2020) COVID-19 herd immunity: where are we? Nat Rev Immunol 20: 583-584. doi: 10.1038/s41577-020-00451-5
    [26] Yaqinuddin A (2020) Cross-immunity between respiratory coronaviruses may limit COVID-19 fatalities. Med Hypotheses 144: 110049. doi: 10.1016/j.mehy.2020.110049
    [27] Britton T, Ball F, Trapman P (2020) A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science 369: 846-849. doi: 10.1126/science.abc6810
    [28] Gomes MGM, Corder RM, King JG, et al. (2020) Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. medRxiv In press.
  • This article has been cited by:

    1. A.N. Laws, A. Joern, Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie, 2017, 107, 0007-4853, 261, 10.1017/S0007485316000894
    2. Julia L. Moore, Justin V. Remais, Developmental Models for Estimating Ecological Responses to Environmental Variability: Structural, Parametric, and Experimental Issues, 2014, 62, 0001-5342, 69, 10.1007/s10441-014-9209-9
    3. J. David Logan, William Wolesensky, An index to measure the effects of temperature change on trophic interactions, 2007, 246, 00225193, 366, 10.1016/j.jtbi.2006.11.014
    4. J. David Logan, Phenologically-Structured Predator-Prey Dynamics with Temperature Dependence, 2008, 70, 0092-8240, 1, 10.1007/s11538-007-9237-6
    5. J. DAVID LOGAN, WILLIAM WOLESENSKY, ACCOUNTING FOR TEMPERATURE IN PREDATOR FUNCTIONAL RESPONSES, 2008, 20, 08908575, 549, 10.1111/j.1939-7445.2007.tb00220.x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3065) PDF downloads(136) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog