Review Special Issues

Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview

  • Received: 26 March 2016 Accepted: 13 June 2016 Published: 20 June 2016
  • Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.

    Citation: Yenisetti SC, Muralidhara. Beneficial Role of Coffee and Caffeine in Neurodegenerative Diseases: A Minireview[J]. AIMS Public Health, 2016, 3(2): 407-422. doi: 10.3934/publichealth.2016.2.407

    Related Papers:

  • Coffee is among the most widespread and healthiest beverages in the world. Coffee typically contains more caffeine than most other beverages, and is widely and frequently consumed. Thus, it contributes significantly to the overall caffeine consumption within the general population, particularly in adults. Controversies regarding its benefits and risks still exist as reliable evidence is becoming available supporting its health-promoting potential. Several lines of evidence have highlighted the beneficial effects towards several disease conditions including Type II diabetes, hepatitis C virus, hepatocellular carcinoma, nonalcoholic fatty liver disease and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS). The health-promoting properties of coffee are largely attributed to its rich phytochemistry, including caffeine, chlorogenic acid, caffeic acid, and hydroxy hydroquinone. In this minireview, an attempt has been made to discuss the various evidences which are mainly derived from animal and cell models. Various mechanisms chiefly responsible for the beneficial effects of caffeine have also been briefly outlined. A short note on the undesirable effects of excessive coffee intakes is also presented.


    加载中
    [1] Frary CD, Johnson RK, Wang MQ. (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105(1):110-3.
    [2] Mitchell, D C, Knight, CA, Hockenberry J, Teplansky R, Hartman TJ. (2014) Beverage caffeine intakes in the U.S. Food Chem Toxicol 63: 136-42. doi: 10.1016/j.fct.2013.10.042
    [3] Heckman, M.A., Weil, J., Gonzalez de Mejia, E. (2010) Caffeine (1,3,7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75: R77-R87. doi: 10.1111/j.1750-3841.2010.01561.x
    [4] U.S. Food and Drug Administration. Letter from Jeanne Ireland, Assistant Commissioner for Legislation, FDA, to Senator Richard J. Durbin, August 10, 2012. Available from: http://www.durbin.senate.gov/public/index.cfm/files/serve?File_id=17eadaa1-85e7-4ceb-a827-be244fbddfa5.
    [5] Bambha, K., Wilson, L., Unalp, A., Loomba, R.,Neuschwander-Tetri, B., Brunt, E. et al. (2014) Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. Liver Int 34: 1250-8.
    [6] Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. (2012) Association of coffee drinking with total and cause-specific mortality. N Engl J Med 366: 1891-904. doi: 10.1056/NEJMoa1112010
    [7] Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA. (2012) Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 55(2): 429-36.
    [8] Anty, R., Marjoux, S., Iannelli, A., Patouraux, S., Schneck, A., Bonnafous, S. et al. (2012) Regular coffee but not espresso drinking is protective against fibrosis in a cohort mainly composed of morbidly obese European women with NAFLD undergoing bariatric surgery. J Hepatol 57: 1090-6. doi: 10.1016/j.jhep.2012.07.014
    [9] Birerdinc, A., Stepanova, M., Pawloski, L. and Younossi, Z. (2012) Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 35: 76-82.
    [10] Catalano, D., Martines, G., Tonzuso, A., Pirri, C., Trovato, F. and Trovato, G. (2010) Protective role of coffee in non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci 55: 3200-6.
    [11] Gutierrez-Grobe, Y., Chavez-Tapia, N., Sanchez- Valle, V., Gavilanes-Espinar, J., Ponciano-Rodriguez, G., Uribe, M. et al. (2012) High coffee intake is associated with lower grade nonalcoholic fatty liver disease: the role of peripheral antioxidant activity. Ann Hepatol 11: 350-5.
    [12] Wilson, K., Kasperzyk, J., Rider, J., Kenfield, S.,van Dam, R., Stampfer, M. et al. (2011) Coffee consumption and prostate cancer risk and progression in the Health Professionals Follow-up Study. J Natl Cancer Inst 103: 876-84.
    [13] Liu, R., Guo, X., Park, Y., Huang, X., Sinha, R.,Freedman, N. et al. (2012) Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol 175: 1200-7.
    [14] Nehlig A. (2016) Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Pract Neurol 16(2): 89-95.
    [15] Beghi, E., Pupillo, E., Messina, P., Giussani, G., Chio, A., et al. (2011) Coffee and amyotrophic lateral sclerosis: a possible preventive role. Am J Epidemiol 174: 1002-8.
    [16] Hu, G., Bidel, S., Jousilahti, P., Antikainen, R., Tuomilehto, J. (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22: 2242-8. doi: 10.1002/mds.21706
    [17] Vila-Luna, S., Cabrera-Isidoro, S., Vila-Luna, L., Juarez-Diaz, I., Bata- Garcia, J.L., et al. (2012) Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 202: 384-95. doi: 10.1016/j.neuroscience.2011.11.053
    [18] Popat, RA., Van Den Eeden, SK., Tanner, CM., Kamel, F., Umbach, DM., Marder, K., et al. (2011) Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson's disease. Eur J Neurol 18: 756-65.
    [19] Fisone, G., Borgkvist, A., Usiello, A. (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61: 857-72. doi: 10.1007/s00018-003-3269-3
    [20] Lee, K.W., Chen, W., Junn, E., Im, J.Y., Grosso, H., et al. (2011) Enhanced phosphatase activity attenuates α-synucleinopathy in a mouse model. J Neurosci 31: 6963-71. doi: 10.1523/JNEUROSCI.6513-10.2011
    [21] Basurto-Islasa G, Blancharda, J, Tunga, YC. Fernandezb, JR Voronkov M, Stock M, Zhang S, Stock, JB, Iqbala K. (2014) Therapeutic benefits of a component of coffee in a rat model of Alzheimer disease. Neurobiol Aging 35(12): 2701-12.
    [22] Teraoka, M., Nakaso, K., Kusumoto, C., Katano, S., Tajima, N., et al. (2012) Cytoprotective effect of chlorogenic acid against α-synuclein Related toxicity in catecholaminergic PC12 cells. J Clin Biochem Nutr 51(2): 122-7.
    [23] Ladewig, T., Kloppenburg, P., Lalley, P.M., et al. (2003) Spatial profiles of store-dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse. J Physiol 547: 775-87. doi: 10.1113/jphysiol.2002.033605
    [24] Cao, C., Cirrito, J.R., Lin, X., Wang, L., Verges, D.K., et al. (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17: 681-97.
    [25] Arendash GW, Cao C. (2010) Caffeine and coffee as therapeutics against Alzheimer's disease. J Alzheimers Dis 20 Suppl 1(1): 117-26.
    [26] Chen, X., Lan, X., Roche, I., Liu, R., Geiger, J.D. (2008) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107: 1147-57.
    [27] Goncalves, N., Simoes, A.T., Cunha, R.A., de Almeida, L.P. (2013) Caffeine and adenosine A2A receptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. Ann Neurol 73: 655-66. doi: 10.1002/ana.23866
    [28] Zhang, X., Wu, M., Lu, F., Luo, N., He, Z.P., Yang, H. (2014) Involvement of alpha7 nAChR Signaling Cascade in Epigallocatechin Gallate Suppression of beta-Amyloid-Induced Apoptotic Cortical Neuronal Insults. Mol Neurobiol 49(1): 66-77.
    [29] Han, K., Jia, N., Li, J., Yang, L., Min, L.Q. (2013) Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease. Mol Med Rep 8: 737-40.
    [30] Wostyn P, Van Dam D, Audenaert K, De Deyn PP. (2011) Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease. Int J Alzheimers Dis 2011:617420.
    [31] Leite, M.R., Wilhelm, E.A., Jesse, C.R., Brandao, R., Nogueira, C.W. (2011) Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats. Exp Gerontol 46: 309-15. doi: 10.1016/j.exger.2010.11.034
    [32] Brothers, H.M., Marchalant, Y., Wenk, G.L. (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflammation. Neurosci Lett 480: 97-100. doi: 10.1016/j.neulet.2010.06.013
    [33] Shin, H.J., Ryu, J.H., Kim, S.T., Zuo, Z., Do, S.H. (2013) Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes. Toxicol Lett 217: 143-8. doi: 10.1016/j.toxlet.2012.12.007
    [34] Gołembiowska, K., Dziubina, A. (2012) The effect of adenosine A2A receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2. Neurotox Res 22: 150-7. doi: 10.1007/s12640-012-9316-9
    [35] Leon, D., Albasanz, J.L., Ruiz, M.A., Iglesias, I., Martin, M. (2005) Effect of chronic gestational treatment with caffeine or theophylline on Group I metabotropic glutamate receptors in maternal and fetal brain. J Neurochem 94: 440-51. doi: 10.1111/j.1471-4159.2005.03211.x
    [36] Iglesias, I., Leon, D., Ruiz, M.A., Albasanz, J.L., Martin, M. (2006) Chronic intake of caffeine during gestation down regulates metabotropic glutamate receptors in maternal and fetal rat heart. Amino Acids 30: 257-66. doi: 10.1007/s00726-005-0293-7
    [37] Ravi, D., Muniyappa, H., Das, K.C. (2008) Caffeine inhibits UVmediated NF-kappaB activation in A2058 melanoma cells: an ATMPKC delta-p38 MAPK-dependent mechanism. Mol Cell Biochem 308: 193-200. doi: 10.1007/s11010-007-9628-x
    [38] Wang, L., Dai, W., Lu, L. (2005) Ultraviolet irradiation-induced K+ channel activity involving p53 activation in corneal epithelial cells. Oncogene 24: 3020-7. doi: 10.1038/sj.onc.1208547
    [39] Miwa, S., Sugimoto, N., Yamamoto, N., Shirai, T., Nishida, H., et al. (2012) Caffeine induces apoptosis of osteosarcoma cells by inhibiting AKT/mTOR/S6K, NF-κB and MAPK pathways. Anticancer Res 32: 3643-9.
    [40] Zeitlin R, Patel S, Burgess S, Arendash GW, Echeverria V. (2011) Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer's transgenic mice. Brain Res 1417: 127-36. doi: 10.1016/j.brainres.2011.08.036
    [41] Liu, W.H., Chang, L.S. (2010) Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway. J Cell Physiol 224: 775-85. doi: 10.1002/jcp.22180
    [42] Kang, C.H., Jayasooriya, R.G., Dilshara, M.G., Choi, Y.H., Jeong, Y.K., et al. (2012) Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol 50: 4270-6. doi: 10.1016/j.fct.2012.08.041
    [43] Lee, Kang-Woo., Im, Joo-Young., Woo, Jong-Mi., Grosso, H., Kim, Yoon-Seong., Cristovao, AC. (2013) Neuroprotective and Anti-inflammatory Properties of a Coffee Component in the MPTP Model of Parkinson’s Disease. Neurotherapeutics 10: 143-53. doi: 10.1007/s13311-012-0165-2
    [44] Feve, A.P. (2012) Tyrosine Hydroxylase and Parkinsons Disease. CNS Neurol Disord Drug Targets 11: 450-5.
    [45] Zhu, Y., Zhang J., Zeng Y. (2012) Overview of Tyrosine Hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11: 350-8. doi: 10.2174/187152712800792901
    [46] Sonsalla, P.K., Wong, L.Y., Harris, S.L., Richardson, J.R., Khobahy, I., et al. (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 234: 482-7. doi: 10.1016/j.expneurol.2012.01.022
    [47] McKenzie, S., Marley, P.D. (2002) Caffeine stimulates Ca2+ entry through store-operated channels to activate tyrosine hydroxylase in bovine chromaffin cells. Eur J Neurosci 15: 1485-92. doi: 10.1046/j.1460-9568.2002.01990.x
    [48] Datta, U., Noailles, P.A., Rodriguez, M., Kraft, M., Zhang, Y., Angulo, J.A. (1996) Accumulation of tyrosine hydroxylase messenger RNA molecules in the rat mesencephalon by chronic caffeine treatment. Neurosci Lett 220: 77-80. doi: 10.1016/S0304-3940(96)13213-4
    [49] Kachroo, A., Irizarry, M.C., Schwarzschild, M.A. (2010) Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 223: 657-61. doi: 10.1016/j.expneurol.2010.02.007
    [50] Costa, M.S., Botton, P.H., Mioranzza, S., Ardais, A.P., Moreira, J.D., et al. (2008a) Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus. Neurochem Int 53: 89-94.
    [51] Costa, M.S., Botton, P.H., Mioranzza, S., Souza, D.O., Porciuncula, L.O. (2008b) Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tyrosine kinase receptor (TrkB) content in mice. Neuroscience 153: 1071-8.
    [52] Sallaberry, C., Nunes, F., Costa, M.S., Fioreze, G.T., Ardais, A.P., et al. (2013) Chronic caffeine prevents changes in inhibitory avoidance memory and hippocampal BDNF immunocontent in middle-aged rats. Neuropharmacology 64: 153-9.
    [53] Bairam, A., Kinkead, R., Lajeunesse, Y., Joseph, V. (2010) Neonatal caffeine treatment does not induce long-term consequences on TrkB receptors or BDNF expression in chemosensory organs of adult rats. Neurosci Lett 468: 292-6. doi: 10.1016/j.neulet.2009.11.015
    [54] Alzoubi KH, Srivareerat M, Aleisa Am, Alkadhi KA. (2013) chronic caffeine treatment prevents stress-induced LTP impairment: the critical role of Phosphorylated CaMKII and BDNF. J Mol Neurosci 49: 11-20. doi: 10.1007/s12031-012-9836-z
    [55] Moy, G.A., McNay, E.C. (2013) Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol Behav 109: 69-74. doi: 10.1016/j.physbeh.2012.11.008
    [56] Krishnakumar, R., Kraus, W.L. (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39: 8-24. doi: 10.1016/j.molcel.2010.06.017
    [57] Geraets, L., Moonen, H.J., Wouters, E.F., Bast, A., Hageman, G.J. (2006) Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations.Biochem. Pharmacol 72: 902-10. doi: 10.1016/j.bcp.2006.06.023
    [58] Cleaver, J.E., Banda, M.J., Troll, W., Borek, C. (1986) Some protease inhibitors are also inhibitors of poly(ADP-ribose) polymerase. Carcinogenesis 7: 323-5.
    [59] Gu, J.W., Brady, A.L., Anand, V., Moore, M.C., Kelly, W.C., Adair, T.H. (1999) Adenosine upregulates VEGF expression in cultured myocardial vascular smooth muscle cells. Am J Physiol 277: H595-H602.
    [60] Merighi, S., Benini, A., Mirandola, P., Gessi, S., Varani, K., et al. (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72: 19-31. doi: 10.1016/j.bcp.2006.03.020
    [61] Grant, M.B., Tarnuzzer, R.W., Caballero, S., Ozeck, M.J., Davis, M.I., et al. (1999) Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells. Circ Res 85: 699-706. doi: 10.1161/01.RES.85.8.699
    [62] Merighi, S., Benini, A., Mirandola, P., Gessi, S., Varani, K., et al. (2007) Caffeine inhibits adenosine-induced accumulation of hypoxiainducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72: 395-406. doi: 10.1124/mol.106.032920
    [63] Mukhopadhyay, D., Akbarali, H. I. (1996) Depletion of (Ca2+) inhibits hypoxia-induced vascular permeability factor (vascular endothelial growth factor) gene expression. Biochem Biophys Res Commun 229: 733-8. doi: 10.1006/bbrc.1996.1873
    [64] Jafari, M., Rabbani, A. (2004) Studies on the mechanism of caffeine action in alveolar macrophages: caffeine elevates cyclic adenosine monophosphate level and prostaglandin synthesis. Metabolism 53: 687-92. doi: 10.1016/j.metabol.2003.08.004
    [65] Fiebich, B.L., Lieb, K., Hull, M., Aicher, B., van Ryn, J., et al. (2000) Effects of caffeine and paracetamol alone or in combination withacetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 39: 2205-13. doi: 10.1016/S0028-3908(00)00045-9
    [66] Seevaratnam, R., Raha, S., Tarnopolsky, M.A., et al. (2009) Coffee increases antioxidant enzyme capacity in the brain of male G93A mice, an animal model of amyotrophic lateral sclerosis (ALS) (abstract). Exp Biol 23: 109.6.
    [67] Zeidán-Chuliá F, Gelain DP, Kolling EA, Rybarczyk-Filho JL, Ambrosi P, et al. (2013) Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev 2013(6): 61-2.
    [68] Rathod, M.A., Patel, D., Das, A., Tipparaju, S.R., Shinde, S.S., Anderson, R.F. (2013) Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee: phenolics and caffeine metabolites. Free Radic Res 47: 480-7. doi: 10.3109/10715762.2013.788167
    [69] Silverberg, J.I., Patel, M., Brody, N., Jagdeo, J. (2012) Caffeine protects human skin fibroblasts from acute reactive oxygen species-induced necrosis. J Drugs Dermatol 11: 1342-6.
    [70] Mercer, J.R., Gray, K., Figg, N., Kumar, S., Bennett, M.R. (2012) The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE-/- mice. Arterioscler Thromb Vasc Biol 32: 2461-7. doi: 10.1161/ATVBAHA.112.251322
    [71] Kim, J., Lee, S., Shim, J., Kim, H.W., Kim, J., et al. (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem Int 60: 466-74. doi: 10.1016/j.neuint.2012.02.004
    [72] Shukitt-Hale B, Miller MG, Chu YF, Lyle BJ, Joseph JA. (2013) Coffee, but not caffeine, has positive effects on cognition and psychomotor behavior in aging. Age 35(6): 2183-92.
    [73] Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., Feeley, M. (2003) Effects of caffeine on human health. Food Addit Contam 20: 1-30.
    [74] Mesas, A.E., Leon-Munoz, L.M., Rodriguez-Artalejo, F., Lopez-Garcia, E. (2011) The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr 94: 1113-26. doi: 10.3945/ajcn.111.016667
    [75] Brent, R.L., Christian, M.S., Diener, R.M. (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92: 152-87. doi: 10.1002/bdrb.20288
    [76] Peck, J.D., Leviton, A., Cowan, L.D. (2010) A review of the epidemiologic evidence concerning the reproductive health effects of caffeine consumption: a 2000–2009 update. Food Chem Toxicol 48: 2549-76. doi: 10.1016/j.fct.2010.06.019
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7571) PDF downloads(1434) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog