-
AIMS Public Health , 2015, 2(2): 183-193. doi: 10.3934/publichealth.2015.2.183
Review Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Why Does the Molecular Structure of Broadly Neutralizing Monoclonal Antibodies Isolated from Individuals Infected with HIV-1 not Inform the Rational Design of an HIV-1 Vaccine?
CNRS, UMR7242 - Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, Illkirch 67400, France
Received date: , Accepted date: , Published date:
Special Issues: Overcoming the barriers that impede HIV vaccine development and testing
References
1. Esparza J (2013) What has 30 years of HIV research taught us? Vaccines 1: 513-526.
2. Van Regenmortel MHV, Andrieu J-M, Dimitrov DS, et al. (2014) Paradigm Changes and the Future of HIV Vaccine Research: A Summary of a Workshop Held in Baltimore on 20 November 2013. J AIDS Clin Res 5: 3.
3. Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2: 706-713.
4. Van Regenmortel MHV (2014) An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from developing an effective HIV-1 vaccine. Front Immunol 5: 593. doi: 10.3389/fimmun.1014.00593.
5. Dimitrov DS (2010) Therapeutic antibodies, vaccines and antibodyomes. MAbs 2: 347-356.
6. Van Regenmortel MHV (2012) Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 3: 194.
7. Richards FF, Konigsberg WH, Rosenstein RW, et al. (1975) On the specificity of antibodies. Science 187: 130-137.
8. Van Regenmortel MHV (2014) Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 27: 627-639.
9. Vijh-Warrier S, Pinter A, Honnen WJ, et al. (1996) Synergistic neutralization of human immunodeficiency virus type 1 by a chimpanzee monoclonal antibody against the V2 domain of gp120 in combination with monoclonal antibodies against the V3 loop and the CD4-binding site. J Virol 70: 4466-4475.
10. Li A, Katinger H, Posner MR, et al. (1998) Synergistic neutralization of simian-human immunodeficiency virus SHIV-vpu+ by triple and quadruple combinations of human monoclonal antibodies and high-titer anti-human immunodeficiency virus type 1 immunoglobulins. J Virol 72: 3235-3240.
11. Mascola JR, Louder MK, VanCott TC, et al. (1997) Potent and synergistic neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12. J Virol 71: 7198-7206.
12. Li A, Baba TW, Sodroski J, et al. (1997) Synergistic neutralization of a chimeric SIV/HIV type 1 virus with combinations of human anti-HIV type 1 envelope monoclonal antibodies or hyperimmune globulins. AIDS Res Hum Retroviruses 13: 647-656.
13. Mascola JR, Haynes BF (2013) HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev 254: 225-244.
14. Nabel GJ, Kwong PD, Mascola JR (2011) Progress in the rational design of an AIDS vaccine. Phil Trans Roy Soc London B Biol Sci 366: 2759-2765.
15. Schiller J, Chackerian B (2014) Why HIV virions have low numbers of envelope spikes: implications for vaccine development. PloS Pathog 10: e1004254.
16. Wardemann H, Yurasov S, Schaefer A, et al. (2003) Predominant autoantibody production by early human B cell precursors. Science 301: 1374-1377.
17. Verkoczy L, Diaz M (2014) Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 9: 224-234.
18. Poignard P, Moulard M, Golez E, et al. (2003) Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and non neutralizing antibodies. J Virol 77: 353-365.
19. Moore PL, Crooks ET, Porter L, et al. (2006) Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J Virol 80: 2515-2528.
20. Liu J, Bartesaghi A, Borgnia MJ, et al. (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455: 109-113.
21. Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4: 431-440.
22. Van Regenmortel MHV (1966) Plant virus serology. Adv Virus Res 12: 207-271.
23. Pancera M, McLellan JS, Wu X, et al. (2010) Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J Virol 84: 8098-8110.
24. Van Regenmortel MHV (1992) The conformational specificity of viral epitopes. FEMS Microbiol Lett 100: 483-487.
25. McElrath MJ, Haynes BF (2010) Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33: 542-554.
26. Burton DR, Desrosiers RC, Doms R, et al. (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5: 233-236.
27. Corti D, Lanzavecchia A (2013) Broadly neutralizing antiviral antibodies. Ann Rev Immunol 31: 705-42.
28. Walker LM, Phogat SK, Chan-Hui PY, et al. (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: 285-289.
29. Zhou T, Georgiev I, Wu X et al. (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329: 811-817.
30. Sattentau QJ, McMichael AJ (2010) New templates for HIV-1 antibody-based vaccine design. F1000 Biol.Rep. 2: 60.
31. Lewis GK (2010) Challenges of antibody-mediated protection against HIV-1. Exp Rev Vaccines 9: 683-687.
32. Yu L, Guan Y (2014) Immunologic basis for long HCDR3s in broadly neutralizing antibodies against HIV-1. Front Immunol 5: 250.
33. Stanfield RL, Gorny MK, Williams C, et al. (2004) Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447- 52D. Structure 12: 193-204.
34. Briney BS, Willis JR, Crowe JE (2012) Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS ONE 7: e36750.
35. Ackerman M, Alter G (2013) Mapping the journey to an HIV vaccine. N Engl J Med 369: 389-391.
36. Klasse PJ, Sanders RW, Cerutti A, et al. (2012) How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses 28: 1-15.
37. Bunnik EM, van Gils MJ, Lobbrecht MS, et al. (2009) Changing sensitivity to broadly neutralizing antibodies b12, 2G12, 2F5, and 4E10 of primary subtype B human immunodeficiency virus type 1 variants in the natural course of infection. Virology 390: 348-355.
38. Berzofsky JA (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229: 932-940.
39. Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26: 599-609.
40. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4: 302.
41. Van Regenmortel MHV (2011) Limitations to the structure-based design of HIV-1 vaccine immunogens. J Mol Recognit 24: 741-753.
42. Van Regenmortel MHV (2012) Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol 157: 1-20.
43. Dimitrov JD, Pashov AD, Vassilev TL (2012) Antibody specificity what does it matter ? Adv Exp Biol Med 750: 213-226.
44. Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25: 174-9.
45. Wucherpfennig KW, Allen PM, Celada F, et al. (2007) Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 19: 216-24.
46. Eisen HN, Chakraborty AK (2010) Evolving concepts of specificity inimmune reactions. Proc Natl Acad Sci USA 107: 22373-22380.
47. Mariuzza RA (2006) Multiple paths to multispecificity. Immunity 24: 359-361.
48. Bramwell VW, Perrie Y (2005) The rational design of vaccines. Drug Discov Today 10: 1527-1534.
49. Douek DC, Kwong PD, Nabel GJ (2006) The rational design of an AIDS vaccine. Cell 124: 677-681.
50. D'Argenio DA, Wilson CB (2010) A decade of vaccines: integrating immunology and vaccinology for rational vaccine design. Immunity 33: 437-440.
51. Walker LM, Burton DR (2010) Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr Opin Immunol 22: 358-366.
52. Burton DR (2010) Scaffolding to build a rational vaccine design strategy. Proc Natl Acad Sci USA 107: 17859-17860.
53. Van Regenmortel MHV (2007) The rational design of biological complexity: a deceptive metaphor. Proteomics 7: 965-975.
54. Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257: 1078-1082.
55. Wu X, Yang ZY, Li Y, et al. (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329: 856-861.
56. Diskin R, Scheid JF, Marcovecchio PM, et al. (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334: 1289-1293.
57. Correia B, Bates JT, Loomis RJ, et al. (2014) Proof of principle for epitope-focused vaccine design. Nature 507: 201-206.
58. Bunge M (2003) Philosophical Dictionary. Amherst, NY: Promotheus Books.
59. Karlsson-Hedestam GB, Fouchier RA, Phogat S, et al. (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6: 143-155.
60. Haynes BF, Kelsoe G, Harrison SC, et al. (2012) B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotech 30: 423-433.
61. Moore PL, Gray ES, Wibmer CK, et al. (2012) Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med 18: 1688-1692.
62. Klein F, Diskin R, Scheid JF, et al. (2013) Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153: 126-138.
63. Liao HX, Lynch R, Zhou T, et al. (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496: 469-476.
64. Verkoczy L, Kelsoe G, Haynes BF, et al. (2014) HIV-1 envelope gp41 broadly neutralizing antibodies: hurdles for vaccine development. PLoS Pathog 10: e 1004073.
65. West AP Jr, Scharf L, Scheid JF, et al. (2014) Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156: 633-648.
66. Doria-Rose NA, Schramm CA, Gorman J, et al. (2014) Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509: 55-62.
67 Prabakaran P, Chen W, Dimitrov DS (2014) The antibody germline/maturation hypothesis, elicitation of broadly neutralizing antibodies against HIV-1 and cord blood IgM repertoires. Front Immunol 5: 398.
Copyright Info: © 2015, Marc H V Van Regenmortel, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)