Citation: Dominique G. Béroule. Autism-modifying therapy based on the promotion of a brain enzyme: An introductory case-report[J]. AIMS Molecular Science, 2019, 6(3): 52-72. doi: 10.3934/molsci.2019.3.52
[1] | Kuo HY, Liu FC (2018) Molecular pathology and pharmacological treatment of autism spectrum disorder-like phenotypes using rodent models. Front Cell Neurosci 12: 422. |
[2] |
Uzunova1 G, Stefano PS, Hollander E (2016) Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 17: 174–186. doi: 10.3109/15622975.2015.1085597
![]() |
[3] |
Béroule DG (2018) Offline encoding impaired by epigenetic regulations of monoamines in the guided propagation model of autism. BMC Neurosci 19: 80. doi: 10.1186/s12868-018-0477-1
![]() |
[4] | Essa MM, Al-Sharbati MM, Al-Farsi YM, et al. (2011) Altered activities of monoamine oxidase A in Omani Autistic children-a brief report. Int J Biolog Med Res 2: 811–813. |
[5] | Chauhan V, Gu F, Chauhan A (2016) Impaired activity of monoamine oxidase A in the brain of children with autism. Conference Abstract: 14th Meeting of the Asian-Pacific Society for Neurochemistry. |
[6] |
Hensler JG, Artigas F, Bortolozzi A, et al. (2013) Catecholamine/serotonin interactions: Systems thinking for brain function and disease. Adv Pharmacol 68: 167–197. doi: 10.1016/B978-0-12-411512-5.00009-9
![]() |
[7] | Béroule DG, Encoding of memory across online/offline alternations, screencast of running computer simulation, 2016. Available from: https://perso.limsi.fr/domi/Movie-S1_DGB_nov16.mov. |
[8] |
Alwinesh MTJ, Joseph RBJ, Daniel A, et al. (2012) Psychometrics and utility of psycho educational profile-revised as a developmental quotient measure among children with the dual disability of intellectual disability and autism. J Intellect Disab 16: 193–203. doi: 10.1177/1744629512455594
![]() |
[9] |
Baer DM, Wolf MM, Risley TR (1968) Some current dimensions of applied behavior analysis. J Appl Behav Anal 1: 91–97. doi: 10.1901/jaba.1968.1-91
![]() |
[10] |
Wu JB, Shih JC (2011) Valproic acid induces monoamine oxidase A via Akt/Forkhead Box O1 activation. Mol Pharmacol 80: 714–723. doi: 10.1124/mol.111.072744
![]() |
[11] |
Whitton PS, Oreskovic D, Jernej B, et al. (1985) Effect of valproic acid on 5-hydroxytryptamine turnover in mouse brain. J Pharm Pharmacol 37: 199–200. doi: 10.1111/j.2042-7158.1985.tb05040.x
![]() |
[12] | Treatment of Children With Autism Spectrum Disorders and Epileptiform EEG With Divalproex Sodium. Available from: https://clinicaltrials.gov/ct2/show/NCT02094651. |
[13] |
Lord C, Rutter M, Goode S, et al. (1989) Autism diagnostic observation schedule: A standardized observation of communicative and social behaviour. J Autism Dev Disord 19: 185–212. doi: 10.1007/BF02211841
![]() |
[14] |
Lord C, Rutter M, Le Couteur A (1994) Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24: 659–685. doi: 10.1007/BF02172145
![]() |
[15] | Renault D (2015) Compte-rendu de suivi Neuro-visuel du 24/07/2015, Unité Fonctionnelle Vision et Cognition, Fondation Ophtalmologique Adolphe de Rothschild (Hôpital Rothschild, Paris), 3 pages in French. |
[16] |
del Campo N, Chamberlain SR, Sahakian BJ, et al. (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychatry 69: 145–157. doi: 10.1016/j.biopsych.2011.02.036
![]() |
[17] |
Vanicek T, Spies M, Rami-Mark C, et al. (2014) The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography. JAMA Psychiatry 71: 1340–1349. doi: 10.1001/jamapsychiatry.2014.1226
![]() |
[18] |
Santos K, Palmini A, Radziuk AL, et al. (2013) The impact of methylphenidate on seizure frequency and severity in children with attention-deficit-hyperactivity disorder and difficult-to-treat epilepsies. Dev Med Child Neurol 55: 654–660. doi: 10.1111/dmcn.12121
![]() |
[19] |
Gara L, Roberts W (2000) Adverse response to methylphenidate in combination with valproic acid. J Child Adol Psychop 10: 39–43. doi: 10.1089/cap.2000.10.39
![]() |
[20] |
Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol 299: 217–227. doi: 10.1016/j.expneurol.2017.04.017
![]() |
[21] |
Christensen J, Grønborg TK, Sørensen MJ, et al. (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309: 1696–1703. doi: 10.1001/jama.2013.2270
![]() |
[22] | Chateauvieux S, Morceau F, Dicato M, et al. (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010: 479364. |
[23] | Gervain J, Vines BW, Chen LM, et al. (2013) Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci 7: 102. |
[24] |
Ajram LA, Horder J, Mendez MA, et al. (2017) Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 7: e1137. doi: 10.1038/tp.2017.104
![]() |
[25] |
Ganai SA, Ramadoss M, Mahadevan V (2016) Histone Deacetylase (HDAC) Inhibitors-emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration. Curr Neuropharmacol 14: 55–71. doi: 10.2174/1570159X13666151021111609
![]() |
[26] |
Fujiki R, Sato A, Fujitani M, et al. (2013) A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death Dis 4: e677. doi: 10.1038/cddis.2013.205
![]() |
[27] |
Laeng P, Pitts RL, Lemire AL, et al. (2004) The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 91: 238–251. doi: 10.1111/j.1471-4159.2004.02725.x
![]() |
[28] |
Giorgio ED, Brancolini C (2016) Regulation of class IIa HDAC activities: It is not only matter of subcellular localization. Epigenomics 8: 251–269. doi: 10.2217/epi.15.106
![]() |
[29] |
Al-Asmary S, Kadasah S, Arfin M, et al. (2014) Genetic association of catechol-O-methyltransferase val (158) met polymorphism in Saudi schizophrenia patients. Genet Mol Res 13: 3079–3088. doi: 10.4238/2014.April.17.4
![]() |
[30] |
Le TV, Chu TTQ, Le BN, et al. (2019) Prevalence of autism spectrum disorders and their relation to selected socio-demographic factors among children aged 18–30 months in northern Vietnam, 2017. Int J Ment Health Syst 13: 29. doi: 10.1186/s13033-019-0285-8
![]() |
[31] |
Lai DC, Tseng YC, Hou YM, et al. (2012) Gender and geographic differences in the prevalence of autism spectrum disorders in children: analysis of data from the national disability registry of Taiwan. Res Dev Disabil 33: 909–915. doi: 10.1016/j.ridd.2011.12.015
![]() |
[32] |
Cohen IL, Liu X, Schutz C, et al. (2003) Association of autism severity with a monoamine oxidase: A functional polymorphism. Clin Genet 64: 190–197. doi: 10.1034/j.1399-0004.2003.00115.x
![]() |
[33] | Hranilović D, Novak R, Babić M, et al. (2008) Hyperserotonemia in autism: The potential role of 5HT-related gene variants. Coll Antropol 32: 75–80. |
[34] | Abeling NG, van Gennip AH, van Cruchten AG, et al. (1998) Monoamine oxidase A deficiency: Biogenic amine metabolites in random urine samples. J Neural Transm 52: 9–15. |
[35] |
Frye RE (2018) Social skills deficits in autism spectrum disorder: Potential biological origins and progress in developing therapeutic agents. CNS Drugs 32: 713–734. doi: 10.1007/s40263-018-0556-y
![]() |
[36] |
Hellings JA, Weckbaugh M, Nickel EJ, et al. (2005) A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adol Psychop 15: 682–692. doi: 10.1089/cap.2005.15.682
![]() |
[37] |
Hollander E, Chaplin W, Soorya L, et al. (2010) Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology 35: 990–998. doi: 10.1038/npp.2009.202
![]() |
[38] |
Hirota T, Veenstra-Vanderweele J, Hollander E, et al. (2014) Antiepileptic medications in autism spectrum disorder: A systematic review and meta-analysis. J Autism Dev Disord 44: 948–957. doi: 10.1007/s10803-013-1952-2
![]() |
[39] |
Takuma K, Hara Y, Kataoka S, et al. (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dentritic spine loss in a mouse model of autism. Parmacol Biochem Behav 126: 43–49. doi: 10.1016/j.pbb.2014.08.013
![]() |
[40] |
Qin L, Ma K, Wang ZJ, et al. (2018) Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 21: 564–575. doi: 10.1038/s41593-018-0110-8
![]() |
[41] |
McDougle CJ, Naylor ST, Goodman WK et al. (1993) Acute tryptophan depletion in autistic disorder: A controlled case study. Biol Psychatry 33: 547–550. doi: 10.1016/0006-3223(93)90011-2
![]() |
[42] |
McDougle C, Naylor ST, Cohen DJ, et al. (1996) Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53: 993–1000. doi: 10.1001/archpsyc.1996.01830110029004
![]() |
[43] |
Boccuto L, Chen CF, Pittman AR, et al. (2013) Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism 4: 16. doi: 10.1186/2040-2392-4-16
![]() |
[44] |
Bird PD (2015) The treatment of autism with low-dose phenytoin: A case report. J Med Case Rep 9: 8. doi: 10.1186/1752-1947-9-8
![]() |
[45] |
Gupta V, Khan AA, Sasi BK, et al. (2015) Molecular Mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: Key roles of the transcriptions Factors GATA2, Sp1 and TBP. J Neurochem 134: 21–38. doi: 10.1111/jnc.13099
![]() |
[46] |
Minkiewicz P, Darewicz M, Iwaniak A, et al. (2016) Internet databases of the properties, enzymatic reactions, and metabolism of small molecules-search options and applications in food science. Int J Mol Sci Dec 17: 2039. doi: 10.3390/ijms17122039
![]() |
[47] | Koenraad PM, Braber AF (2016) Use of nonanoic acid as an antimicrobial agent, in particular an antifungal agent, patent A61Q17/005 (Antimicrobial preparations), 1999. Available from: https://patents.google.com/patent/WO2001032020A2/en. |
[48] |
Meyer JH, Ginovart N, Boovariwala A, et al. (2006) Elevated monoamine oxidase A levels in the brain: An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63: 1209–1216. doi: 10.1001/archpsyc.63.11.1209
![]() |
[49] |
Bacher I, Houle S, Xu X, et al. (2011) Monoamine oxidase A binding in the prefrontal and anterior cingulate cortices during acute withdrawal from heavy cigarette smoking. Arch Gen Psychiatry 68: 817–826. doi: 10.1001/archgenpsychiatry.2011.82
![]() |
[50] | Cathcart MC, Bhattacharjee A (2014) Monoamine oxidase A (MAO-A): A signature marker of alternatively activated monocytes/macrophages. Inflamm Cell Signal 1: e161. |
[51] |
Hviid A, Hansen JV, Frisch M, et al. (2019) Measles, mumps, rubella vaccination and autism: A nationwide cohort study. Ann Intern Med 170: 513–520. doi: 10.7326/M18-2101
![]() |
[52] | von Ehrenstein OS, Ling C, Cui X, et al. (2019) Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. BMJ 364: l962. |