Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Simulation of lipid-protein interactions with the CgProt force field

1 Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, Maine, USA
2 Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
3 School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore

The effect of lipid-protein interactions on membrane proteins and their function is emerging as an important area in biophysics. The recently developed CgProt force field is used to explore molecular level interactions in peptides and proteins through coarse-grained molecular dynamics simulations in the presence of the lipid bilayer environment. The mechanism of membrane insertion was examined for designed helical peptides WALP27: GWW(LA)10LWWA and LS3: (LSSLLSL)3. WALP27 adopts a transmembrane conformation while LS3 adopts interfacial and transmembrane orientations in independent simulations from different starting conditions. A total of 13 peptide insertion events were observed in unbiased molecular dynamics simulations of LS3 and WALP. Each case proceeded via the charged N-terminus crossing the bilayer. In the equilibrated conformations, the C-terminus resides in the head group region of the DOPC bilayer, while the N-terminus submerges deep into the carbonyl region. These findings are consistent with recent evidence of the attractive nature of positive charges for the membrane interface. The role of lipid interactions in the native environment of a membrane protein was explored by simulation of a 12-transmembrane helix multidrug transporter, P-glycoprotein. Analysis of the lipid density in a POPC: POPE bilayer containing 20% cholesterol revealed an annular solvation shell of phosphatidyl choline and cholesterol that diffuses with the protein in the membrane. The inward-facing state of P-glycoprotein undergoes a conformational transition to the closed state, corroborating a structural model for the ATP-bound state recently generated by homology modeling and molecular dynamics simulation.
  Figure/Table
  Supplementary
  Article Metrics

Keywords molecular dynamics simulation; multiscale modeling; membrane proteins; ABC transporters; lipid-protein interactions

Citation: Jacob Fosso-Tande, Cody Black, Stephen G. Aller, Lanyuan Lu, Ronald D. Hills Jr. Simulation of lipid-protein interactions with the CgProt force field. AIMS Molecular Science, 2017, 4(3): 352-369. doi: 10.3934/molsci.2017.3.352

References

  • 1. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: Insights from mass spectrometry. Trends Cell Biol 23: 1-8.    
  • 2. Smith AW (2012) Lipid-protein interactions in biological membranes: A dynamic perspective. Biochim Biophys Acta Biomembr 1818: 172-177.    
  • 3. Martinez-Seara H, Rog T, Karttunen M, et al. (2008) Influence of cis double-bond parametrization on lipid membrane properties: How seemingly insignificant details in force-field change even qualitative trends. J Chem Phys 129: 105103.    
  • 4. Ogata K, Nakamura S (2015) Improvement of parameters of the AMBER potential force field for phospholipids for description of thermal phase transitions. J Phys Chem B 119: 9726-9739.    
  • 5. Venable RM, Brown FL, Pastor RW (2015) Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids 192: 60-74.    
  • 6. Paloncyova M, Fabre G, DeVane RH, et al. (2014) Benchmarking of force fields for molecule-membrane interactions. J Chem Theory Comput 10: 4143-4151.    
  • 7. Venable RM, Ingolfsson HI, Lerner MG, et al. (2017) Lipid and peptide diffusion in bilayers: The Saffman-Delbruck model and periodic boundary conditions. J Phys Chem B 121: 3443-3457.    
  • 8. Perilla JR, Goh BC, Cassidy CK, et al. (2015) Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 31: 64-74.    
  • 9. Baaden M, Marrink SJ (2013) Coarse-grain modelling of protein-protein interactions. Curr Opin Struct Biol 23: 878-886.    
  • 10. Hills Jr RD, Brooks III CL (2009) Insights from coarse-grained Go models for protein folding and dynamics. Int J Mol Sci 10: 889-905.    
  • 11. Hills Jr RD (2014) Balancing bond, nonbond, and Go-like terms in coarse grain simulations of conformational dynamics. Methods Mol Biol 1084: 123-140.    
  • 12. Jackson J, Nguyen K, Whitford PC (2015) Exploring the balance between folding and functional dynamics in proteins and RNA. Int J Mol Sci 16: 6868-6889.    
  • 13. Kmiecik S, Gront D, Kolinski M, et al. (2016) Coarse-grained protein models and their applications. Chem Rev 116: 7898-7936.    
  • 14. Ramirez CL, Petruk A, Bringas M, et al. (2016) Coarse-grained simulations of heme proteins: Validation and study of large conformational transitions. J Chem Theory Comput 12: 3390-3397.    
  • 15. De Sancho D, Best RB (2012) Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: Association of HIF1alpha with CBP. Mol Biosyst 8: 256-267.    
  • 16. Periole X, Cavalli M, Marrink SJ, et al. (2009) Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5: 2531-2543.    
  • 17. Shen H, Moustafa IM, Cameron CE, et al. (2012) Exploring the dynamics of four RNA-dependent RNA polymerases by a coarse-grained model. J Phys Chem B 116: 14515-14524.    
  • 18. Dony N, Crowet JM, Joris B, et al. (2013) SAHBNET, an accessible surface-based elastic network: An application to membrane protein. Int J Mol Sci 14: 11510-11526.    
  • 19. Shimamura T, Weyand S, Beckstein O, et al. (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328: 470-473.    
  • 20. Ward AB, Guvench O, Hills Jr RD (2012) Coarse grain lipid-protein molecular interactions and diffusion with MsbA flippase. Proteins 80: 2178-2190.    
  • 21. Prasanna X, Sengupta D, Chattopadhyay A (2016) Cholesterol-dependent conformational plasticity in GPCR dimers. Sci Rep 6: 31858.    
  • 22. Poyry S, Vattulainen I (2016) Role of charged lipids in membrane structures: Insight given by simulations. Biochim Biophys Acta Biomembr 1858: 2322-2333.    
  • 23. Hedger G, Sansom MS (2016) Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. Biochim Biophys Acta Biomembr 1858: 2390-2400.    
  • 24. Provasi D, Boz MB, Johnston JM, et al. (2015) Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association. PLOS Comput Biol 11: e1004148.    
  • 25. Kalli AC, Sansom MS, Reithmeier RA (2015) Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLOS Comput Biol 11: e1004123.    
  • 26. Marrink SJ, Risselada HJ, Yefimov S, et al. (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111: 7812-7824.    
  • 27. de Jong DH, Periole X, Marrink SJ (2012) Dimerization of amino acid side chains: Lessons from the comparison of different force fields. J Chem Theory Comput 8: 1003-1014.    
  • 28. Singh G, Tieleman DP (2011) Using the Wimley-White hydrophobicity scale as a direct quantitative test of force fields: The MARTINI coarse-grained model. J Chem Theory Comput 7: 2316-2324.    
  • 29. Stark AC, Andrews CT, Elcock AH (2013) Toward optimized potential functions for protein-protein interactions in aqueous solutions: Osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J Chem Theory Comput 9: 4176-4185.    
  • 30. Bereau T, Kremer K (2016) Protein-backbone thermodynamics across the membrane interface. J Phys Chem B 120: 6391-6400.    
  • 31. Bereau T, Bennett WF, Pfaendtner J, et al. (2015) Folding and insertion thermodynamics of the transmembrane WALP peptide. J Chem Phys 143: 243127.    
  • 32. Rodgers JM, Sorensen J, de Meyer FJ, et al. (2012) Understanding the phase behavior of coarse-grained model lipid bilayers through computational calorimetry. J Phys Chem B 116: 1551-1569.
  • 33. Arnarez C, Uusitalo JJ, Masman MF, et al. (2015) Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput 11: 260-275.    
  • 34. Ingolfsson HI, Melo MN, van Eerden FJ, et al. (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136: 14554-14559.    
  • 35. Melo MN, Ingolfsson HI, Marrink SJ (2015) Parameters for Martini sterols and hopanoids based on a virtual-site description. J Chem Phys 143: 243152.    
  • 36. Paloncyova M, Vavrova K, Sovova Z, et al. (2015) Structural changes in ceramide bilayers rationalize increased permeation through stratum corneum models with shorter acyl tails. J Phys Chem B 119: 9811-9819.    
  • 37. Periole X, Marrink SJ (2013) The Martini coarse-grained force field. Methods Mol Biol 924: 533-565.    
  • 38. Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42: 6801-6822.    
  • 39. Baron R, de Vries AH, Hunenberger PH, et al. (2006) Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates. J Phys Chem B 110: 8464-8473.    
  • 40. Hills Jr RD, Lu L, Voth GA (2010) Multiscale coarse-graining of the protein energy landscape. PLOS Comput Biol 6: e1000827.    
  • 41. Jia Z, Chen J (2016) Necessity of high-resolution for coarse-grained modeling of flexible proteins. J Comput Chem 37: 1725-1733.    
  • 42. Miguel V, Perillo MA, Villarreal MA (2016) Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field. Biochim Biophys Acta Biomembr 1858: 2903-2910.    
  • 43. Wu Z, Cui Q, Yethiraj A (2010) A new coarse-grained model for water: The importance of electrostatic interactions. J Phys Chem B 114: 10524-10529.    
  • 44. Wu Z, Cui Q, Yethiraj A (2011) A new coarse-grained force field for membrane-peptide simulations. J Chem Theory Comput 7: 3793-3802.    
  • 45. Yesylevskyy SO, Schafer LV, Sengupta D, et al. (2010) Polarizable water model for the coarse-grained MARTINI force field. PLOS Comput Biol 6: e1000810.    
  • 46. de Jong DH, Singh G, Bennett WFD, et al. (2013) Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput 9: 687-697.    
  • 47. Lu L, Voth GA (2009) Systematic coarse-graining of a multicomponent lipid bilayer. J Phys Chem B 113: 1501-1510.    
  • 48. Wang ZJ, Deserno M (2010) A systematically coarse-grained solvent-free model for quantitative phospholipid bilayer simulations. J Phys Chem B 114: 11207-11220.    
  • 49. Han W, Schulten K (2012) Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 8: 4413-4424.    
  • 50. Han W, Wan CK, Wu YD (2008) Toward a coarse-grained protein model coupled with a coarse-grained solvent model: Solvation free energies of amino acid side chains. J Chem Theory Comput 4: 1891-1901.    
  • 51. Ganesan SJ, Matysiak S (2014) Role of backbone dipole interactions in the formation of secondary and supersecondary structures of proteins. J Chem Theory Comput 10: 2569-2576.    
  • 52. Noid WG, Chu JW, Ayton GS, et al. (2008) The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J Chem Phys 128: 244114.
  • 53. Noid WG, Chu JW, Ayton GS, et al. (2007) Multiscale coarse-graining and structural correlations: Connections to liquid-state theory. J Phys Chem B 111: 4116-4127.    
  • 54. Pall S, Abraham MJ, Kutzner C, et al. (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Proc EASC 2015 LNCS 8759: 3-27.
  • 55. Hills Jr RD, McGlinchey N (2016) Model parameters for simulation of physiological lipids. J Comput Chem 37: 1112-1118.    
  • 56. Monticelli L, Kandasamy SK, Periole X, et al. (2008) The MARTINI coarse-grained force field: Extension to proteins. J Chem Theory Comput 4: 819-834.    
  • 57. Bond PJ, Wee CL, Sansom MS (2008) Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry 47: 11321-11331.    
  • 58. Winger M, Trzesniak D, Baron R, et al. (2009) On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models. Phys Chem Chem Phys 11: 1934-1941.
  • 59. Karanicolas J, Brooks III CL (2002) The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 11: 2351-2361.
  • 60. Bereau T, Deserno M (2009) Generic coarse-grained model for protein folding and aggregation. J Chem Phys 130: 235106.    
  • 61. Herzog FA, Braun L, Schoen I, et al. (2016) Improved side chain dynamics in MARTINI simulations of protein-lipid interfaces. J Chem Theory Comput 12: 2446-24458.    
  • 62. Cerutti DS, Duke R, Freddolino PL, et al. (2008) Vulnerability in popular molecular dynamics packages concerning Langevin and Andersen dynamics. J Chem Theory Comput 4: 1669-1680.    
  • 63. Bereau T, Wang ZJ, Deserno M (2014) More than the sum of its parts: Coarse-grained peptide-lipid interactions from a simple cross-parametrization. J Chem Phys 140: 115101.    
  • 64. Bond PJ, Holyoake J, Ivetac A, et al. (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157: 593-605.    
  • 65. Kar P, Gopal SM, Cheng YM, et al. (2014) Transferring the PRIMO coarse-grained force field to the membrane environment: Simulations of membrane proteins and helix-helix association. J Chem Theory Comput 10: 3459-3472.    
  • 66. Hall BA, Chetwynd AP, Sansom MS (2011) Exploring peptide-membrane interactions with coarse-grained MD simulations. Biophys J 100: 1940-1948.    
  • 67. Kim T, Im W (2010) Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. Biophys J 99: 175-183.    
  • 68. Liu F, Lewis RN, Hodges RS, et al. (2004) Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine bilayers. Biophys J 87: 2470-2482.    
  • 69. Lear JD, Wasserman ZR, DeGrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240: 1177-1181.    
  • 70. Li J, Jaimes KF, Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23: 34-46.    
  • 71. Costa JA, Nguyen DA, Leal-Pinto E, et al. (2013) Wicking: A rapid method for manually inserting ion channels into planar lipid bilayers. PLOS ONE 8: e60836.    
  • 72. Javanainen M (2014) Universal method for embedding proteins into complex lipid bilayers for molecular dynamics simulations. J Chem Theory Comput 10: 2577-2582.    
  • 73. Daily MD, Olsen BN, Schlesinger PH, et al. (2014) Improved coarse-grained modeling of cholesterol-containing lipid bilayers. J Chem Theory Comput 10: 2137-2150.    
  • 74. Nguyen TH, Liu Z, Moore PB (2013) Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer. Biophys J 105: 1569-1580.    
  • 75. Holt A, Koehorst RB, Rutters-Meijneke T, et al. (2009) Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. Biophys J 97: 2258-2266.    
  • 76. Ozdirekcan S, Etchebest C, Killian JA, et al. (2007) On the orientation of a designed transmembrane peptide: Toward the right tilt angle? J Am Chem Soc 129: 15174-15181.    
  • 77. Moeller A, Lee SC, Tao H, et al. (2015) Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23: 450-460.    
  • 78. Ward AB, Reyes CL, Yu J, et al. (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci USA 104: 19005-19010.    
  • 79. Pan L, Aller SG (2015) Equilibrated atomic models of outward-facing P-glycoprotein and effect of ATP binding on structural dynamics. Sci Rep 5: 7880.    
  • 80. Loo TW, Clarke DM (2000) Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites. J Biol Chem 275: 19435-19438.    
  • 81. Urbatsch IL, Gimi K, Wilke-Mounts S, et al. (2001) Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 276: 26980-26987.    
  • 82. East JM, Melville D, Lee AG (1985) Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry 24: 2615-2623.    
  • 83. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14: 33-38.    
  • 84. Bechara C, Noll A, Morgner N, et al. (2015) A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat Chem 7: 255-262.    
  • 85. Aller SG, Yu J, Ward AB, et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722.    
  • 86. Habeck M, Haviv H, Katz A, et al. (2015) Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites. J Biol Chem 290: 4829-4842.    
  • 87. Kucerka N, van Oosten B, Pan J, et al. (2015) Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation-to-experiment comparisons and experimental scattering density profiles. J Phys Chem B 119: 1947-1956.    
  • 88. Gleason NJ, Vostrikov VV, Greathouse DV, et al. (2013) Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. Proc Natl Acad Sci USA 110: 1692-1695.    
  • 89. Hu Y, Sinha SK, Patel S (2014) Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: The case of charged oligo-arginine translocation into DMPC bilayers. J Phys Chem B 118: 11973-11992.    
  • 90. Sun D, Forsman J, Woodward CE (2015) Evaluating force fields for the computational prediction of ionized arginine and lysine side-chains partitioning into lipid bilayers and octanol. J Chem Theory Comput 11: 1775-1791.    
  • 91. MacCallum JL, Bennett WF, Tieleman DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94: 3393-3404.    
  • 92. Matalon E, Kaminker I, Zimmermann H, et al. (2013) Topology of the trans-membrane peptide WALP23 in model membranes under negative mismatch conditions. J Phys Chem B 117: 2280-2293.    
  • 93. Clay AT, Lu P, Sharom FJ (2015) Interaction of the p-glycoprotein multidrug transporter with sterols. Biochemistry 54: 6586-6597.    

 

This article has been cited by

  • 1. Ronald D. Hills, Jr, Refining amino acid hydrophobicity for dynamics simulation of membrane proteins, PeerJ, 2018, 6, e4230, 10.7717/peerj.4230
  • 2. Kenneth Goossens, Hans De Winter, Molecular Dynamics Simulations of Membrane Proteins: An Overview, Journal of Chemical Information and Modeling, 2018, 10.1021/acs.jcim.8b00639
  • 3. Valentina Corradi, Besian I. Sejdiu, Haydee Mesa-Galloso, Haleh Abdizadeh, Sergei Yu. Noskov, Siewert J. Marrink, D. Peter Tieleman, Emerging Diversity in Lipid–Protein Interactions, Chemical Reviews, 2019, 10.1021/acs.chemrev.8b00451

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Ronald D. Hills Jr, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved