Research article

Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development

  • Received: 09 November 2016 Accepted: 05 February 2017 Published: 09 February 2017
  • Background: Epithelial sodium channels (ENaC) play critically important roles in lung fluid clearance at birth. We have previously shown that Nadph oxidase (NOX)-derived reactive oxygen species signaling activates ENaC and promotes alveolar fluid clearance. In this study, we examined a new physiological role for NOX-mediated ENaC activity in mouse lung development. Methods: NOX isoform and ENaC subunit mRNA levels were evaluated in preterm and neonatal C57Bl6 mouse lung using real-time PCR analysis. Newborn mice were intra-nasally treated with 1 mM amiloride, 100 mM NSC 23766, or 300 mM apocynin during postnatal days 1–15 to study development. Lung development was assessed using hematoxylin and eosin (H&E) staining, coupled with radial alveolar counts (RAC) and mean linear intercept (MLI) measurements. Results: ENaC subunits and NOX1-4 mRNA were detected in mouse lung during late gestation, birth, and postnatally. Inhibition of Rac-1-mediated-NOX signaling indicates functional (Rac-dependent) NOX1-3 isoforms in newborn lung, determined by dihydroethidium (DHE) detection of reactive oxygen species production in postnatal (PN) day 7 mouse lung. Amiloride inhibition of ENaC activity, NSC 23766 inhibition of Rac1, and apocynin inhibition of pan NOX activity attenuated normal alveolar development in mouse lung. Conclusion: NOX and ENaC play important roles in mouse lung development.

    Citation: David Trac, My N. Helms. Nadph oxidase and epithelial sodium channels regulate neonatal mouse lung development[J]. AIMS Molecular Science, 2017, 4(1): 28-40. doi: 10.3934/molsci.2017.1.28

    Related Papers:

  • Background: Epithelial sodium channels (ENaC) play critically important roles in lung fluid clearance at birth. We have previously shown that Nadph oxidase (NOX)-derived reactive oxygen species signaling activates ENaC and promotes alveolar fluid clearance. In this study, we examined a new physiological role for NOX-mediated ENaC activity in mouse lung development. Methods: NOX isoform and ENaC subunit mRNA levels were evaluated in preterm and neonatal C57Bl6 mouse lung using real-time PCR analysis. Newborn mice were intra-nasally treated with 1 mM amiloride, 100 mM NSC 23766, or 300 mM apocynin during postnatal days 1–15 to study development. Lung development was assessed using hematoxylin and eosin (H&E) staining, coupled with radial alveolar counts (RAC) and mean linear intercept (MLI) measurements. Results: ENaC subunits and NOX1-4 mRNA were detected in mouse lung during late gestation, birth, and postnatally. Inhibition of Rac-1-mediated-NOX signaling indicates functional (Rac-dependent) NOX1-3 isoforms in newborn lung, determined by dihydroethidium (DHE) detection of reactive oxygen species production in postnatal (PN) day 7 mouse lung. Amiloride inhibition of ENaC activity, NSC 23766 inhibition of Rac1, and apocynin inhibition of pan NOX activity attenuated normal alveolar development in mouse lung. Conclusion: NOX and ENaC play important roles in mouse lung development.


    加载中
    [1] Eaton DC, Helms MN, Koval M, et al. (2009) The Contribution of Epithelial Sodium Channels to Alveolar Function in Health and Disease. Annu Rev Physiol 71: 403-423. doi: 10.1146/annurev.physiol.010908.163250
    [2] Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50: 515-525.
    [3] Otulakowski G, Rafii B, Harris M, et al. (2006) Oxygen and glucocorticoids modulate alphaENaC mRNA translation in fetal distal lung epithelium. Am J Respir Cell Mol Biol 34: 204-212. doi: 10.1165/rcmb.2005-0273OC
    [4] Otulakowski G, Duan W, Gandhi S, et al. (2007) Steroid and oxygen effects on eIF4F complex, mTOR, and ENaC translation in fetal lung epithelia. Am J Respir Cell Mol Biol 37: 457-466. doi: 10.1165/rcmb.2007-0055OC
    [5] Bland RD, Albertine KH, Carlton DP, et al. (2000) Chronic Lung Injury in Preterm Lambs: Abnormalities of the Pulmonary Circulation and Lung Fluid Balance. Pediatr Res 48: 64-74. doi: 10.1203/00006450-200007000-00013
    [6] Helve O, Pitkanen OM, Andersson S, et al. (2004) Low expression of human epithelial sodium channel in airway epithelium of preterm infants with respiratory distress. Pediatrics 113: 1267-1272. doi: 10.1542/peds.113.5.1267
    [7] Helve O, Janer C, Pitkanen O, et al. (2007) Expression of the epithelial sodium channel in airway epithelium of newborn infants depends on gestational age. Pediatrics 120: 1311-1316. doi: 10.1542/peds.2007-0100
    [8] Blackburn S (2012) Respiratory Systems, Maternal, Fetal, & Neonatal Physiology. 4 ed. Marlyand Heights, MO, Elsevier and Saunders, Chapt 10.
    [9] Jackson RM (1985) Pulmonary oxygen toxicity. Chest 88: 900-905. doi: 10.1378/chest.88.6.900
    [10] Jenkinson SG (1982) Pulmonary oxygen toxicity. Clin Chest Med 3: 109-119.
    [11] Jobe AH, Kallapur SG (2010) Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med 15: 230-235. doi: 10.1016/j.siny.2010.03.007
    [12] Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respirator therapy of hyaline membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276: 357-368. doi: 10.1056/NEJM196702162760701
    [13] Goodson P, Kumar A, Jain L, et al. (2012) Nadph oxidase regulates alveolar epithelial sodium channel activity and lung fluid balance in vivo via O(-)(2) signaling. Am J Physiol Lung Cell Mol Physiol 302: L410-L419. doi: 10.1152/ajplung.00260.2011
    [14] Trac D, Liu B, Pao AC, et al. (2013) Fulvene-5 inhibition of Nadph oxidases attenuates activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 305: F995-F1005. doi: 10.1152/ajprenal.00098.2013
    [15] Emery JL, Mithal A (1960) The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch Dis Child 35: 544-547. doi: 10.1136/adc.35.184.544
    [16] Dunnill MS (1962) Quantitative methods in the study of pulmonary pathology. Thorax 17: 320-328. doi: 10.1136/thx.17.4.320
    [17] Fukuda N, Folkesson HG, Matthay MA (2000) Relationship of interstitial fluid volume to alveolar fluid clearance in mice: ventilated vs. in situ studies. J Appl Physiol 89: 672-679.
    [18] Hummler E, Barker P, Gatzy J, et al. (1996) Early death due to defective neonatal lung liquid clearance in [alpha]-ENaC-deficient mice. Nat Genet 12: 325-328. doi: 10.1038/ng0396-325
    [19] Barker PM, Nguyen MS, Gatzy JT, et al. (1998) Role of gamma ENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102: 1634-1640.
    [20] Rafii B, Tanswell AK, Otulakowski G, et al. (1998) O2- induced ENaC expression is associated with NF-kappaB activation and blocked by superoxide scavenger. Am J Physiol 275: L764-L770.
    [21] Rafii B, Coutinho C, Otulakowski G, et al. (2000) Oxygen induction of epithelial Na(+) transport requires heme proteins. Am J Physiol Lung Cell Mol Physiol 278: L399-L406.
    [22] Pendyala S, Gorshkova IA, Usatyuk PV, et al. (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11: 747-764. doi: 10.1089/ars.2008.2203
    [23] Pendyala S, Natarajan V (2010) Redox regulation of Nox proteins. Respir Physiol Neurobiol 174: 265-271. doi: 10.1016/j.resp.2010.09.016
    [24] Dagenais A, Kothary R, Berthiaume Y (1997) The alpha subunit of the epithelial sodium channel in the mouse: developmental regulation of its expression. Pediatr Res 42: 327-334. doi: 10.1203/00006450-199709000-00013
    [25] Jesse NM, McCartney J, Feng X, et al. (2009) Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations. Am J Physiol Regul Integr Comp Physiol 297: R453-R461. doi: 10.1152/ajpregu.00127.2009
    [26] O'Brodovich H, Canessa C, Ueda J, et al. (1993) Expression of the epithelial Na+ channel in the developing rat lung. Am J Physiol 265: C491-C496.
    [27] Talbot CL, Bosworth DG, Briley EL, et al. (1999) Quantitation and localization of ENaC subunit expression in fetal, newborn, and adult mouse lung. Am J Physiol Lung Cell Mol Physiol 20: 398-406.
    [28] Hughey RP, Bruns JB, Kinlough CL, et al. (2004) Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 279: 18111-18114. doi: 10.1074/jbc.C400080200
    [29] Vallet V, Chraibi A, Gaeggeler HP, et al. (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389: 607-610. doi: 10.1038/39329
    [30] O'Brodovich H, Hannam V, Seear M, et al. (1990) Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985) 68: 1758-1762.
    [31] Olver RE, Ramsden CA, Strang LB, et al. (1986) The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol 376: 321-340.
    [32] Ramsden CA, Markiewicz M, Walters DV, et al. (1992) Liquid flow across the epithelium of the artificially perfused lung of fetal and postnatal sheep. J Physiol 448: 579-597. doi: 10.1113/jphysiol.1992.sp019059
    [33] Song W, Wei S, Zhou Y, et al. (2010) Inhibition of lung fluid clearance and epithelial Na+ channels by chlorine, hypochlorous acid, and chloramines. J Biol Chem 285: 9716-9728. doi: 10.1074/jbc.M109.073981
    [34] Elberson VD, Nielsen LC, Wang H, et al. (2015) Effects of intermittent hypoxia and hyperoxia on angiogenesis and lung development in newborn mice. J Neonatal Perinatal Med 8: 313-322.
    [35] Frank L (1985) Effects of oxygen on the newborn. Fed Proc 44: 2328-2334.
    [36] Wilborn AM, Evers LB, Canada AT (1996) Oxygen toxicity to the developing lung of the mouse: role of reactive oxygen species. Pediatr Res 40: 225-232. doi: 10.1203/00006450-199608000-00007
    [37] Bird AD, McDougall AR, Seow B, et al. (2015) Minireview: Glucococrticoid Regulation of Lung Development: lessons learned from conditional GR knockout mice. Mol Endocrinol 29: 158-171. doi: 10.1210/me.2014-1362
    [38] Saugstad OD (2003) Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 8: 39-49. doi: 10.1016/S1084-2756(02)00194-X
    [39] O'Brodovich HM, Mellins RB (1985) Bronchopulmonary dysplasia. Unresolved neonatal acute lung injury. Am Rev Respir Dis 132: 694-709.
    [40] Bonikos DS, Bensch KG, Northway WHJ, et al. (1976) Bronchopulmonary dysplasia: the pulmonary pathologic sequel of necrotizing bronchiolitis and pulmonary fibrosis. Hum Pathol 7: 643-666. doi: 10.1016/S0046-8177(76)80077-9
    [41] Ghanta S, Leeman KT, Christou H (2013) An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol 37: 115-123. doi: 10.1053/j.semperi.2013.01.008
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3951) PDF downloads(918) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog