Research article Special Issues

Sensitivity of Deinococcus grandis rodZ deletion mutant to calcium ions results in enhanced spheroplast size

  • Received: 04 April 2019 Accepted: 24 June 2019 Published: 26 June 2019
  • RodZ is a cytoskeletal protein associated with bacterial cell shape. It is a transmembrane protein located on the plasma membrane, and it binds to another cytoskeletal protein MreB. Deinococcus grandis contains a rodZ homolog. Although D. grandis is rod-shaped, it becomes spherical in shape when the rodZ homolog is disrupted. The rodZ deletion mutant was treated with lysozyme to generate spheroplasts. The spheroplasts enlarged in medium containing calcium chloride and penicillin. The rodZ deletion mutant spheroplasts were more sensitive to calcium ions than wild type. Cell and cytoplasm sizes of enlarged spheroplasts of the rodZ deletion mutant tended to be larger than those of wild type. Thus, disruption of rodZ enhances plasma and outer membrane expansion in D. grandis spheroplasts.

    Citation: Yusuke Morita, Mai Okumura, Issay Narumi, Hiromi Nishida. Sensitivity of Deinococcus grandis rodZ deletion mutant to calcium ions results in enhanced spheroplast size[J]. AIMS Microbiology, 2019, 5(2): 176-185. doi: 10.3934/microbiol.2019.2.176

    Related Papers:

  • RodZ is a cytoskeletal protein associated with bacterial cell shape. It is a transmembrane protein located on the plasma membrane, and it binds to another cytoskeletal protein MreB. Deinococcus grandis contains a rodZ homolog. Although D. grandis is rod-shaped, it becomes spherical in shape when the rodZ homolog is disrupted. The rodZ deletion mutant was treated with lysozyme to generate spheroplasts. The spheroplasts enlarged in medium containing calcium chloride and penicillin. The rodZ deletion mutant spheroplasts were more sensitive to calcium ions than wild type. Cell and cytoplasm sizes of enlarged spheroplasts of the rodZ deletion mutant tended to be larger than those of wild type. Thus, disruption of rodZ enhances plasma and outer membrane expansion in D. grandis spheroplasts.


    加载中

    Acknowledgments



    We thank Rintaro Tsuchikado for his experiment assistance. This work was funded by JSPS KAKENHI Grant Numbers 16K14891 (to HN) and 17K07730 (to IN).

    Conflict of Interest



    The authors declare that there is no conflict of interest regarding the publication of this paper.

    [1] Morita Y, Nishida H (2018) The common ancestor of Deinococcus species was rod-shaped. Open Bioinfo J 11: 252–258. doi: 10.2174/1875036201811010252
    [2] Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 100: 171–182. doi: 10.1007/s10482-011-9616-8
    [3] Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700. doi: 10.1146/annurev.biochem.71.110601.135414
    [4] Farci D, Bowler MW, Kirkpatrick J, et al. (2014) New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochim Biophys Acta 1838: 1978–1984. doi: 10.1016/j.bbamem.2014.02.014
    [5] Tian B, Wang H, Ma X, et al. (2010) Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis. Mol BioSyst 6: 2068–2077. doi: 10.1039/c004875e
    [6] Oyaizu H, Stackebrandt E, Schleifer KH, et al. (1987) A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol 37: 62–67.
    [7] Nishino K, Morita Y, Takahashi S, et al. (2018) Enlargement of Deinococcus grandis spheroplasts requires Mg2+ or Ca2+. Microbiology 164: 1361–1371. doi: 10.1099/mic.0.000716
    [8] Nishino K, Nishida H (2019) Calcium ion induces outer membrane fusion of Deinococcus grandis spheroplasts to generate giant spheroplasts with multiple cytoplasms. FEMS Microbiol Lett 366: fny282.
    [9] Nishino K, Tsuchikado R, Nishida H (2019) Sugar enhances outer membrane fusion in Deinococcus grandis spheroplasts to generate calcium ion-dependent extra-huge cells. FEMS Microbiol Lett 366: fnz087. doi: 10.1093/femsle/fnz087
    [10] Anderson R, Hansen K (1985) Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 260: 12219–12223.
    [11] Huang Y, Anderson R (1989) Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 264: 18667–18672.
    [12] Makarova KS, Aravind L, Wolf YI, et al. (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65: 44–79. doi: 10.1128/MMBR.65.1.44-79.2001
    [13] Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61: 191–214. doi: 10.1146/annurev.micro.61.080706.093245
    [14] Bendezú FO, Hale CA, Bernhardt TG, et al. (2009) RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J 28: 193–204. doi: 10.1038/emboj.2008.264
    [15] Shiomi D, Sakai M, Niki H (2008) Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27: 3081–3091. doi: 10.1038/emboj.2008.234
    [16] Alyahya SA, Alexander R, Costa T, et al. (2009) RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci USA 106: 1239–1244. doi: 10.1073/pnas.0810794106
    [17] van den Ent F, Johnson CM, Persons L, et al. (2010) Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J 29: 1081–1090. doi: 10.1038/emboj.2010.9
    [18] Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104: 913–922. doi: 10.1016/S0092-8674(01)00287-2
    [19] van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413: 39–44. doi: 10.1038/35092500
    [20] Funayama T, Narumi I, Kikuchi M, et al. (1999) Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res 435: 151–161. doi: 10.1016/S0921-8777(99)00044-0
    [21] Satoh K, Ohba H, Sghaier H, et al. (2006) Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152: 3217–3226. doi: 10.1099/mic.0.29139-0
    [22] Satoh K, Tu Z, Ohba H, et al. (2009) Development of versatile shuttle vectors for Deinococcus grandis. Plasmid 62: 1–9. doi: 10.1016/j.plasmid.2009.01.005
  • microbiol-05-02-176-s001.pdf
    microbiol-05-02-176-s002.pdf
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4567) PDF downloads(1126) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog