Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Sensitivity of Deinococcus grandis rodZ deletion mutant to calcium ions results in enhanced spheroplast size

1 Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
2 Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan

Special Issues: Bacterial Cell Surface

RodZ is a cytoskeletal protein associated with bacterial cell shape. It is a transmembrane protein located on the plasma membrane, and it binds to another cytoskeletal protein MreB. Deinococcus grandis contains a rodZ homolog. Although D. grandis is rod-shaped, it becomes spherical in shape when the rodZ homolog is disrupted. The rodZ deletion mutant was treated with lysozyme to generate spheroplasts. The spheroplasts enlarged in medium containing calcium chloride and penicillin. The rodZ deletion mutant spheroplasts were more sensitive to calcium ions than wild type. Cell and cytoplasm sizes of enlarged spheroplasts of the rodZ deletion mutant tended to be larger than those of wild type. Thus, disruption of rodZ enhances plasma and outer membrane expansion in D. grandis spheroplasts.
  Article Metrics

Keywords cell size; cytoplasm size; Deinococcus grandis; rod shape; rodZ deletion mutant; sensitivity to calcium ion; spherical shape; spheroplast enlargement

Citation: Yusuke Morita, Mai Okumura, Issay Narumi, Hiromi Nishida. Sensitivity of Deinococcus grandis rodZ deletion mutant to calcium ions results in enhanced spheroplast size. AIMS Microbiology, 2019, 5(2): 176-185. doi: 10.3934/microbiol.2019.2.176


  • 1.Morita Y, Nishida H (2018) The common ancestor of Deinococcus species was rod-shaped. Open Bioinfo J 11: 252–258.    
  • 2.Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 100: 171–182.    
  • 3.Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700.    
  • 4.Farci D, Bowler MW, Kirkpatrick J, et al. (2014) New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochim Biophys Acta 1838: 1978–1984.    
  • 5.Tian B, Wang H, Ma X, et al. (2010) Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis. Mol BioSyst 6: 2068–2077.    
  • 6.Oyaizu H, Stackebrandt E, Schleifer KH, et al. (1987) A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol 37: 62–67.
  • 7.Nishino K, Morita Y, Takahashi S, et al. (2018) Enlargement of Deinococcus grandis spheroplasts requires Mg2+ or Ca2+. Microbiology 164: 1361–1371.    
  • 8.Nishino K, Nishida H (2019) Calcium ion induces outer membrane fusion of Deinococcus grandis spheroplasts to generate giant spheroplasts with multiple cytoplasms. FEMS Microbiol Lett 366: fny282.
  • 9.Nishino K, Tsuchikado R, Nishida H (2019) Sugar enhances outer membrane fusion in Deinococcus grandis spheroplasts to generate calcium ion-dependent extra-huge cells. FEMS Microbiol Lett 366: fnz087.    
  • 10.Anderson R, Hansen K (1985) Structure of a novel phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 260: 12219–12223.
  • 11.Huang Y, Anderson R (1989) Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. J Biol Chem 264: 18667–18672.
  • 12.Makarova KS, Aravind L, Wolf YI, et al. (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65: 44–79.    
  • 13.Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61: 191–214.    
  • 14.Bendezú FO, Hale CA, Bernhardt TG, et al. (2009) RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J 28: 193–204.    
  • 15.Shiomi D, Sakai M, Niki H (2008) Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27: 3081–3091.    
  • 16.Alyahya SA, Alexander R, Costa T, et al. (2009) RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci USA 106: 1239–1244.    
  • 17.van den Ent F, Johnson CM, Persons L, et al. (2010) Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J 29: 1081–1090.    
  • 18.Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104: 913–922.    
  • 19.van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413: 39–44.    
  • 20.Funayama T, Narumi I, Kikuchi M, et al. (1999) Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res 435: 151–161.    
  • 21.Satoh K, Ohba H, Sghaier H, et al. (2006) Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152: 3217–3226.    
  • 22.Satoh K, Tu Z, Ohba H, et al. (2009) Development of versatile shuttle vectors for Deinococcus grandis. Plasmid 62: 1–9.    


Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved