Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Extremophilic adaptations and biotechnological applications in diverse environments

1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
2 Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052, Australia

Topical Section: Understanding and utilization of extremophiles

Extremophiles are organisms that tolerate and thrive in the most extreme and challenging conditions to life. As a result of these extreme environmental insults extremophiles have developed a number of interesting adaptations to cellular membranes, proteins and extracellular metabolites. These uniquely adapted biological molecules and systems already have roles in a number of biotechnological fields. In this review we give a brief overview of a number of different extreme environments and the potential for biotechnological innovation from the microbes which inhabit them.
  Figure/Table
  Supplementary
  Article Metrics

Keywords extremophiles; applications

Citation: James Charlesworth, Brendan P. Burns. Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiology, 2016, 2(3): 251-261. doi: 10.3934/microbiol.2016.3.251

References

  • 1. Pettit RK (2011) Culturability and Secondary Metabolite Diversity of Extreme Microbes: Expanding Contribution of Deep Sea and Deep-Sea Vent Microbes to Natural Product Discovery. Mar Biotechnol 13: 1–11.    
  • 2. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria. Syst Appl Microbiol 5: 41–57.
  • 3. Hedlund BP, Dodsworth JA, Murugapiran SK, et al. (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter.” Extremophiles 18: 865–875.    
  • 4. Santos F, Moreno-Paz M, Meseguer I, et al. (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5: 1621–1633.    
  • 5. Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: From molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 97: 10243–10254.    
  • 6. Ito S, Kobayashi T, Ara K, et al. (1998) Alkaline detergent enzymes from alkaliphiles: Enzymatic properties, genetics, and structures. Extremophiles 2: 185–190.    
  • 7. Zhuang X, Han Z, Bai Z, et al. (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158: 1119–26.    
  • 8. Rojas JL, Martín J, Tormo JR, et al. (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2: 33–41.    
  • 9. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45: 747–54.
  • 10. Norton CF, Grant WD (1988) Survival of Halobacteria Within Fluid Inclusions in Salt Crystals. Microbiology 134: 1365–1373.    
  • 11. Chang HW, Kim KH, Nam Y Do, et al. (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126: 159–166.    
  • 12. Birbir M, Eryilmaz S, Ogan A (2004) Prevention of halophilic microbial damage on brine cured hides by extremely halophilic halocin producer strains. J Soc Leather Technol Chem 88: 99–104.
  • 13. Orlita A (2004) Microbial biodeterioration of leather and its control: A review. Int Biodeterior Biodegrad 53: 157–163.    
  • 14. Fröls S (2013) Archaeal biofilms: widespread and complex. Biochem Soc Trans 41: 393–8.    
  • 15. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1: 5.    
  • 16. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4: 91–98.    
  • 17. Goh F, Jeon YJ, Barrow K, et al. (2011) Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 11: 529–36.
  • 18. Youssef NH, Savage-Ashlock KN, McCully AL, et al. (2014) Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales. ISME J 8: 636–49.    
  • 19. Kokoeva M V, Storch K-F, Klein C, Oesterhelt D (2002) A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J 21: 2312–22.    
  • 20. Strahl H, Greie JC (2008) The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+. Extremophiles 12: 741–752.    
  • 21. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83.    
  • 22. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28: 56–63.    
  • 23. Smiddy M, Sleator RD, Patterson MF, et al. (2004) Role for Compatible Solutes Glycine Betaine and L -Carnitine in Listerial Barotolerance. Appl Environ Microbiol 70: 7555–7557.    
  • 24. Woolard CR, Irvine RL (1994) Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Water Environ Res 66: 230–235.    
  • 25. Wang YF, Wang XL, Li H, et al. (2014) Treatment of high salinity phenol-laden wastewater using a sequencing batch reactor containing halophilic bacterial community. Int Biodeterior Biodegrad 93: 138–144.    
  • 26. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, et al. (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14: 321–328.    
  • 27. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011: 1–13.
  • 28. Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31: 1145–1158.    
  • 29. Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic archaea. Biotechnol Biotechnol Equip 791–795.
  • 30. Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and Cadmium Bioremoval by Halomonas sp., an Exopolysaccharide-Producing Halophilic Bacterium. Prog Biol Sci Vol 2: 1–11.
  • 31. Charlesworth JC, Burns BP (2015) Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea. Archaea. doi: 10.1155/2015/282035.
  • 32. Torreblanca M, Meseguer I, Ventosa A (1994) Production of halocin is a practically universal feature of archaeal halophilic rods. Lett Appl Microbiol 201–205.
  • 33. O’Connor E, Shand R (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28: 23–31.    
  • 34. Deisseroth K (2011) Optogenetics. Nat Methods 8: 26–29.
  • 35. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36: 129–139.    
  • 36. Saiki RK, Gelfand DH, Stoffel S, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.    
  • 37. Elleuche S, Schäfers C, Blank S, et al. (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25: 113–119.    
  • 38. Dobretsov S, Abed RMM, Maskari SMS, et al. (2010) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23: 983–993.
  • 39. Guo JP, Zhu CY, Zhang CP, et al. (2012) Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus talaromyces thermophilus. J Am Chem Soc 134: 20306–20309.    
  • 40. Liu L, Salam N, Jiao J-Y, et al. (2016) Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles. Microb Ecol 72: 150-62.    
  • 41. Gerth K, Müller R (2005) Moderately thermophilic Myxobacteria: Novel potential for the production of natural products isolation and characterization. Environ Microbiol 7: 874–880.    
  • 42. Wenzel SC, Müller R (2009) Myxobacteria--’microbial factories' for the production of bioactive secondary metabolites. Mol Biosyst 5: 567–574.    
  • 43. Perlova O, Gerth K, Kuhlmann S, et al. (2009) Novel expression hosts for complex secondary metabolite megasynthetases: Production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2. Microb Cell Fact 8: 1.    
  • 44. Prangishvili D, Holz I, Stieger E, et al. (2000) Sulfolobicins, Specific Proteinaceous Toxins Produced by Strains of the Extremely Thermophilic Archaeal Genus Sulfolobus. J Bacteriol 182: 2985–2988.    
  • 45. Ellen AF, Rohulya O V, Fusetti F, et al. (2011) The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 193: 4380–7.    
  • 46. Ritzaua M, Kellerb M, Wesselsl P, et al. (1993) New Cyclic Polysulfides from Hyperthermophilic Archaea of the Genus Thermococcus. Liebigs Ann der Chemie 91: 871–876.
  • 47. Joly M, Attard E, Sancelme M, et al. (2013) Ice nucleation activity of bacteria isolated from cloud water. Atmos Environ 70: 392–400.    
  • 48. Morris CE, Sands DC, Vinatzer B a, et al. (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2: 321–334.    
  • 49. Watanabe M, Arai S (1994) Bacterial ice-nucleation activity and its application to freeze concentration of fresh foods for modification of their properties. J Food Eng 22: 453–473.    
  • 50. Li B, Sun D-W (2002) Novel methods for rapid freezing and thawing of foods – a review. J Food Eng 54: 175–182.    
  • 51. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013: 512840.
  • 52. Vojcic L, Pitzler C, Körfer G, et al. (2015) Advances in protease engineering for laundry detergents. Nat Biotechnol 32: 629–34.
  • 53. Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation Assessment of Hydrocarbon-Contaminated Soils from the High Arctic. Bioremediat J 3: 69–80.    
  • 54. Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99: 794–802.
  • 55. Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19: 102–108.    
  • 56. Zhang Y, Li X, Xiao X, Bartlett DH (2015) Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles. Curr Opin Biotechnol 33: 157–164.    
  • 57. Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19: 721–740.    
  • 58. Hay S, Evans RM, Levy C, et al. (2009) Are the catalytic properties of enzymes from piezophilic organisms pressure adapted? ChemBioChem 10: 2348–2353.    
  • 59. Reed CJ, Lewis H, Trejo E, et al. (2013) Protein adaptations in archaeal extremophiles. Archaea. doi: 10.1155/2013/373275.
  • 60. Usui K, Hiraki T, Kawamoto J, et al. (2012) Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: A study employing high-pressure time-resolved fluorescence anisotropy measurement. Biochim Biophys Acta - Biomembr 1818: 574–583.    
  • 61. Redou V, Navarri M, Meslet-Cladiere L, et al. (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81: 3571–3583.    
  • 62. Simonato F, Campanaro S, Lauro FM, et al. (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126: 11–25. doi: 10.1016/j.jbiotec.2006.03.03863.    
  • 63. Wright PC, Westacott RE, Burja AM (2003) Piezotolerance as a metabolic engineering tool for the biosynthesis of natural products. Biomol Eng 20: 325–331.    
  • 64. Johnson DB (1995) Acidophilic microbial communities: Candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegrad 35: 41–58.    
  • 65. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes-biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29: 116–123.
  • 66. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15: 165–171.    
  • 67. Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149: 1959–1970.    
  • 68. Gemmell RT, Knowles CJ (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192: 185–190.
  • 69. Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodeterior Biodegrad 63: 62–66.    
  • 70. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria. Syst Appl Microbiol 5: 41–57.
  • 71. Duckworth AW, Grant WD, Jones BE, et al. (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19: 181–191.    
  • 72. Krulwich TA (1995) Alkaliphiles: “Basic” molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15: 403–410.    
  • 73. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63: 735–750.
  • 74. Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 31: 845–856.    
  • 75. Minton KW, Daly MJ (1995) A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17: 457–64.    
  • 76. Brim H, Venkateswaran A, Kostandarithes HM, et al. (2003) Engineering Deinococcus geothermalis for Bioremediation of High-Temperature Radioactive Waste Environments. Appl Environ Microbiol 69: 4575–4582.    
  • 77. Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4: 77–82.    
  • 78. Adrian L, Görisch H (2002) Microbial transformation of chlorinated benzenes under anaerobic conditions. Res Microbiol 153: 131–137.    

 

This article has been cited by

  • 1. Mohinder Pal, Mohit Kumar Swarnkar, Hena Dhar, Sanjay Chhibber, Arvind Gulati, Genome assembly of Chryseobacterium sp. strain IHBB 10212 from glacier top-surface soil in the Indian trans-Himalayas with potential for hydrolytic enzymes, Genomics Data, 2017, 13, 46, 10.1016/j.gdata.2017.06.003
  • 2. James C. Charlesworth, Charlotte Beloe, Cara Watters, Brendan P. Burns, , Biocommunication of Archaea, 2017, Chapter 8, 119, 10.1007/978-3-319-65536-9_8
  • 3. Cristina M. Prieto-Barajas, Eduardo Valencia-Cantero, Gustavo Santoyo, Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application, Electronic Journal of Biotechnology, 2017, 10.1016/j.ejbt.2017.11.001
  • 4. Snehal Kulkarni, Kusum Dhakar, Amaraja Joshi, , Microbial Diversity in the Genomic Era, 2019, 239, 10.1016/B978-0-12-814849-5.00015-0
  • 5. Mohamed Amine Gomri, Tedj El Moulouk Khaldi, Karima Kharroub, Analysis of the diversity of aerobic, thermophilic endospore-forming bacteria in two Algerian hot springs using cultural and non-cultural methods, Annals of Microbiology, 2018, 10.1007/s13213-018-1401-8
  • 6. James C Charlesworth, Cara Watters, Hon Lun Wong, Pieter T Visscher, Brendan P Burns, Isolation of novel quorum-sensing active bacteria from microbial mats in Shark Bay Australia, FEMS Microbiology Ecology, 2019, 95, 4, 10.1093/femsec/fiz035
  • 7. Cristina Purcarea, Georgiana Necula-Petrareanu, Alina Vasilescu, , Functional Nanostructured Interfaces for Environmental and Biomedical Applications, 2019, 153, 10.1016/B978-0-12-814401-5.00007-4
  • 8. Vijay Kumar, Santosh Kumar Tiwari, , Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications, 2019, Chapter 16, 497, 10.1007/978-981-13-8315-1_16

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Brendan P. Burns, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved