Review Topical Sections

Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease

  • Received: 21 September 2015 Accepted: 01 December 2015 Published: 04 December 2015
  • The relevance of alterations in gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) remains unclear. Currently there is conflicting evidence with regards to the roles of specific bacterial species. Escherichia coli (particularly the adherent invasive strain) are more prevalent in those with IBD and are associated with higher risk of IBD. However, the organisms are also present in healthy individuals and colonisation does not correlate with the degree of inflammation in IBD. Campylobacter concisus is more prevalent in those with IBD and higher levels of C. concisus specific IgG antibodies are found in the serum of those with IBD compared to healthy controls. Further, C. concisus has immunogenic properties that stimulate an antibody response suggesting the bacteria might trigger or exacerbate disease. Conversely most mycobacteria are unlikely to be causative as they are not presentin microbial stool cultures early in disease. In various studies,Mycobacterium aviumparatuberculosishas been detected both more frequently and not at all in individuals with Crohn's disease. Similar conflict exists with respect to Yersinia enterocolitica,Bacteroidesvulgatus and Helicobacter hepaticus, which are also more prevalent in IBD. However, these organisms appear more likely to contribute to disease persistence than initial disease development. This review aims to summarise the current understanding of key bacterial species implicated in the pathogenesis of IBD.

    Citation: Lucy McMullen, Steven T Leach, Daniel A Lemberg, Andrew S Day. Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease[J]. AIMS Microbiology, 2015, 1(1): 82-91. doi: 10.3934/microbiol.2015.1.82

    Related Papers:

  • The relevance of alterations in gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) remains unclear. Currently there is conflicting evidence with regards to the roles of specific bacterial species. Escherichia coli (particularly the adherent invasive strain) are more prevalent in those with IBD and are associated with higher risk of IBD. However, the organisms are also present in healthy individuals and colonisation does not correlate with the degree of inflammation in IBD. Campylobacter concisus is more prevalent in those with IBD and higher levels of C. concisus specific IgG antibodies are found in the serum of those with IBD compared to healthy controls. Further, C. concisus has immunogenic properties that stimulate an antibody response suggesting the bacteria might trigger or exacerbate disease. Conversely most mycobacteria are unlikely to be causative as they are not presentin microbial stool cultures early in disease. In various studies,Mycobacterium aviumparatuberculosishas been detected both more frequently and not at all in individuals with Crohn's disease. Similar conflict exists with respect to Yersinia enterocolitica,Bacteroidesvulgatus and Helicobacter hepaticus, which are also more prevalent in IBD. However, these organisms appear more likely to contribute to disease persistence than initial disease development. This review aims to summarise the current understanding of key bacterial species implicated in the pathogenesis of IBD.


    加载中
    [1] Rigsbee L, Agans R, Shankar V, et al. (2012) Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol 107: 1740-1751. doi: 10.1038/ajg.2012.287
    [2] Brown K, DeCoffe D, Molcan E, et al. (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4: 1095-1119. doi: 10.3390/nu4081095
    [3] Scaldaferri F, Pizzoferrato M, Pecere S, et al. (2012) Bacterial flora as a cause or treatment of chronic diarrhea. Gastroenterol Clin North Am 41: 581-602. doi: 10.1016/j.gtc.2012.06.002
    [4] Geier MS, Butler RN, Howarth GS (2007) Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol 115: 1-11. doi: 10.1016/j.ijfoodmicro.2006.10.006
    [5] Aster JC, Robbins SL, Kumar V, et al. (2013) Robbins Basic Pathology: Elsevier/Saunders.
    [6] Fujita H, Eishi Y, Ishige I, et al. (2002) Quantitative analysis of bacterial DNA from Mycobacteria spp., Bacteroides vulgatus, and Escherichia coli in tissue samples from patients with inflammatory bowel diseases. J Gastroenterol 37: 509-516.
    [7] De Cruz P, Prideaux L, Wagner J, et al. (2012) Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 18: 372-390. doi: 10.1002/ibd.21751
    [8] Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594. doi: 10.1053/j.gastro.2007.11.059
    [9] Eckburg PB, Relman DA (2007) The role of microbes in Crohn's disease. Clin Infect Dis 44: 256-262. doi: 10.1086/510385
    [10] Bibiloni R, Mangold M, Madsen KL (2006) The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J Med Microbiol 55: 1141-1149. doi: 10.1099/jmm.0.46498-0
    [11] Darfeuille-Michaud A, Neut C, Barnich N (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115: 1405-1413. doi: 10.1016/S0016-5085(98)70019-8
    [12] Swidsinski A, Ladhoff A, Pernthaler A (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122: 44-54. doi: 10.1053/gast.2002.30294
    [13] Rolhion N, Darfeuille-Michaud A (2007) Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 13: 1277-1283. doi: 10.1002/ibd.20176
    [14] Barnich N, Carvalho FA, Glasser AL, et al. (2007) CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 117: 1566-1574.
    [15] Pineton de Chambrun G, Colombel JF, Poulain D, et al. (2008) Pathogenic agents in inflammatory bowel diseases. Curr Opin Gastroenterol 24: 440-447. doi: 10.1097/MOG.0b013e3283023be5
    [16] Giaffer M, Holdsworth C, Duerden B (1992) Virulence properties of Escherichia coli starins isolated from patients with inflammatory bowel disease. Gut 33: 646-650. doi: 10.1136/gut.33.5.646
    [17] Chiba M, Komatsu M, Iizuka M, et al. (1998) Microbiology of the intestinal lymph follicle: a clue to elucidate causative microbial agent(s) in Crohn's disease. Med Hypotheses 51: 421-427. doi: 10.1016/S0306-9877(98)90039-1
    [18] Neut C, Bulois P, Desreumaux P, et al. (2002) Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease. Am J Gastroenterol 97: 939-946. doi: 10.1111/j.1572-0241.2002.05613.x
    [19] Darfeuille-Michaud A, Boudeau J, Bulois P, et al. (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127: 412-421. doi: 10.1053/j.gastro.2004.04.061
    [20] Kallinowski F, Wassmer A, Hofmann MA, et al. (1998) Prevalence of enteropathogenic bacteria in surgically treated chronic inflammatory bowel disease. Hepato-Gastroenterology 45: 1552-1558.
    [21] Fava F, Danese S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17: 557-566. doi: 10.3748/wjg.v17.i5.557
    [22] Abubakar I, Myhill D, Aliyu SH, et al. (2008) Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis. Inflamm Bowel Dis 14: 401-410. doi: 10.1002/ibd.20276
    [23] Sartor RB (2005) Does Mycobacterium avium subspecies paratuberculosis cause Crohn's disease? Gut 54: 896-898. doi: 10.1136/gut.2004.055889
    [24] Behr M, Schurr E (2006) Mycobacteria in Crohn's disease: a persistent hypothesis. Inflamm Bowel Dis 12: 1000-1004. doi: 10.1097/01.mib.0000228183.70197.dd
    [25] Autschbach F, Eisold S, Hinz U, et al. (2005) High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn's disease. Gut 54: 944-949. doi: 10.1136/gut.2004.045526
    [26] Kirkwood CD, Wagner J, Boniface K, et al. (2009) Mycobacterium avium subspecies paratuberculosis in children with early-onset Crohn's disease. Inflamm Bowel Dis 15: 1643-1655. doi: 10.1002/ibd.20967
    [27] Sechi LA, Scanu AM, Molicotti P, et al. (2005) Detection and Isolation of Mycobacterium avium subspecies paratuberculosis from intestinal mucosal biopsies of patients with and without Crohn's disease in Sardinia. Am J Gastroenterol 100: 1529-1536. doi: 10.1111/j.1572-0241.2005.41415.x
    [28] Sechi LA, Gazouli M, Ikonomopoulos J, et al. (2005) Mycobacterium avium subsp. paratuberculosis, genetic susceptibility to Crohn's disease, and Sardinians: the way ahead. J Clin Microbiol 43: 5275-5277.
    [29] Naser SA, Ghobrial G, Romero C (2004) Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease. Lancet 364: 1039-1044. doi: 10.1016/S0140-6736(04)17058-X
    [30] Selby W, Pavli P, Crotty B (2007) Two-year combination antibiotic therapy with clarithromycin, rifabutin and clofazimine for Crohn's disease. Gastroenterology 132: 2313-2319. doi: 10.1053/j.gastro.2007.03.031
    [31] Kuehbacher T, Rehman A, Lepage P, et al. (2008) Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 57: 1569-1576. doi: 10.1099/jmm.0.47719-0
    [32] Brinig MM, Lepp PW, Ouverney CC, et al. (2003) Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69: 1687-1694. doi: 10.1128/AEM.69.3.1687-1694.2003
    [33] Kumar PS, Griffen AL, Barton JA, et al. (2003) New bacterial species associated with chronic periodontitis. J Dental Res 82: 338-344. doi: 10.1177/154405910308200503
    [34] Ouverney CC, Armitage GC, Relman DA (2003) Single-cell enumeration of an uncultivated TM7 subgroup in the human subgingival crevice. Appl Environ Microbiol 69: 6294-6298. doi: 10.1128/AEM.69.10.6294-6298.2003
    [35] Newman A, Lambert J (1980) Campylobacter jejuni causing flare-up in inflammatoty bowel disease. Lancet 2: 919-919.
    [36] Zhang L, Man SM, Day AS, et al. (2009) Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J Clin Microbiol 47: 453-455.
    [37] Man SM, Zhang L, Day AS, et al. (2010) Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm Bowel Dis 16: 1008-1016. doi: 10.1002/ibd.21157
    [38] Mukhopadhya I, Thomson JM, Hansen R, et al. (2011) Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS One 6: e21490. doi: 10.1371/journal.pone.0021490
    [39] Deshpande NP, Kaakoush NO, Mitchell H, et al. (2011) Sequencing and validation of the genome of a Campylobacter concisus reveals intra-species diversity. PLoS One 6: e22170. doi: 10.1371/journal.pone.0022170
    [40] Kovach Z, Kaakoush NO, Lamb S, et al. (2011) Immunoreactive proteins of Campylobacter concisus, an emergent intestinal pathogen. FEMS Immunol Med Microbiol 63: 387-396. doi: 10.1111/j.1574-695X.2011.00864.x
    [41] Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8: 669-685. doi: 10.1038/nrgastro.2011.191
    [42] Setoyama H, Imaoka A, Ishikawa H, et al. (2003) Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microb Infect 5: 115-122. doi: 10.1016/S1286-4579(02)00080-1
    [43] Onderdonk BW (2000) Intestinal microflora and inflammatory bowel disease; Krisner JB, editor. Philadelphia, USA: Saunders.
    [44] Rath HC, Herfath HH, Ikeda JS, et al. (1996) Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats. J Clin Invest 98: 945-953. doi: 10.1172/JCI118878
    [45] Lamps LW, Madhusudhan KT, Havens JM, et al. (2003) Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am J Surg Pathol 27: 220-227. doi: 10.1097/00000478-200302000-00011
    [46] Saebo A, Vik E, Lange OJ, et al. (2005) Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur J Inter Med 16: 176-182. doi: 10.1016/j.ejim.2004.11.008
    [47] Knosel T, Schewe C, Petersen N, et al. (2009) Prevalence of infectious pathogens in Crohn's disease. Pathol Res Pract 205: 223-230. doi: 10.1016/j.prp.2008.04.018
    [48] Farrell RJ, LaMont JT (2002) Microbial factors in inflammatory bowel disease. Gastroenterol Clin North Am 31: 41-62. doi: 10.1016/S0889-8553(01)00004-8
    [49] Liu Y, Van Kruinigen HJ, West AB, et al. (1995) Immunocytochemical evidence of Listeria, Eschericha coli, and Streptococcus antigen in Crohn's disease. Gastroenterology 108: 1396-1404. doi: 10.1016/0016-5085(95)90687-8
    [50] Chen W, Dong L, Paulus B, et al. (2000) Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J Gastroenterol Hepatol 15: 1145-1150. doi: 10.1046/j.1440-1746.2000.02331.x
    [51] Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23: 473-480. doi: 10.1016/j.coi.2011.07.010
    [52] Cahill RJ, Foltz CJ, Fox JG, et al. (1997) Inflammatory bowel disease: An immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus.Infect Immun 65: 3126-3131.
    [53] Chin EY, Dangler CA, Fox JG, et al. (2000) Helicobacter hepaticus infection triggers inflammatory bowel disease in T cell receptor alpha/beta mutant mice. Compar Med 50: 586-594.
    [54] Dieleman LA, Arends A, Tonkonogy SL (2000) Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice. Infect Immun 68: 5107-5113. doi: 10.1128/IAI.68.9.5107-5113.2000
    [55] Calza L, Manfredi R, Chiodo F (2003) Stenotrophomonas (Xanthomas) maltophilia as an emerging oppurtunistic pathogen in association with HIV infection: a 10-year surveillance study. Infection: 155-161.
    [56] Denton M, Kerr KG (1998) Microbilogical and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev: 57-80.
    [57] Thompson-Chagoyan OC, Maldonado J, Gil A (2005) Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 24: 339-352. doi: 10.1016/j.clnu.2005.02.009
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5576) PDF downloads(1168) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog