Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

miRNA Update: A Review Focus on Clinical Implications of miRNA in Vascular Remodeling

1 Cardiovascular Clinic Institute, Hospital Clinic, University of Barcelona. Barcelona, Spain;
2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Through specific base pairing with their targets messenger RNAs (mRNA), miRNA can modify cell phenotype and function. Several miRNAs are aberrantly expressed in diseased arteries and may influence different features of vascular remodeling, including neointimal formation and diminished re-endothelialization. This review will discuss the clinical implications of miRNAs in the field of vascular remodeling and their potential role as diagnostic and therapeutic tools. miRNA modulation offers a promising strategy for therapeutic intervention to inhibit smooth muscle cell proliferation and enhance endothelial regeneration after percutaneous coronary intervention (PCI) in order to reduce restenosis and late thrombosis.
  Figure/Table
  Supplementary
  Article Metrics

Keywords MicroRNA; vascular remodeling; percutaneous coronary intervention; restenosis; re-endothelialization

Citation: Margarida Pujol-López, Luis Ortega-Paz, Manel Garabito, Salvatore Brugaletta, Manel Sabaté, Ana Paula Dantas. miRNA Update: A Review Focus on Clinical Implications of miRNA in Vascular Remodeling. AIMS Medical Science, 2017, 4(1): 99-112. doi: 10.3934/medsci.2017.1.99

References

  • 1. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79: 581-588.    
  • 2. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350-355.    
  • 3. Chen D, Farwell MA, Zhang B (2010) MicroRNA as a new player in the cell cycle. J Cell Physiol 225: 296-301.    
  • 4. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.
  • 5. Mitchell PS, Parkin RK, Kroh EM, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513-10518.    
  • 6. Romaine S, Tomaszewski M, Condorelli G, et al. (2015) MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101: 921-928.    
  • 7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.    
  • 8. Karakas M, Schulte C, Appelbaum S, et al. (2016) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J 29. pii: ehw250. [Epub ahead of print].
  • 9. Qin S, Zhang C (2011) MicroRNAs in Vascular Disease. J Cardiovasc Pharmacol 57: 8-12.    
  • 10. Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 118: 1170-1184.    
  • 11. Polimeni A, De Rosa S, Indolfi C (2013) Vascular miRNAs after balloon angioplasty. Trends Cardiovasc Med 23: 9-14.    
  • 12. Indolfi C, Torella D, Coppola C, et al. (2002) Rat carotid artery dilation by PTCA balloon catheter induces neointima formation in presence of IEL rupture. Am J Physiol Heart Circ Physiol 283: H760-767.    
  • 13. Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 118: 1170-1184.    
  • 14. Fang YC, Yeh CH (2015) Role of microRNAs in Vascular Remodeling. Curr Mol Med 15: 684-696.    
  • 15. Maegdefessel L, Rayner KJ, Leeper NJ (2015) MicroRNA regulation of vascular smooth muscle function and phenotype: early career committee contribution. Arterioscler Thromb Vasc Biol 35: 2-6.    
  • 16. Ji R, Cheng Y, Yue J, et al. (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100: 1579-1588.    
  • 17. Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 118: 1170-1184.    
  • 18. Polimeni A, De Rosa S, Indolfi C (2013) Vascular miRNAs after balloon angioplasty. Trends Cardiovasc Med 23: 9-14.    
  • 19. Liu X, Cheng Y, Zhang S, et al. (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104: 476-487.    
  • 20. Zheng B, Han M, Wen JK (2010) Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life 62: 132-139.
  • 21. Sun SG, Zheng B, Han M, et al. (2013) miR-146a and Krüppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation. EMBO Rep 12: 56-62.
  • 22. Chan MC, Hilyard AC, Wu C, et al. (2010) Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J 29: 559-573.    
  • 23. Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 118: 1170-1184.    
  • 24. De Rosa S, Fichtlscherer S, Lehmann R, et al. (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation 124: 1936-1944.    
  • 25. Indolfi C, Torella D, Coppola C, et al. (2002) Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 91: 1190-1197.    
  • 26. Iaconetti C, Polimeni A, Sorrentino S, et al. (2012) Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107: 296.    
  • 27. Liu X, Cheng Y, Yang J, et al. (2012) Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol 52: 245-255.    
  • 28. Celic T, Metzinger-Le Meuth V, Six I, et al. (2016) The mir-221/222 Cluster is a Key Player in Vascular Biology Via the Fine-Tuning of Endothelial Cell Physiology. Curr Vasc Pharmacol 14.
  • 29. Karakas M, Schulte C, Appelbaum S, et al. (2016) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J 29. pii: ehw250. [Epub ahead of print]
  • 30. Ai J, Zhang R, Li Y, et al. (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 39: 73-77.
  • 31. Devaux Y, Vausort M, McCann GP, et al. (2013) MicroRNA-150: A novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet 6: 290-298.    
  • 32. Tijsen AJ, Creemers EE, Moerland PD, et al. (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106: 1035-1039.    
  • 33. He M, Gong Y, Shi J, et al. (2014) Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS One 9: e112043.    
  • 34. Matsumoto S, Sakata Y, Nakatani D, et al. (2012) A subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem Biophys Res Commun 427: 280-284.    
  • 35. Karakas M, Schulte C, Appelbaum S Ojeda F, et al. (2016) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J 29. pii: ehw250. [Epub ahead of print]
  • 36. Gareri C, De Rosa S, Indolfi C (2016) MicroRNAs for Restenosis and Thrombosis After Vascular Injury. Circ Res 118: 1170-1184.    
  • 37. Matsumoto T, Hwang PM (2007) Resizing the genomic regulation of restenosis. Circ Res 100: 1537-1539.    
  • 38. Lee SJ, Yook S, Yhee JY, et al. (2015) Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J Control Release 220: 631-641.    
  • 39. Ottosen S, Parsley TB, Yang L, et al. (2015) In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 59: 599-608.    
  • 40. van der Ree MH, van der Meer AJ, de Bruijne J, et al. (2014) Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 111: 53-59.    
  • 41. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327: 198-201.    
  • 42. Santulli G, Wronska A, Uryu K, et al. (2014) A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 124: 4102-4114.    
  • 43. Choe N, Kwon JS, Kim YS, et al. (2015) The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cell Signal 27: 1056-1065.    
  • 44. Lee J, Lim S, Song BW, et al. (2015) MicroRNA-29b inhibits migration and proliferation of vascular smooth muscle cells in neointimal formation". J Cell Biochem 116: 598-608.    
  • 45. Wang D, Deuse T, Stubbendorff M, et al. (2015) Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis. Arterioscler Thromb Vasc Biol 35: 1945-1953.    
  • 46. Cavarretta E, Frati G (2016) MicroRNAs in Coronary Heart Disease: Ready to Enter the Clinical Arena? Biomed Res Int 2016: 2150763.
  • 47. Moldovan L, Batte KE, Trgovcich J, et al. (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18: 371-390.    
  • 48. Glinge C, Clauss S, Boddum K, et al. (2017) Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLoS One 12: e0167969.    
  • 49. Barwari T, Joshi A, Mayr M (2016) MicroRNAs in Cardiovascular Disease. J Am Coll Cardiol 68: 2577-2584.    
  • 50. Moldovan L, Batte KE, Trgovcich J, et al. (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18: 371-390.    
  • 51. Jang IK (2012) Near infrared spectroscopy: another toy or indispensible diagnostic tool? Circ Cardiovasc Interv 5: 10-11.    
  • 52. Tiberio P, Callari M, Angeloni V, et al. (2015) Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int 2015: 731479.

 

This article has been cited by

  • 1. Wu Ruibin, Xiaowei Zheng, Jiaying Chen, Xinyi Zhang, Xiayin Yang, Yuxian Lin, Micro RNA-1298 opposes the effects of chronic oxidative stress on human trabecular meshwork cells via targeting on EIF4E3, Biomedicine & Pharmacotherapy, 2018, 100, 349, 10.1016/j.biopha.2018.02.001

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Ana Paula Dantas, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved