Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective

1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China;
2 Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China;
3 University of North Texas Health Science Center, Fort Worth, Texas, USA

Engagement of bioactive ligands with cell surface receptors plays critical roles in the initiation and regulation of αβ T cell development, homeostasis and functions. In the past two decades, new subpopulations of αβ T cells have been discovered. In addition, the characterization of new ligand/receptor axes has led to a better understanding of αβ T cell biology. In the current review, the phenotypic and functional properties of αβ T cell subpopulations are described, as well as the effects of three novel and well-documented signal pathways—Wnt, Notch and Hedgehog signaling—on αβ T cell development and functions are summarized. These signal pathways are initiated by the ligation of corresponding ligands with respective receptors, and this subsequently exerts a positive or negative influence on αβ T cell ontogenesis and behavior. Thorough understanding of the components of these signal pathways might shed new light on the manipulation of αβ T cell biology so as to favor the advance of diagnosis and therapy of immune disorders such as infection, tumors and autoimmune diseases.
  Article Metrics


1. Reiner SL (2009) Decision making during the conception and career of CD4+ T cells. Nat Rev Immunol 9: 81-82.    

2. Clambey ET, Davenport B, Kappler JW, et al. (2014) Molecules in medicine mini review: the alphabeta T cell receptor. J Mol Med (Berl) 92: 735-741.    

3. Thompson EC (2012) Focus issue: Structure and function of lymphoid tissues. Trends Immunol 33: 255.    

4. Luckheeram RV, Zhou R, Verma AD, et al. (2012) CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012: 925135.

5. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28: 445-489.    

6. Zhang N, Bevan MJ (2011) CD8+ T cells: foot soldiers of the immune system. Immunity 35: 161-168.    

7. Grabie N, Delfs MW, Westrich JR, et al. (2003) IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis. J Clin Invest 111: 671-680.    

8. Starbeck-Miller GR, Xue HH, Harty JT (2014) IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J Exp Med 211: 105-120.    

9. Anastas JN, Moon RT (2013) WNT signaling pathways as therapeutic targets in cancer. Nat Rev Cancer 13: 11-26.

10. Moon RT, Gough NR (2016) Beyond canonical: The Wnt and beta-catenin story. Sci Signal 9: eg5.    

11. Moon RT, Kohn AD, De Ferrari GV, et al. (2004) WNT and beta-catenin signaling: diseases and therapies. Nat Rev Genet 5: 691-701.    

12. Klaus A, Birchmeier W (2008) Wnt signaling and its impact on development and cancer. Nat Rev Cancer 8: 387-398.    

13. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346: 1248012.

14. van de Wetering M, de Lau W, Clevers H (2002) WNT signaling and lymphocyte development. Cell 109 Suppl: S13-19.

15. Pongracz J, Hare K, Harman B, et al. (2003) Thymic epithelial cells provide WNT signals to developing thymocytes. Eur J Immunol 33: 1949-1956.    

16. Brunk F, Augustin I, Meister M, et al. (2015) Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development. J Immunol 195: 5261-5271.    

17. Staal FJ, Meeldijk J, Moerer P, et al. (2001) Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31: 285-293.

18. Gounari F, Aifantis I, Khazaie K, et al. (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2: 863-869.    

19. Weerkamp F, Baert MR, Naber BA, et al. (2006) Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 103: 3322-3326.    

20. Xu Y, Banerjee D, Huelsken J, et al. (2003) Deletion of beta-catenin impairs T cell development. Nat Immunol 4: 1177-1182.    

21. Mulroy T, Xu Y, Sen JM (2003) beta-Catenin expression enhances generation of mature thymocytes. Int Immunol 15: 1485-1494.    

22. Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227-239.    

23. Willinger T, Freeman T, Herbert M, et al. (2006) Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J Immunol 176: 1439-1446.    

24. Alvarez-zavala M, Aguilar-lemarroy A, Jave-suarez LF (2015) WNT7a as a new feature of the T mature cells; expression of the WNT7a diminish in a highly activated and proliferative T cells after TCR activation and IL2 stimulus while canonical targets of WNT signaling pathway are overexpress. Front Immunol 6.

25. Driessens G, Zheng Y, Locke F, et al. (2011) Beta-catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-gamma1 phosphorylation. J Immunol 186: 784-790.    

26. van Loosdregt J, Fleskens V, Tiemessen MM, et al. (2013) Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39: 298-310.    

27. Keerthivasan S, Aghajani K, Dose M, et al. (2014) beta-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med 6: 225ra228.

28. Yu Q, Sharma A, Oh SY, et al. (2009) T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol 10: 992-999.    

29. Notani D, Gottimukkala KP, Jayani RS, et al. (2010) Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biol 8: e1000296.    

30. Prlic M, Bevan MJ (2011) Cutting edge: beta-catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. J Immunol 187: 1542-1546.    

31. Ding Y, Shen S, Lino AC, et al. (2008) Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med 14: 162-169.    

32. Muranski P, Borman ZA, Kerkar SP, et al. (2011) Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35: 972-985.    

33. Dai W, Liu F, Li C, et al. (2016) Blockade of Wnt/beta-Catenin Pathway Aggravated Silica-Induced Lung Inflammation through Tregs Regulation on Th Immune Responses. Mediators Inflamm 2016: 6235614.

34. Lee YS, Lee KA, Yoon HB, et al. (2012) The Wnt inhibitor secreted Frizzled-Related Protein 1 (sFRP1) promotes human Th17 differentiation. Eur J Immunol 42: 2564-2573.    

35. Gattinoni L, Zhong XS, Palmer DC, et al. (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15: 808-813.    

36. Jeannet G, Boudousquie C, Gardiol N, et al. (2010) Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci U S A 107: 9777-9782.    

37. Zhao DM, Yu S, Zhou X, et al. (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184: 1191-1199.    

38. Driessens G, Zheng Y, Gajewski TF (2010) Beta-catenin does not regulate memory T cell phenotype. Nat Med 16: 513-514; author reply 514-515.    

39. Boudousquie C, Danilo M, Pousse L, et al. (2014) Differences in the transduction of canonical Wnt signals demarcate effector and memory CD8 T cells with distinct recall proliferation capacity. J Immunol 193: 2784-2791.    

40. Richards MH, Narasipura SD, Seaton MS, et al. (2016) Migration of CD8+ T Cells into the Central Nervous System Gives Rise to Highly Potent Anti-HIV CD4dimCD8bright T Cells in a Wnt Signaling-Dependent Manner. J Immunol 196: 317-327.    

41. Taghon T, Yui MA, Pant R, et al. (2006) Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity 24: 53-64.    

42. Wendorff AA, Koch U, Wunderlich FT, et al. (2010) Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. Immunity 33: 671-684.    

43. Koch U, Fiorini E, Benedito R, et al. (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205: 2515-2523.    

44. Anderson G, Pongracz J, Parnell S, et al. (2001) Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. Eur J Immunol 31: 3349-3354.

45. Van de Walle I, De Smet G, Gartner M, et al. (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117: 4449-4459.    

46. Jaleco AC, Neves H, Hooijberg E, et al. (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194: 991-1002.    

47. Minter LM, Turley DM, Das P, et al. (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6: 680-688.    

48. Jurynczyk M, Jurewicz A, Raine CS, et al. (2008) Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase C theta and attenuates experimental autoimmune encephalomyelitis. J Immunol 180: 2634-2640.    

49. Auderset F, Schuster S, Coutaz M, et al. (2012) Redundant Notch1 and Notch2 signaling is necessary for IFNgamma secretion by T helper 1 cells during infection with Leishmania major. PLoS Pathog 8: e1002560.    

50. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89: 587-596.    

51. Elyaman W, Bassil R, Bradshaw EM, et al. (2012) Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 36: 623-634.    

52. Bailis W, Yashiro-Ohtani Y, Fang TC, et al. (2013) Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 39: 148-159.    

53. Anastasi E, Campese AF, Bellavia D, et al. (2003) Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 171: 4504-4511.    

54. Campese AF, Grazioli P, Colantoni S, et al. (2009) Notch3 and pTalpha/pre-TCR sustain the in vivo function of naturally occurring regulatory T cells. Int Immunol 21: 727-743.    

55. Barbarulo A, Grazioli P, Campese AF, et al. (2011) Notch3 and canonical NF-kappaB signaling pathways cooperatively regulate Foxp3 transcription. J Immunol 186: 6199-6206.    

56. Charbonnier LM, Wang S, Georgiev P, et al. (2015) Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol 16: 1162-1173.    

57. Hue S, Kared H, Mehwish Y, et al. (2012) Notch activation on effector T cells increases their sensitivity to Treg cell-mediated suppression through upregulation of TGF-betaRII expression. Eur J Immunol 42: 1796-1803.    

58. Wong KK, Carpenter MJ, Young LL, et al. (2003) Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest 112: 1741-1750.    

59. Riella LV, Ueno T, Batal I, et al. (2011) Blockade of Notch ligand delta1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation. J Immunol 187: 4629-4638.    

60. Maekawa Y, Minato Y, Ishifune C, et al. (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9: 1140-1147.    

61. Sugimoto K, Maekawa Y, Kitamura A, et al. (2010) Notch2 signaling is required for potent antitumor immunity in vivo. J Immunol 184: 4673-4678.    

62. Sierra RA, Thevenot P, Raber PL, et al. (2014) Rescue of notch-1 signaling in antigen-specific CD8+ T cells overcomes tumor-induced T-cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res 2: 800-811.    

63. Backer RA, Helbig C, Gentek R, et al. (2014) A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol 15: 1143-1151.    

64. Mathieu M, Duval F, Daudelin JF, et al. (2015) The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. J Immunol 194: 5654-5662.    

65. Briscoe J, Therond PP (2013) The mechanisms of Hedgehog signaling and its roles in development and disease. Nat Rev Mol Cell Biol 14: 416-429.

66. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signaling across the metazoa. Nat Rev Genet 12: 393-406.    

67. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22: 2454-2472.    

68. Outram SV, Varas A, Pepicelli CV, et al. (2000) Hedgehog signaling regulates differentiation from double-negative to double-positive thymocyte. Immunity 13: 187-197.    

69. Shah DK, Hager-Theodorides AL, Outram SV, et al. (2004) Reduced thymocyte development in sonic hedgehog knockout embryos. J Immunol 172: 2296-2306.    

70. El Andaloussi A, Graves S, Meng F, et al. (2006) Hedgehog signaling controls thymocyte progenitor homeostasis and differentiation in the thymus. Nat Immunol 7: 418-426.    

71. Sacedon R, Varas A, Hernandez-Lopez C, et al. (2003) Expression of hedgehog proteins in the human thymus. J Histochem Cytochem 51: 1557-1566.    

72. Hager-Theodorides AL, Dessens JT, Outram SV, et al. (2005) The transcription factor Gli3 regulates differentiation of fetal CD4- CD8- double-negative thymocytes. Blood 106: 1296-1304.    

73. Stewart GA, Lowrey JA, Wakelin SJ, et al. (2002) Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol 169: 5451-5457.    

74. Lowrey JA, Stewart GA, Lindey S, et al. (2002) Sonic hedgehog promotes cell cycle progression in activated peripheral CD4(+) T lymphocytes. J Immunol 169: 1869-1875.    

75. Rowbotham NJ, Hager-Theodorides AL, Cebecauer M, et al. (2007) Activation of the Hedgehog signaling pathway in T-lineage cells inhibits TCR repertoire selection in the thymus and peripheral T-cell activation. Blood 109: 3757-3766.    

76. Furmanski AL, Barbarulo A, Solanki A, et al. (2015) The transcriptional activator Gli2 modulates T-cell receptor signaling through attenuation of AP-1 and NFkappaB activity. J Cell Sci 128: 2085-2095.    

77. Michel KD, Uhmann A, Dressel R, et al. (2013) The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice. PLoS One 8: e61034.    

78. de la Roche M, Ritter AT, Angus KL, et al. (2013) Hedgehog signaling controls T cell killing at the immunological synapse. Science 342: 1247-1250.    

79. Ye H, Zhang J, Wang J, et al. (2015) CD4 T-cell transcriptome analysis reveals aberrant regulation of STAT3 and Wnt signaling pathways in rheumatoid arthritis: evidence from a case-control study. Arthritis Res Ther 17: 76.    

80. Weng AP, Ferrando AA, Lee W, et al. (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269-271.    

81. Tosello V, Ferrando AA (2013) The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4: 199-210.    

82. Jiao Z, Wang W, Hua S, et al. (2014) Blockade of Notch signaling ameliorates murine collagen-induced arthritis via suppressing Th1 and Th17 cell responses. Am J Pathol 184: 1085-1093.    

83. Kijima M, Iwata A, Maekawa Y, et al. (2009) Jagged1 suppresses collagen-induced arthritis by indirectly providing a negative signal in CD8+ T cells. J Immunol 182: 3566-3572.    

84. Sodsai P, Hirankarn N, Avihingsanon Y, et al. (2008) Defects in Notch1 upregulation upon activation of T Cells from patients with systemic lupus erythematosus are related to lupus disease activity. Lupus 17: 645-653.    

85. Rauen T, Grammatikos AP, Hedrich CM, et al. (2012) cAMP-responsive element modulator alpha (CREMalpha) contributes to decreased Notch-1 expression in T cells from patients with active systemic lupus erythematosus (SLE). J Biol Chem 287: 42525-42532.    

86. Bassil R, Zhu B, Lahoud Y, et al. (2011) Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. J Immunol 187: 2322-2328.    

87. Dagklis A, Pauwels D, Lahortiga I, et al. (2015) Hedgehog pathway mutations in T-cell acute lymphoblastic leukemia. Haematologica 100: e102-105.    

88. Gonzalez-Gugel E, Villa-Morales M, Santos J, et al. (2013) Down-regulation of specific miRNAs enhances the expression of the gene Smoothened and contributes to T-cell lymphoblastic lymphoma development. Carcinogenesis 34: 902-908.    

Copyright Info: © 2016, Luokun Xie, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved