
Mathematical Biosciences and Engineering, 2020, 17(6): 67376755. doi: 10.3934/mbe.2020351
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Local dynamics and coexistence of predator–prey model with directional dispersal of predator
1 College of General Education, Kookmin University, 77, Jeongneungro, Seoul, 02707, Korea
2 IndustryAcademic Cooperation Foundation, Kookmin University, 77, Jeongneungro, Seoul, 02707, Korea
Received: , Accepted: , Published:
Special Issues: Advances in Ecological Modelling
References
1. M. Iida, M. Mimura, H. Ninomiya, Diffusion, crossdiffusion and competitive interaction, J. Math. Biol., 53 (2006), 617641.
2. W. Ko, K. Ryu, On a predatorprey system with cross diffusion representing the tendency of predators in the presence of prey species, J. Math. Anal. Appl., 341 (2008), 11331142.
3. T. Kadota, K. Kuto, Positive steady states for a preypredator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 13871401.
4. K. Kuto, A strongly coupled diffusion effect on the stationary solution set of a preypredator model, Adv. Differential. Equ., 12 (2007), 145172.
5. K. Kuto, Y. Yamada, Coexistence problem for a preypredator model with densitydependent diffusion, Nonlinear Anal.Theor., 71 (2009), e2223e2232.
6. K. Kuto, Y. Yamada, Limiting characterization of stationary solutions for a preypredator model with nonlinear diffusion of fractional type, Differ. Integral. Equ., 22 (2009), 725752.
7. Y. Lou, W. Ni, Diffusion vs crossdiffusion: an elliptic approach, J. Differ. Equations, 154 (1999), 157190.
8. K. Ryu, I. Ahn, Positive steadystates for two interacting species models with linear selfcross diffusions, Discrete Contin. DynA, 9 (2003), 1049.
9. K. Ryu, I. Ahn, Coexistence theorem of steady states for nonlinear selfcross diffusion systems with competitive dynamics, J. Math. Anal. Appl., 283 (2003), 4665.
10. N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 8399.
11. I. Averill, K. Lam, Y. Lou, The role of advection in a twospecies competition model: a bifurcation approach, volume 245. American Mathematical Society, 2017.
12. X. Chen, K. Lam, Y. Lou, Dynamics of a reactiondiffusionadvection model for two competing species, Discrete Contin. Dyn. S., 32 (2012), 38413859.
13. C. Cosner, Reactiondiffusionadvection models for the effects and evolution of dispersal, Discrete Contin. DynA, 34 (2014), 17011745.
14. R. S. Cantrell, C. Cosner, Y. Lou, Movement toward better environments and the evolution of rapid diffusion, Math. Biosci., 204 (2006), 199214.
15. R. S. Cantrell, C. Cosner, Y. Lou, Advectionmediated coexistence of competing species, P. Roy. Soc. Edinb. A., 137 (2007), 497518.
16. R. S. Cantrell, C. Cosner, Y. Lou, Approximating the ideal free distribution via reactiondiffusion advection equations, J. Differ. Equations, 245 (2008), 36873703.
17. C. Cosner, Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489503.
18. K. Kuto, T. Tsujikawa, Limiting structure of steadystates to the lotkavolterra competition model with large diffusion and advection, J. Differ. Equations, 258 (2015), 18011858.
19. K.Y. Lam, W.M. Ni, Advectionmediated competition in general environments, J. Differ. Equations, 257 (2014), 34663500.
20. K.Y. Lam, W. M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 10511067.
21. E. Cho, Y.J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, B. Math. Biol., 75 (2013), 845870.
22. W. Choi, S. Baek, I. Ahn, Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment, J. Math. Biol., 78 (2019), 21412169.
23. W. Choi, I. Ahn, Strong competition model with nonuniform dispersal in a heterogeneous environment, Appl. Math. Lett., 88 (2019), 96102.
24. W. Choi, I. Ahn, Nonuniform dispersal of logistic population models with free boundaries in a spatially heterogeneous environment, J. Math. Anal. Appl., 479 (2019), 283314.
25. W. Choi, I. Ahn, Predatorprey interaction systems with nonuniform dispersal in a spatially heterogeneous environment, J. Math. Anal. Appl., 485 (2020), 123860.
26. Y.J. Kim, O. Kwon, F. Li, Evolution of dispersal toward fitness, B. Math. Biol., 75 (2013), 2474 2498.
27. Y.J. Kim, O. Kwon, F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 13411370.
28. Y.J. Kim, O. Kwon, Evolution of dispersal with starvation measure and coexistence, B. Math. Biol., 78 (2016), 254279.
29. W. Choi, I. Ahn, Effect of preytaxis on predator's invasion in a spatially heterogeneous environment, Appl. Math. Lett., 98 (2019), 256262.
30. S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator prey model with preytaxis, J. Differ. Equations, 260 (2016), 58475874.
31. H. Jin, Z. Wang, Global stability of preytaxis systems, J. Differ. Equations, 262 (2017), 1257 1290.
32. Y. Tao, Global existence of classical solutions to a predatorprey model with nonlinear preytaxis, Nonlinear Anal.Real., 11 (2010), 20562064.
33. X. He, S. Zheng, Global boundedness of solutions in a reactiondiffusion system of predatorprey model with preytaxis, Appl. Math. Lett., 49 (2015), 7377.
34. C. Li, X. Wang, Y. Shao, Steady states of a predatorprey model with preytaxis, Nonlinear Anal. Theor., 97 (2014), 155168.
35. P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337341.
36. R. Arditi, L. R. Ginzburg, Coupling in predatorprey dynamics: ratiodependence, J. Theor. Biol., 139 (1989), 311326.
37. C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 6575.
38. J. M. Culp, N. E. Glozier, G. J. Scrimgeour, Reduction of predation risk under the cover of darkness: avoidance responses of mayfly larvae to a benthic fish, Oecologia, 86 (1991), 163169.
39. F. Mougeot, V. Bretagnolle, Predation risk and moonlight avoidance in nocturnal seabirds, J. Avian. Biol., 31 (2000), 376386.
40. T. Caro, Antipredator defenses in birds and mammals, University of Chicago Press, 2005.
41. H. B. Cott, Adaptive coloration in animals, 1940.
42. J. M. Hemmi, Predator avoidance in fiddler crabs: 1. escape decisions in relation to the risk of predation, Anim. Behav., 69 (2005), 603614.
43. W. J. Bell, Searching behaviour: the behavioural ecology of finding resources, Springer Science & Business Media, 2012.
44. S. Benhamou, Spatial memory and searching efficiency, Anim. Behav., 47 (1994), 14231433.
45. S. Benhamou, Bicoordinate navigation based on nonorthogonal gradient fields, J. Theo. Biol., 225 (2003), 235239.
46. W. F. Fagan, M. A. Lewis, M. AugerMeth ´ e, T. Avgar, S. Benhamou, G. Breed, et al., Spatial ´ memory and animal movement, Ecol. Lett., 16 (2013), 13161329.
47. S. M. Flaxman, Y. Lou, Tracking prey or tracking the prey's resource? mechanisms of movement and optimal habitat selection by predators, J. Theor. Biol., 256 (2009), 187200.
48. S. M. Flaxman, Y. Lou, F. G. Meyer, Evolutionary ecology of movement by predators and prey, Theor. Ecol., 4 (2011), 255267.
49. A. M. Kittle, M. Anderson, T. Avgar, J. A. Baker, G. S. Brown, J. Hagens, et al., Landscapelevel wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat, Ecosphere, 8 (2017), e01783.
50. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function spaces, differential operators and nonlinear analysis, pages 9126. Springer, 1993.
51. R. S. Cantrell, C. Cosner, Spatial ecology via reactiondiffusion equations, John Wiley & Sons, 2004.
52. L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an sis epidemic reactiondiffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1.
53. X. He, W.M. Ni, Global dynamics of the lotkavolterra competitiondiffusion system: Diffusion and spatial heterogeneity i, Commun. Pur. Appl. Math., 69 (2016), 9811014.
54. E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131151.
55. L. Li, Coexistence theorems of steady states for predatorprey interacting systems, T. Am. Math. Soc., 305 (1988), 143166.
56. M. Wang, Z. Li, Q. Ye, Existence of positive solutions for semilinear elliptic system, In Qualitative aspects and applications of nonlinear evolution equations, 1991.
57. K. Ryu, I. Ahn, Positive solutions for ratiodependent predatorprey interaction systems, J. Differ. Equations, 218 (2005), 117135.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)