
Mathematical Biosciences and Engineering, 2020, 17(6): 63556389. doi: 10.3934/mbe.2020335
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Optimal control on COVID19 eradication program in Indonesia under the effect of community awareness
1 Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia
2 Department of Mathematics, University of Nusa Cendana, KupangNTT 85361, Indonesia
Received: , Accepted: , Published:
Special Issues: Modeling the Biological, Epidemiological, Immunological, Molecular, Virological Aspects of COVID19
References
1. WorldMeter, COVID19 CORONAVIRUS PANDEMIC, available from: https://www.worldometers.info/coronavirus/#countries, accessed 02 July 2020.
2. Kementerian Kesehatan Republik Indonesia, Data Sebaran, available from: https://covid19.go.id/, accessed 02 July 2020.
3. A. Abidemi, M. I. Abd. Aziz, R. Ahmad, Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation, Chaos Solitons Fractals, 133 (2020), 109648.
4. N. Ganegoda, T. Gotz, K. P. Wijaya, An agedependent model for dengue transmission: Analysis and comparison to field data, Appl. Math. Comput., 388 (2021), 125538.
5. A. Bustamam, D. Aldila, A. Yuwanda, Understanding Dengue Control for Short and LongTerm Intervention with a Mathematical Model Approach, J. Appl. Math., 2018 (2018), 9674138.
6. J. MohammadAwel, A. B. Gumel, Mathematics of an epidemiologygenetics model for assessing the role of insecticides resistance on malaria transmission dynamics, Math. Biosci., 312 (2019), 3349.
7. F. B. Agusto, S. Y. D. Valle, K. W. Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, et al., The impact of bednet use on malaria prevalence, J. Theor. Biol., 320 (2013), 5865.
8. L. Cai, X. Li, N. Tuncer, M. Martcheva, A. A. Lashari, Optimal control of a malaria model with asymptomatic class and superinfection, Math. Biosci., 288 (2017), 94108.
9. S. Kim, A. Aurelio, E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J Theor Biol., 443 (2018), 100112.
10. D. K. Das, S. Khajanci, T. K. Kar, The impact of the media awareness and optimal strategy on the prevalence of tuberculosis, Appl. Math. Comput., 366 (2020), 124732.
11. G. O. Agaba, Y. N. Kyrychko, K. B. Blyuss, Mathematical model for the impact of awareness on the dynamics of infectious diseases, Math. Biosci., 286 (2017), 2230.
12. R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667700.
13. A. K. Misra, R. K. Rai, Y. Takeuchi, Modeling the control of infectious diseases: Effects of TV and social media advertisements, Math. Biosci. Eng., 15 (2018), 13151343.
14. K. Leung, J. T. Wu, D. Liu, G. M. Leung, Firstwave covid19 transmissibility and severity in china outside hubei after control measures, and secondwave scenario planning: a modelling impact assessment, The Lancet, 395 (2020), 13821393.
15. A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of covid19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553558.
16. K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies, et al., The effect of control strategies to reduce social mixing on outcomes of the covid19 epidemic in wuhan, china: a modelling study, Lancet Public Health, 5 (2020), e261e270.
17. E. Soewono, On the analysis of covid19 transmission in wuhan, diamond princess and jakartacluster, Commun. Biomath. Sci., 3 (2020), 918.
18. M. Z. Ndii, P. Hadisoemarto, D. Agustian, A. Supriatna, An analysis of covid19 transmission in indonesia and saudi arabia, Commun. Biomath. Sci., 3 (2020), 1927.
19. S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the covid19 pandemic, Infect. Disease Model., 5 (2020), 293308.
20. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling the COVID19 epidemic and implementation of populationwide interventions in Italy, Nat. Med., 26 (2020), 855860.
21. D. Aldila, S. H. Khoshnaw, E. Safitri, Y. R. Anwar, A. R. Bakry, B. M. Samiadji, et al., A mathematical study on the spread of covid19 considering social distancing and rapid assessment: The case of jakarta, indonesia, Chaos Solitons Fractals, 139 (2020), 110042.
22. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARSCoV2), Science, 368 (2020), 489493.
23. The world bank: Awareness Campaigns Help Prevent Against COVID19 in Afghanistan. Available from: https://www.worldbank.org/en/news/feature/2020/06/28/awarenesscampaignshelppreventagainstcovid19inafghanistan. (Accessed 15 July 2020).
24. M. S. Wolf, M. Serper, L. Opsasnick, R. M. O'Conor, L. M. Curtis, J. Y. Benavente, et al., Awareness, Attitudes, and Actions Related to COVID19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak: A Crosssectional Survey, Ann. Intern. Med., 173 (2020), 100109.
25. Worldometer, COVID19 CORONAVIRUS PANDEMIC, available from: https://www.worldometers.info/coronavirus/#countries (Accessed 25 August 2020).
26. Z. Feng, J. X. VelascoHernández, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523544.
27. A. Davies, K. A. Thompson, K. Giri, G. Kafatos, J. Walker, A. Bennett, Testing the efficacy of homemade masks: would they protect in an influenza pandemic?, Disaster. Med. Public Health Prep., 7 (2013), 413418.
28. N. M. Ferguson, D. Laydon, G. NedjatiGilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of NonPharmaceutical Interventions (NPIs) to Reduce COVID19 Mortality and Healthcare Demand, vol. 16, Imperial College COVID19 Response Team, London, 2020.
29. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARScov2), Science, 368 (2020), 489493.
30. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia, New Engl. J. Med., 382 (2020), 11991207.
31. S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, et al., The incubation period of coronavirus disease 2019 (COVID19) from publicly reported confirmed cases: Estimation and application, Ann. Int. Med., 172 (2020), 577582.
32. C.C. Lai, T.P. Shih, W.C. Ko, H.J. Tang, P.R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARScov2) and corona virus disease2019 (COVID19): The epidemic and the challenges, Int. J. Antimicrob. Ag., 55 (2020), 105924.
33. C. del Rio, P. N. Malani, COVID19new insights on a rapidly changing epidemic, JAMA, 323 (2020), 13391340.
34. R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will countrybased mitigation measures influence the course of the COVID19 epidemic?, Lancet, 395 (2020), 931934.
35. World Health Organization, Coronavirus disease 2019 (COVID19): Situation report, 46, WHO (2020).
36. B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.
37. L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, et al., SARSCoV2 viral load in upper respiratory specimens of infected patients, New Engl. J. Med., 382 (2020), 11771179.
38. G. Grasselli, A. Pesenti, M. Cecconi, Critical care utilization for the COVID19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response, JAMA, 323 (2020), 15451546.
39. C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. Maclntyre, M. H. Bonds, et al., Mathematical assessment of the impact of nonpharmaceutical interventions on curtailing the 2019 novel Coronavirus, Math. Biosci., 325 (2020), 108364.
40. O. Diekmann, J. A. Heesterbeek, M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 4 (2010), 873885.
41. P. Van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948.
42. O. Diekmann, J. A. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365382.
43. K. P. Wijaya, J. P. Chavez, D. Aldila, An epidemic model highlighting humane social awareness and vectorhost lifespan ratio variation, Commun. Nonlinear Sci. Numer. Simulat., 90 (2020), 105389.
44. B. D. Handari, F. Vitra, R. Ahya, D. Aldila, Optimal control in a malaria model: intervention of fumigation and bed nets, Adv. Differ. Equations, 497 (2019), 497.
45. D. Aldila, T. Götz, E. Soewono, An optimal control problem arising from a dengue disease transmission model, Math. Biosci., 242 (2013), 916.
46. D. Aldila, H. Seno, A Population Dynamics Model of MosquitoBorne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use, Bull. Math. Biol., 81 (2020), 49775008.
47. S. M. Garba, A. B. Gumel, M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 1125.
48. T. C. Reluga, J. Medlock, A. S. Perelson, Backward bifurcations and multiple equilibria in epidemic models with structured immunity, J. Theor. Biol., 252 (2008), 155165.
49. D. H. Knipl, G. Röst, Backward bifurcation in SIVS Model with immigration of Noninfectives, Biomath., 2 (2013), 114.
50. C. CastilloChavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361404.
51. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York/London 1962. John Wiley & Sons.
52. F. B. Agusto, I. M. Elmojtaba, Optimal control and costeffective analysis of malaria/visceral leishmaniasis coinfection,PLoS One, 12 (2017), e0171102.
53. A. Kumar, P. K. Srivastava, Y. Dong, Y. Takeuchi, Optimal control of infectious disease: Informationinduced vaccination and limited treatment, Physica A, 542 (2020), 123196.
54. H. R. Joshi, S. Lenhart, S. Hota, F. Agusto, Optimal control of an SIR model with changing behavior through an education campaign, Electron. J. Differ. Eq., 50 (2015), 114.
55. M. Z. Ndii, F. R. Berkanis, D. Tambaru, M. Lobo, B. S. Djahi, Optimal control strategy for the effects of hard water consumption on kidneyrelated diseases, BMC Res. Notes, 13 (2020), 201.
56. Jakarta responses to COVID19 official website. Available from: https://corona.jakarta.go.id/id
57. East Java responses to COVID19 official website. Available from: http://infocovid19.jatimprov.go.id
58. Information center and coordination for COVID19, West Java, official website. Available from: https://pikobar.jabarprov.go.id
59. S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178196.
60. M. Z. Ndii, B. S. Djahi, N. D. Rumlaklak, A. K. Supriatna, Determining the important parameters of mathematical models of the propagation of malware, in: M. A. Othman, M. Z. A. Abd Aziz, M. S. Md Saat, M. H. Misran (Eds.), Proceedings of the 3rd International Symposium of Information and Internet Technology (SYMINTECH 2018), Springer International Publishing, Cham, 2019, pp. 19.
61. S. Lenhart, J. T.& Workman Optimal control applied to biological models. CRC Press, 2007.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)