
Mathematical Biosciences and Engineering, 2020, 17(6): 62596277. doi: 10.3934/mbe.2020331
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A Newtonlike iterative method implemented in the DelPhi for solving the nonlinear PoissonBoltzmann equation
1 Department of Mathematics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383, USA
2 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
3 Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA
Received: , Accepted: , Published:
Special Issues: Recent developments and applications in Computational Biophysics and Bioinformatics
References
1. G. A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Classical electrostatics for biomolecular simulations, Chem. Rev., 114 (2014), 779814.
2. B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry, Science, 268 (1995), 11441149.
3. Z. Zhang, S. Witham, E. Alexov, On the role of electrostatics in protein–protein interactions, Phys. Biol., 8 (2011), 035001.
4. J. Batra, A. Szabó, T. R. Caulfield, A. S. Soares, M. SahinTóth, E. S. Radisky, Longrange electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation, J. Biol. Chem. 288 (2013), 98489859.
5. H. Ikeuchi, Y. M. Ahn, T. Otokawa, B. Watanabe, L. Hegazy, J. Hiratake, et al., A sulfoximinebased inhibitor of human asparagine synthetase kills Lasparaginaseresistant leukemia cells, Bioorg. Med. Chem., 20 (2012), 59155927.
6. X. Huang, F. Dong, H. X. Zhou, Electrostatic recognition and induced fit in the κPVIIA toxin binding to Shaker potassium channel, J. Am. Chem. Soc., 127 (2005), 68366849.
7. E. Alexov, Numerical calculations of the pH of maximal protein stability: The effect of the sequence composition and threedimensional structure, Eur. J. Biochemi., 271 (2004), 173185.
8. A. Isvoran, C. Craescu, E. Alexov, Electrostatic control of the overall shape of calmodulin: numerical calculations, Eur. Biophy. J., 36 (2007), 225237.
9. R. C. Mitra, Z. Zhang, E. Alexov, In silico modeling of pHoptimum of protein–protein binding, Proteins: Struct., Funct., Bioinf., 79 (2011), 925936.
10. A. V. Onufriev, E. Alexov, Protonation and pK changes in protein–ligand binding, Q. Rev. Biophys., 46 (2013), 181209.
11. K. Talley, E. Alexov, On the pH‐optimum of activity and stability of proteins, Proteins: Struct., Funct., Bioinf., 78 (2010), 26992706.
12. M. Petukh, T. Kimmet, E. Alexov, BION web server: predicting nonspecifically bound surface ions, Bioinformatics, 29 (2013), 805806.
13. M. Petukh, M. Zhang, E. Alexov, Statistical investigation of surface bound ions and further development of BION server to include p H and salt dependence, J. Comput. Chem., 36 (2015), 23812393.
14. M. Petukh, M. Zhenirovskyy, C. Li, L. Li, L. Wang, E. Alexov, Predicting nonspecific ion binding using DelPhi, Biophys. J., 102 (2012), 28852893.
15. E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti, et al., Progress in the prediction of pKa values in proteins, Proteins: Struct., Funct., Bioinf., 79 (2011), 32603275.
16. R. E. Georgescu, E. G. Alexov, M. R. Gunner, Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins, Biophys. J., 83 (2002), 17311748.
17. M. R. Gunner, N. A. Baker, Continuum electrostatics approaches to calculating pKas and Ems in proteins, Methods Enzymol., 578 (2016), 120.
18. C. Bertonati, B. Honig, E. Alexov, PoissonBoltzmann calculations of nonspecific salt effects on proteinprotein binding free energies, Biophys. J., 92 (2007), 18911899.
19. J. H. Bredenberg, C. Russo, M. O. Fenley, Saltmediated electrostatics in the association of TATA binding proteins to DNA: a combined molecular mechanics/PoissonBoltzmann study, Biophys. J., 94 (2008), 46344645.
20. A. Ghosh, C. S. Rapp, R. A. Friesner, Generalized Born model based on a surface integral formulation, J. Phys. Chem. B, 102 (1998), 1098310990.
21. P. Grochowski, J. Trylska, Continuum molecular electrostatics, salt effects, and counterion bindinga review of the Poisson–Boltzmann theory and its modifications, Biopolym.: Orig. Res. Biomol., 89 (2008), 93113.
22. N. A. Baker, Poisson–Boltzmann methods for biomolecular electrostatics, Methods Enzymol., 383 (2004), 94118.
23. L. Xiao, J. Diao, D. A. Greene, J. Wang, R. Luo, A continuum Poisson–Boltzmann model for membrane channel proteins, J. Chem. Theory Comput., 13 (2017), 33983412.
24. C. Li, L. Li, M. Petukh, E Alexov, Progress in developing PoissonBoltzmann equation solvers, Comput. Math. Biophys., 1 (2013), 4262.
25. J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev, Generalized Born model with a simple, robust molecular volume correction, J. Chem. Theory Comput., 3 (2007), 156169.
26. M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, C. L. Brooks III, Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures, J. Comput. Chem., 25 (2004), 265284.
27. L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, et al., DelPhi: A comprehensive suite for DelPhi software and associated resources, BMC Biophys., 5 (2012), 9.
28. W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, B. Honig, Rapid grid‐based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects, J. Comput. Chem., 23 (2002), 128137.
29. W. M. BotelloSmith, X. Liu, Q. Cai, Z. Li, H. Zhao, R. Luo, Numerical Poisson–Boltzmann model for continuum membrane systems, Chemi. Phys. Lett., 555 (2013), 274281.
30. Y. Zhou, S. Zhao, M. Feig, G. W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213 (2006), 130.
31. E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, et al., Improvements to the APBS biomolecular solvation software suite, Protein Sci., 27 (2018), 112128.
32. A. H. Boschitsch, M. O. Fenley, A new outer boundary formulation and energy corrections for the nonlinear Poisson–Boltzmann equation, J. Comput. Chem., 28 (2007), 909921.
33. A. H. Boschitsch, M. O. Fenley, Hybrid boundary element and finite difference method for solving the nonlinear Poisson–Boltzmann equation, J. Comput. Chem., 25 (2004), 935955.
34. C. Li, Z. Jia, A. Chakravorty, S. Pahari, Y. Peng, S. Basu, et al., DelPhi Suite: New Developments and Review of Functionalities, J. Comput. Chem., 40 (2019), 25022508.
35. I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification, Proteins: Struct., Funct., Bioinf., 1 (1986), 4759.
36. W. Im, D. Beglov, B. Roux, Continuum solvation model: computation of electrostatic forces from numerical solutions to the PoissonBoltzmann equation, Comput. Phys. Commun., 111 (1998), 5975.
37. W. Rocchia, E. Alexov, B. Honig, Extending the applicability of the nonlinear Poisson Boltzmann equation: multiple dielectric constants and multivalent ions, J. Phys. Chem. B, 105 (2001), 65076514.
38. B. A. Luty, M. E. Davis, J. A. McCammon, Solving the finite‐difference non‐linear Poisson–Boltzmann equation, J. Comput. Chem., 13 (1992), 11141118.
39. M. J. Holst, F. Saied, Numerical solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods, J. Comput. Chem., 16 (1995), 337364.
40. Q. Cai, M. J. Hsieh, J. Wang, R. Luo, Performance of nonlinear finitedifference Poisson Boltzmann solvers, J. Chem. Theory Comput., 6 (2010), 203211.
41. A. Shestakov, J. Milovich, A. Noy, Solution of the nonlinear Poisson–Boltzmann equation using pseudotransient continuation and the finite element method, J. Colloid Interface Sci., 247 (2002), 6279.
42. A. Sayyed–Ahmad, K. Tuncay, P. J. Ortoleva, Efficient solution technique for solving the Poisson–Boltzmann equation, J. Comput. Chem., 25 (2004), 10681074.
43. W. Geng, S. Zhao, Fully implicit ADI schemes for solving the nonlinear PoissonBoltzmann equation, Comput. Math. Biophys., 1 (2013), 109123.
44. A. Nicholls, B. Honig, A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation, J. Comput. Chem., 12 (1991), 435445.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)