Research article Special Issues

The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis

  • Received: 27 May 2020 Accepted: 03 August 2020 Published: 18 August 2020
  • Vector-borne diseases that occur in humans, as well as in domestic and wild reservoir hosts, cause a significant concern in public health, veterinary health, and ecological health in bio-diverse environments. The majority of vector-borne zoonotic diseases are transmitted among diverse host species, but different hosts have their own ability to transmit pathogens and to attract vectors. These combined transmission mechanisms in hosts and vectors are often called "host competencies" and "vector-feeding preferences." The purpose of this research is to assess the relationship between the host's ability to transmit the pathogen to vectors and the different feeding preferences for a specific host using a multi-host mathematical model. Working with zoonotic cutaneous leishmaniasis and Chagas disease, numerical simulations illustrate these vector-host populations' behavior together for the first time. Global sensitivity analyses confirm that the basic reproductive number, R0, is more sensitive to the the vector-demographic and biting-rate parameters in both diseases. Therefore, in this era of remarkable biodiversity loss and increased vector-borne diseases, it is crucial to understand how vector-host interaction mechanisms affect disease dynamics in humans within wildlife and domestic settings.

    Citation: Rocio Caja Rivera, Shakir Bilal, Edwin Michael. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5561-5583. doi: 10.3934/mbe.2020299

    Related Papers:

  • Vector-borne diseases that occur in humans, as well as in domestic and wild reservoir hosts, cause a significant concern in public health, veterinary health, and ecological health in bio-diverse environments. The majority of vector-borne zoonotic diseases are transmitted among diverse host species, but different hosts have their own ability to transmit pathogens and to attract vectors. These combined transmission mechanisms in hosts and vectors are often called "host competencies" and "vector-feeding preferences." The purpose of this research is to assess the relationship between the host's ability to transmit the pathogen to vectors and the different feeding preferences for a specific host using a multi-host mathematical model. Working with zoonotic cutaneous leishmaniasis and Chagas disease, numerical simulations illustrate these vector-host populations' behavior together for the first time. Global sensitivity analyses confirm that the basic reproductive number, R0, is more sensitive to the the vector-demographic and biting-rate parameters in both diseases. Therefore, in this era of remarkable biodiversity loss and increased vector-borne diseases, it is crucial to understand how vector-host interaction mechanisms affect disease dynamics in humans within wildlife and domestic settings.


    加载中


    [1] D. Biswas, S. Dolai, C. Jahangir, P. K. Roy, E. V. Grigorieva, Cost-Effective Analysis of Control Strategies to Reduce the Prevalence of Cutaneous Leishmaniasis, Based on a Mathematical Model, Math. Comput. Appl., 23 (2018), 38.
    [2] R. Caja Rivera, I. Barradas, Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity, Bull. Math. Biol., 81 (2019), 4447-4469.
    [3] S. S. Gervasi, D. J. Civitello, H. J. Kilvitis, L. B. Martin, The context of host competence: a role for plasticity in host-parasite dynamics, Trends Parasitol., 31 (2015), 419-425.
    [4] J. E. Simpson, P. J. Hurtado, J. Medlock, G. Molaei, T. G. Andreadis, A. P. Galvani, et al., Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system, Proc. Royal Soc. B, 279 (2012), 925-933. doi: 10.1098/rspb.2011.1282
    [5] L. Yakob, M. B. Bonsall, G. Yan, Modelling knowlesi malaria transmission in humans: vector preference and host competence, Malaria J., 9 (2010), 329.
    [6] J. E. Rabinovich, O. Rossell, Mathematical models and ecology of Chagas disease, American Trypanosomiasis Research, PAHO Sci. Publ, 318 (1976), 245-250.
    [7] J. E. Cohen, R. E. Gürtler, Modeling household transmission of American trypanosomiasis, Science, 293 (2001), 694-698.
    [8] C. S. Apperson, K. Hassan, B. A. Harrison, H. M. Savage, S. E. Aspen, A. Farajollahi, et al., Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States, Vector-Borne Zoonotic Dis., 4 (2004), 71-82.
    [9] F. Keesing, M. H. Hersh, M. Tibbetts, D. J. McHenry, S. Duerr, J. Brunner, et.al., Reservoir competence of vertebrate hosts for Anaplasma phagocytophilum, Emerging Infect. Dis., 18 (2012), 2013. doi: 10.3201/eid1812.120919
    [10] C. L. Hodo, S. A. Hamer, Toward an ecological framework for assessing reservoirs of vector-borne pathogens: wildlife reservoirs of Trypanosoma cruzi across the southern United States, ILAR J., 58 (2017), 379-392.
    [11] R. S. Ostfeld, F. Keesing, Biodiversity series: the function of biodiversity in the ecology of vectorborne zoonotic diseases, Can. J. Zool., 78 (2000), 2061-2078.
    [12] T. Lembo, K. Hampson, D. T. Haydon, M. Craft, A. Dobson, J. Dushoff, et al., Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem, J. Appl. Ecol., 45 (2008), 1246-1257. doi: 10.1111/j.1365-2664.2008.01468.x
    [13] P. J. Hudson, A. P. Rizzoli, B. T. Grenfell, J. A. P. Heesterbeek, A. P. Dobson, Ecology of wildlife diseases, 2002, 1-5.
    [14] R. E. Gürtler, M. V. Cardinal, Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi, Acta Trop., 151 (2015), 32-50.
    [15] D. Richter, A. Spielman, N. Komar, F. R. Matuschka, Competence of American robins as reservoir hosts for Lyme disease spirochetes, Emerging Infect. Dis., 6 (2000), 133.
    [16] J. L. Brunner, K. LoGiudice, R. S. Ostfeld, Estimating reservoir competence of Borrelia burgdorferi hosts: prevalence and infectivity, sensitivity, and specificity, J. Med. Entomol., 45 (2008), 139-147.
    [17] F. Keesing, R. D. Holt, R. S. Ostfeld, Effects of species diversity on disease risk, Ecol. Lett., 9 (2006), 485-498.
    [18] L. Yakob, How do biting disease vectors behaviourally respond to host availability?, Parasite. Vector., 9 (2016), 468.
    [19] A. M. Kilpatrick, L. D. Kramer, M. J. Jones, P. P. Marra, P. Daszak, West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior, PLoS Biol., 4 (2006), e82.
    [20] W. Takken, N. O. Verhulst, Host preferences of blood-feeding mosquitoes, Annu. Rev. Entomol., 58 (2013), 433-453.
    [21] P. Queiroz, G. Monteiro, V. Macedo, M. Rocha, L. Batista, J. Queiroz, et al., Canine visceral leishmaniasis in urban and rural areas of Northeast Brazil, Res. Vet. Sci., 86 (2009), 267-273.
    [22] R. Gürtler, E. Ricardo, L. A. Ceballos, P. Ordóñez-Krasnowski, L. A. Lanati, R. Stariolo, et al., Strong host-feeding preferences of the vector Triatoma infestans modified by vector density: implications for the epidemiology of Chagas disease, PLoS Negl. Trop. Dis., 3 (2009), e447.
    [23] H. V. Pates, W. Takken, K. Stuke, C. F. Curtis, Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory, Bull. Entomol. Res., 91 (2001), 289-296.
    [24] D. T. Haydon, S. Cleaveland, L. H. Taylor, M. Karen Laurenson, Identifying reservoirs of infection: a conceptual and practical challenge, Emerging Infect. Dis., 8 (2002), 1468-1473.
    [25] R. Ostfeld, F. Keesing, Biodiversity series: the function of biodiversity in the ecology of vectorborne zoonotic diseases, Canadian J. Zool., 78 (2000), 2061-2078.
    [26] E. Miller, A. Huppert, The effects of host diversity on vector-borne disease: the conditions under which diversity will amplify or dilute the disease risk, PLoS One, 8 (2013), e80279.
    [27] R. Ostfeld, F. Keesing, V. T. Eviner, Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems, Princeton University Press, 2008.
    [28] R. M. Anderson, R. M. Robert, Infectious diseases of humans: dynamics and control, Oxford University Press, 1992.
    [29] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
    [30] W. B. Karesh, A. Dobson, J. O. Lloyd-Smith, J. Lubroth, M. A. Dixon, M. Bennett, et al., Ecology of zoonoses: natural and unnatural histories, The Lancet, 380 (2012), 1936-1945.
    [31] Y. Hashiguchi, E. Gomez, A. G. Cáceres, L. N. Velez, N. V. Villegas, K. Hashiguchi, et al., Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the causative Leishmania parasites and clinico-epidemiological features, Acta Trop., 177 (2018), 135-145.
    [32] E. A. Llanos-Cuentas, N. Roncal, P. Villaseca, L. Paz, E. Ogusuku, J. E. Perez, et al., Natural infections of Leishmania peruviana in animals in the Peruvian Andes, T. Roy. Soc. Trop. Med. H., 93 (1999), 15-20.
    [33] J. Arevalo, L. Ramirez, V. Adaui, M. Zimic, G. Tulliano, C. Miranda-Verástegui, et al., Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis, J. Infect. Dis., 195 (2007), 1846-1851.
    [34] Y. Hashiguchi, A. G. Cáceres, L. N. Velez, N. V. Villegas, K. Hashiguchi, T. Mimori, et al., Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector Lutzomyia sand flies and reservoir mammals, Acta Trop., 178 (2018), 264-275.
    [35] Y. Hashiguchi, E. A. Gomez, V. V. De Coronel, T. Mimori, M. Kawabata, M. Furuya, et al., Andean leishmaniasis in Ecuador caused by infection with Leishmania mexicana and L. majorlike parasites, Am. J. Trop. Med. H., 44 (1991), 205-217.
    [36] R. Reithinger, C. R. Davies, Is the domestic dog (Canis familiaris) a reservoir host of American cutaneous leishmaniasis? A critical review of the current evidence, Am. J. Trop. Med. H., 61 (1999), 530-541.
    [37] C. R. Davies, E. A. Llanos-Cuentas, P. Campos, J. Monge, P. Villaseca, C. Dye, Cutaneous leishmaniasis in the Peruvian Andes: risk factors identified from a village cohort study, Am. J. Trop. Med. H., 56 (1997), 85-95.
    [38] E. A. Llanos-Cuentas, C. Davies, Epidemiological studies on Andean Cutaneous Leishmaniasis and their significance for designing a control strategy, In Leishmaniasis Control Strategies: a Critical Evaluation of IDRC Supported Research; proceedings of a workshop held in Mérida, Mexico, Nov. 25-29, 1991... IDRC, Ottawa, ON, CA, 1992.
    [39] I. Barradas, R. M. Caja Rivera, Cutaneous leishmaniasis in Peru using a vector-host model: Backward bifurcation and sensitivity analysis, Math. Methods Appl. Sci., 41 (2018), 1908-1924.
    [40] J. E. Rabinovich, M. D. Feliciangeli, Parameters of Leishmania braziliensis transmission by indoor Lutzomyia ovallesi in Venezuela, Am. J. Trop. Med. H., 70 (2004), 373-382.
    [41] S. L. Sánchez, A. E. Sáenz, M. J. Pancorbo, D. R. Zegarra, V. N. Garcés, R. A. Regis, Leishmaniasis: Dermatología, 14 (2004), 82-98.
    [42] CDC: Center for Disease Control and Prevention, available from: https://www.cdc.gov/parasites/chagas/.
    [43] J. R. Coura, Chagas disease:control, elimination and eradication, Is it possible?, Mem. Inst. Oswaldo Cruz, 108 (2013), 962-967.
    [44] M. P. Barrett, S. L. Croft, Management of trypanosomiasis and leishmaniasis, Brit. Med. Bull., 104 (2012), 175-196.
    [45] A. L. Roque, A. M. Jansen, Wild and synanthropic reservoirs of Leishmania species in the Americas, Int. J. Parasitol-Par., 3 (2014), 251-262.
    [46] L. F. Chaves, M. J. Hernandez, S. Ramos, Simulación de modelos matemáticos como herramienta para el estudio de los reservorios de la Leishmaniasis Cutánea Americana, Divulgaciones Matemáticas, 16 (2008), 125-154.
    [47] J. E. Rabinovich, C. Wisnivesky-Colli, N. D. Solarz, R. E. Gürtler, Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina, Bull. World Health Organ., 68 (1990), 737.
    [48] C. Kribs-Zaleta, Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the United States, PLoS Negl. Trop. Dis., 4 (2010), e656.
    [49] Pan American Health Organization-World Health Organization.
    [50] C. Pirmez, S. G. Coutinho, M. C. Marzochi, M. P. Nunes, G. Grimaldi, Canine American cutaneous leishmaniasis: a clinical and immunological study in dogs naturally infected with Leishmania braziliensis braziliensis in an endemic area of Rio de Janeiro, Brazil, Am. J. Trop. Med. H., 38 (1988), 52-58.
    [51] L. Reveiz, A. N. Maia-Elkhoury, R. S. Nicholls, G. A. Sierra Romero, Z. E. Yadon, Interventions for American cutaneous and mucocutaneous leishmaniasis: a systematic review update, PloS One, 8 (2013), e61843.
    [52] R. E. Gürtler, M. C. Cecere, M. A. Lauricella, M. V. Cardinal, U. Kitron, J. E. Cohen, Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina, Parasitology, 134 (2007), 69-82.
    [53] M. B. Castañera, J. P. Aparicio, R. E. Gürtler, A stage-structured stochastic model of the population dynamics of Triatoma infestans, the main vector of Chagas disease, Ecol. Model., 162 (2003), 33- 53.
    [54] Ministerio de Salud y Protección Social (MinSalud), Enfermedad de Chagas. Memorias.p.1-34.
    [55] S. A. Pedro, H. E. Tonnang, S. Abelman, Uncertainty and sensitivity analysis of a Rift Valley fever model, Appl. Math. Comput., 279 (2016), 170-186.
    [56] C. Costa, R. Gomes, M. Silva, L. M. Garcez, P. Ramos, R. S. Santos, et al., Competence of the human host as a reservoir for Leishmania chagasi, J. Infect. Dis., 182 (2000), 997-1000.
    [57] J. R. Lockwood III, On the statistical analysis of multiple-choice feeding preference experiments, Oecologia, 116 (1998), 475-481.
    [58] T. D. Hollingsworth, E. R. Adams, R. M. Anderson, K. Atkins, S. Bartsch, M.G. Basáñez, et al., Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases, Parasite. Vector., 8 (2015), 630.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4443) PDF downloads(250) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog