
Mathematical Biosciences and Engineering, 2020, 17(5): 46314656. doi: 10.3934/mbe.2020255
Review Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Recent advances and future trends in exploring Paretooptimal topologies and additive manufacturing oriented topology optimization
School of Engineering, Deakin University, Waurn Ponds, VIC 3217, Australia
Received: , Accepted: , Published:
Special Issues: Advanced Informatics Modeling and Analysis Approach in Additive Manufacturing
References
1. K. Ghabraie, An improved softkill BESO algorithm for optimal distribution of single or multiple material phases, Struct. Multidiscip. Optim., 52 (2015), 773790.
2. K. Ghabraie, The ESO method revisited, Struct. Multidiscip. Optim., 51 (2015), 12111222.
3. L. N. S. Chiu, B. Rolfe, X. H. Wu, W. Y. Yan, Effect of stiffness anisotropy on topology optimisation of additively manufactured structures, Eng. Struct., 171 (2018), 842848.
4. O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48 (2013), 10311055.
5. M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71 (1988), 197224.
6. M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim., 1 (1989), 193202.
7. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21 (2001), 120127.
8. G. Allaire, F. Jouve, A. M. Toader, A levelset method for shape optimization, C. R. Math., 334 (2002), 11251130.
9. G. Allaire, F. Jouve, A. M. Toader, Structural optimization using sensitivity analysis and a levelset method, J. Comput. Phys., 194 (2004), 363393.
10. M. Y. Wang, X. M. Wang, D. M. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., 192 (2003), 227246.
11. Y. M. Xie, G. P. Steven, Shape and layout optimization via an evolutionary procedure, in: Proceedings of International Conference on Computational Engineering Science, Hong Kong, 1992.
12. Y. M. Xie, G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct., 49 (1993), 885896.
13. X. Guo, W. S. Zhang, W. L. Zhong, Doing topology optimization explicitly and geometricallyA new moving morphable components based framework, J. Appl. Mech., 81 (2014), 081009.
14. X. Guo, W. S. Zhang, J. Zhang, J. Yuan, Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Eng., 310 (2016), 711748.
15. W. S. Zhang, J. Yuan, J. Zhang, X. Guo, A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53 (2016), 12431260.
16. W. S. Zhang, D. Li, J. Yuan, J. F. Song, X. Guo, A new threedimensional topology optimization method based on moving morphable components (MMCs), Comput. Mech., 59 (2017), 647665.
17. W. S. Zhang, W. Y. Yang, J. H. Zhou, D. Li, X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech., 84 (2017), 011011.
18. W. S. Zhang, J. S. Chen, X. F. Zhu, J. H. Zhou, D. C. Xue, X. Lei, et al., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Eng., 322 (2017), 590614.
19. W. S. Zhang, D. D. Li, P. Kang, X. Guo, S. K. Youn, Explicit topology optimization using IGAbased moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Eng., 360 (2020), 112685.
20. D. C. Da, L. Xia, G. Y. Li, X. D. Huang, Evolutionary topology optimization of continuum structures with smooth boundary representation, Struct. Multidiscip. Optim., 57 (2018), 21432159.
21. Y. F. Fu, B. Rolfe, L. N. S. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Smooth topological design of 3D continuum structures using elemental volume fractions, Comput. Struct., 231 (2020), 106213.
22. Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, SEMDOT: SmoothEdged Material Distribution for Optimizing Topology Algorithm, arXiv preprint arXiv:2005.09233, 2020.
23. X. D. Huang, Smooth topological design of structures using the floating projection, Eng. Struct., 208 (2020), 110330.
24. X. D. Huang, On smooth or 0/1 designs of the fixedmesh elementbased topology optimization, arXiv preprint arXiv:2006.04306 (2020).
25. H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: A critical review, Int. J. Adv. Manuf. Technol., 83 (2016), 389405.
26. H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, Y. J. Kim, Lasers in additive manufacturing: A review, Int. J. Precis. Eng. Manuf. Green Technol., 4 (2017), 307322.
27. J. C. Jiang, X. Xu, J. Stringer, Optimisation of multipart production in additive manufacturing for reducing support waste, Virtual Phys. Prototyping, 14 (2019), 219228.
28. J. C. Jiang, X. Xu, J. Stringer, A new support strategy for reducing waste in additive manufacturing, in: The 48th International Conference on Computers and Industrial Engineering (CIE 48), 2018. Available from: https://www.researchgate.net/publication/329999272.
29. C. W. Hull, Apparatus for production of threedimensional objects by stereolithography, 1986. US Patent 4,575,330A, August, 1984.
30. J. C. Jiang, X. Xu, J. Stringer, Support structures for additive manufacturing: A review, J. Manuf. Mater. Process., 2 (2018), 64.
31. J. C. Jiang, G. B. Hu, X. Li, X. Xu, P. Zheng, J. Stringer, Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network, Virtual Phys. Prototyping, 14 (2019), 253266.
32. J. C. Jiang, J. Stringer, X. Xu, Support optimization for flat features via path planning in additive manufacturing, 3D Print. Addit. Manuf., 6 (2019), 171179.
33. J. C. Jiang, C. L. Yu, X. Xu, Y. S. Ma, J. K. Liu, Achieving better connections between deposited lines in additive manufacturing via machine learning, Math. Biosci. Eng., 17 (2020), 33823394.
34. J. C. Jiang, Y. S. Ma, Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review, Micromachines, 11 (2020), 633.
35. J. C. Jiang, A novel fabrication strategy for additive manufacturing processes, J. Cleaner Production, 2020, forthcoming.
36. D. Brackett, I. Ashcroft, R. Hague, Topology optimization for additive manufacturing, in: 23rd Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference, Austin, TX, 2011. Available from: https://sffsymposium.engr.utexas.edu/Manuscripts/2011/201127Brackett.pdf.
37. J. K. Liu, Y. S. Ma, A survey of manufacturing oriented topology optimization methods, Adv. Eng. Software, 100 (2016), 161175.
38. D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 57 (2012), 133164.
39. T. T. Le, S. A. Austin, S. Lim, R. A. Buswell, R. Law, A. G. Gibb, et al., Hardened properties of highperformance printing concrete, Cem. Concr. Res., 42 (2012), 558566.
40. W. E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform., 23 (2014), 19171928.
41. T. Zegard, G. H. Paulino, Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53 (2016), 175192.
42. Y. Saadlaoui, J. L. Milan, J. M. Rossi, P. Chabrand, Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes, J. Manuf. Syst., 43 (2017), 178186.
43. A. M. Mirzendehdel, K. Suresh, Support structure constrained topology optimization for additive manufacturing, Comput. Aided Des., 81 (2016), 113.
44. H. C. Yu, J. Q. Huang, B. Zou, W. Shao, J. K. Liu, Stressconstrained shelllattice infill structural optimisation for additive manufacturing, Virtual Phys. Prototyping, 15 (2020), 3548.
45. X. J. Wang, S. Q. Xu, S. W. Zhou, W. Xu, M. Leary, P. Choong, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83 (2016), 127141.
46. S. Nelaturi, W. Kim, T. Kurtoglu, Manufacturability feedback and model correction for additive manufacturing, J. Manuf. Sci. Eng., 137 (2015), 021015.
47. D. Thomas, The development of design rules for selective laser melting, Ph.D. thesis, University of Wales, 2009.
48. D. Wang, Y. Q. Yang, Z. H. Yi, X. B. Su, Research on the fabricating quality optimization of the overhanging surface in SLM process, Int. J. Adv. Manuf. Technol., 65 (2013), 14711484.
49. R. Mertens, S. Clijsters, K. Kempen, J. P. Kruth, Optimization of scan strategies in selective laser melting of aluminum parts with downfacing areas, J. Manuf. Sci. Eng., 136 (2014), 061012.
50. J. C. Jiang, J. Stringer, X. Xu, R. Y. Zhong, Investigation of printable threshold overhang angle in extrusionbased additive manufacturing for reducing support waste, Int. J. Comput. Integr. Manuf., 31 (2018), 961969.
51. J. C. Jiang, X. Xu, J. Stringer, Optimization of process planning for reducing material waste in extrusion based additive manufacturing, Rob. Comput. Integr. Manuf., 59 (2019), 317325.
52. M. Leary, L. Merli, F. Torti, M. Mazur, M. Brandt, Optimal topology for additive manufacture: A method for enabling additive manufacture of supportfree optimal structures, Mater. Des., 63 (2014), 678690.
53. X. Guo, J. H. Zhou, W. S. Zhang, Z. L. Du, C. Liu, Y. Liu, Selfsupporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Eng., 323 (2017), 2763.
54. R. L. Moritz, E. Reich, M. Schwarz, M. Bernt, M. Middendorf, Refined ranking relations for selection of solutions in multi objective metaheuristics, Eur. J. Oper. Res., 243 (2015), 454464.
55. J. K. Liu, A. T. Gaynor, S. K. Chen, Z. Kang, K. Suresh, A. Takezawa, et al., Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 24572483.
56. L. Meng, W. H. Zhang, D. L. Quan, G. H. Shi, L. Tang, Y. L. Hou, et al., From topology optimization design to additive manufacturing: Todays success and tomorrows roadmap, Arch. Comput. Methods Eng., 27 (2020), 805830.
57. L. Zadeh, Optimality and nonscalarvalued performance criteria, IEEE Trans. Autom. Control, 8 (1963), 5960.
58. A. M. Jubril, A nonlinear weights selection in weighted sum for convex multiobjective optimization, Facta Univ., 27 (2012), 357372.
59. R. T. Marler, J. S. Arora, The weighted sum method for multiobjective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853862.
60. I. Turevsky, K. Suresh, Efficient generation of Paretooptimal topologies for compliance optimization, Int. J. Numer. Methods Eng., 87 (2011), 12071228.
61. F. Zhao, A meshless Paretooptimal method for topology optimization, Eng. Anal. Boundary Elem., 37 (2013), 16251631.
62. S. A. Gebrezgabher, M. P. Meuwissen, A. G. O. Lansink, A multiple criteria decision making approach to manure management systems in the Netherlands, Eur. J. Oper. Res., 232 (2014), 643653.
63. P. L. Yu, A class of solutions for group decision problems, Manage. Sci., 19 (1973), 841971.
64. S. Choi, S. Kim, J. Park, S. Han, Multiobjective optimization of the inner reinforcement for a vehicles hood considering static stiffness and natural frequency, Int. J. Autom. Technol., 8 (2007), 337342.
65. K. H. Cho, J. Y. Park, S. P. Ryu, S. Y. Han, Reliabilitybased topology optimization based on bidirectional evolutionary structural optimization using multiobjective sensitivity numbers, Int. J. Autom. Technol., 12 (2011), 849856.
66. Q. H. Zhao, X. K. Chen, L. Wang, J. F. Zhu, Z. D. Ma, Y. Lin, Simulation and experimental validation of powertrain mounting bracket design obtained from multiobjective topology optimization, Adv. Mech. Eng., 7 (2015), 110.
67. K. S. Raju, P. Sonali, D. N. Kumar, Ranking of CMIP5based global climate models for India using compromise programming, Theor. Appl. Climatol., 128 (2017), 563574.
68. J. Koski, R. Silvennoinen, Norm methods and partial weighting in multicriterion optimization of structures, Int. J. Numer. Methods Eng., 24 (1987), 11011121.
69. R. T. Marler, J. S. Arora, Functiontransformation methods for multiobjective optimization, Eng. Optim., 37 (2005), 551570.
70. K. A. Proos, G. P. Steven, O. M. Querin, Y. M. Xie, Multicriterion evolutionary structural optimization using the weighting and the global criterion methods, AIAA J., 39 (2001), 20062012.
71. I. Das, J. E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim., 14, (1997), 6369.
72. A. Messac, C. A. Mattson, Generating welldistributed sets of Pareto points for engineering design using physical programming, Optim. Eng., 3 (2002), 431450.
73. K. Izui, T. Yamada, S. Nishiwaki, K. Tanaka, Multiobjective optimization using an aggregative gradientbased method, Struct. Multidiscip. Optim., 51 (2015), 173182.
74. Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Gradientbased multiobjective optimization using a distance constraint technique and point replacement, Eng. Optim., 48 (2016), 12261250.
75. Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes, Struct. Multidiscip. Optim., 55 (2017), 409422.
76. Y. Sato, K. Yaji, K. Izui, T. Yamada, S. Nishiwaki, Topology optimization of a nomovingpart valve incorporating Pareto frontier exploration, Struct. Multidiscip. Optim., 56 (2017), 839851.
77. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGAII, IEEE Trans. Evol. Comput., 6 (2002), 182197.
78. Y. Sato, K. Yaji, K. Izui, T. Yamada, S. Nishiwaki, An optimum design method for a thermalfluid device incorporating multiobjective topology optimization with an adaptive weighting scheme, J. Mech. Des., 140 (2018), 031402.
79. Y. Sato, K. Izui, T. Yamada, S. Nishiwaki, Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization, Expert Syst. Appl., 119 (2019), 247261.
80. J. G. Lin, Multipleobjective problems: Paretooptimal solutions by method of proper equality constraints, IEEE Trans. Autom. Control, 21 (1976), 641650.
81. K. Suresh, A 199line Matlab code for Paretooptimal tracing in topology optimization, Struct. Multidiscip. Optim., 42 (2010), 665679.
82. K. Suresh, Efficient generation of largescale Paretooptimal topologies, Struct. Multidiscip. Optim., 47 (2013), 4961.
83. S. G. Deng, K. Suresh, Multiconstrained topology optimization via the topological sensitivity, Struct. Multidiscip. Optim., 51 (2015), 9871001.
84. A. M. Mirzendehdel, B. Rankouhi, K. Suresh, Strengthbased topology optimization for anisotropic parts, Addit. Manuf., 19 (2018), 104113.
85. A. M. Mirzendehdel, K. Suresh, A Paretooptimal approach to multimaterial topology optimization, J. Mech. Des., 137 (2015), 101701.
86. A. Sutradhar, J. Park, P. Haghighi, J. Kresslein, D. Detwiler, J. J. Shah, Incorporating manufacturing constraints in topology optimization methods: A survey, in: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Ohio, USA, 2017. Available from: https://asmedigitalcollection.asme.org/IDETCCIE/proceedingsabstract/IDETCCIE2017/58110/V001T02A073/259089.
87. G. Allaire, C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys., 351 (2017), 295328.
88. S. C. Subedi, C. S. Verma, K. Suresh, A review of methods for the geometric postprocessing of topology optimized models, J. Comput. Inf. Sci. Eng., 20 (2020), 060801.
89. P. Das, K. Mhapsekar, S. Chowdhury, R. Samant, S. Anand, Selection of build orientation for optimal support structures and minimum part errors in additive manufacturing, Comput. Aided Des. Appl., 14 (2017), 113.
90. K. L. Hu, S. Jin, C. C. Wang, Support slimming for single material based additive manufacturing, Comput. Aided Des., 65 (2015), 110.
91. D. S. Thomas, S. W. Gilbert, Costs and cost effectiveness of additive manufacturing, NIST Spec. Publ., 1176 (2014), 12.
92. G. Strano, L. Hao, R. M. Everson, K. E. Evans, A new approach to the design and optimisation of support structures in additive manufacturing, Int. J. Adv. Manuf. Technol., 66 (2013), 12471254.
93. J. Vanek, J. A. G. Galicia, B. Benes, Clever support: Efficient support structure generation for digital fabrication, Computer Graphics Forum, 33, 2014, 117125. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12437.
94. J. Dumas, J. Hergel, S. Lefebvre, Bridging the gap: Automated steady scaffoldings for 3D printing, ACM Trans. Graphics, 33 (2014), 98.
95. Y. H. Kuo, C. C. Cheng, Y. S. Lin, C. H. San, Support structure design in additive manufacturing based on topology optimization, Struct. Multidiscip. Optim., 57 (2018), 183195.
96. F. Mezzadri, V. Bouriakov, X. P. Qian, Topology optimization of selfsupporting support structures for additive manufacturing, Addit. Manuf., 21 (2018), 666682.
97. R. Ranjan, R. Samant, S. Anand, Integration of design for manufacturing methods with topology optimization in additive manufacturing, J. Manuf. Sci. Eng., 139 (2017), 061007.
98. K. Liu, A. Tovar, An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. Optim., 50 (2014), 11751196.
99. A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Addit. Manuf., 19 (2018), 8194.
100. L. Cheng, A. To, Partscale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation, Comput. Aided Des., 113 (2019), 123.
101. L. Cheng, X. Liang, J. X. Bai, Q. Chen, J. Lemon, A. To, On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing, Addit. Manuf., 27 (2019), 290304.
102. A. T. Gaynor, N. A. Meisel, C. B. Williams, J. K. Guest, Topology optimization for additive manufacturing: Considering maximum overhang constraint, in: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2014. Available from: https://arc.aiaa.org/doi/10.2514/6.20142036.
103. A. T. Gaynor, J. K. Guest, Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design, Struct. Multidiscip. Optim., 54 (2016), 11571172.
104. M. Langelaar, Topology optimization of 3D selfsupporting structures for additive manufacturing, Addit. Manuf., 12 (2016) 6070.
105. M. Langelaar, An additive manufacturing filter for topology optimization of printready designs, Struct. Multidiscip. Optim., 55 (2017), 871883.
106. B. Barroqueiro, A. AndradeCampos, R. A. F. Valente, Designing self supported SLM structures via topology optimization, J. Manuf. Mater. Process., 3 (2019), 68.
107. Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Design and experimental validation of selfsupporting topologies for additive manufacturing, Virtual Phys. Prototyping, 14 (2019), 382394.
108. Y. F. Fu, B. Rolfe, N. S. L. Chiu, Y. N. Wang, X. D. Huang, K. Ghabraie, Parametric studies and manufacturability experiments on smooth selfsupporting topologies, Virtual Phys. Prototyping, 15 (2020), 2234.
109. E. van de Ven, R. Maas, C. Ayas, M. Langelaar, F. van Keulen, Continuous front propagationbased overhang control for topology optimization with additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 20752091.
110. A. G. Jimenez, R. A. Loyola, J. Santamaría, I. F. de Bustos, A new overhang constraint for topology optimization of selfsupporting structures in additive manufacturing, Struct. Multidiscip. Optim., 58 (2018), 20032017.
111. A. Garaigordobil, R. Ansola, E. Vegueria, I. Fernandez, Overhang constraint for topology optimization of selfsupported compliant mechanisms considering additive manufacturing, Comput. Aided Des., 109 (2019), 3348.
112. Y. H. Kuo, C. C. Cheng, Selfsupporting structure design for additive manufacturing by using a logistic aggregate function, Struct. Multidiscip. Optim., 2019 (2019), 113.
113. K. Q. Zhang, G. D. Cheng, L. Xu, Topology optimization considering overhang constraint in additive manufacturing, Comput. Struct., 212 (2019), 86100.
114. G. Allaire, C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Structural optimization under overhang constraints imposed by additive manufacturing processes: An overview of some recent results, Appl. Math. Nonlinear Sci., 2 (2017), 385402.
115. G. Allaire, C. Dapogny, A. Faure, G. Michailidis, A model of layer by layer mechanical constraint for additive manufacturing in shape and topology optimization, in: 12th World Congress on Structural and Multidisciplinary Optimization (WCSMO12), Brunswick, Germany, 2017. Available from: https://hal.archivesouvertes.fr/hal01536668/.
116. G. Allaire, C. Dapogny, A. Faure, G. Michailidis, Shape optimization of a layer by layer mechanical constraint for additive manufacturing, C. R. Math., 355 (2017), 699717.
117. J. K. Liu, A. C. To, Deposition path planningintegrated structural topology optimization for 3D additive manufacturing subject to selfsupport constraint, Comput. Aided Des., 91 (2017), 2745.
118. J. K. Liu, Y. S. Ma, A. J. Qureshi, R. Ahmad, Lightweight shape and topology optimization with hybrid deposition path planning for FDM parts, Int. J. Adv. Manuf. Technol., 97 (2018), 11231135.
119. W. H. Zhang, L. Zhou, Topology optimization of selfsupporting structures with polygon features for additive manufacturing, Comput. Methods Appl. Mech. Eng., 334 (2018), 5678.
120. J. Q. Huang, Q. Chen, H. Jiang, B. Zou, L. Li, J. K. Liu, et al., A survey of design methods for material extrusion polymer 3d printing, Virtual Phys. Prototyping, 15 (2020), 148162.
121. J. Liu, H. Yu, Selfsupport topology optimization with horizontal overhangs for additive manufacturing, J. Manuf. Sci. Eng., 142 (2020), 091003.
122. Y. Mass, O. Amir, Topology optimization for additive manufacturing: Accounting for overhang limitations using a virtual skeleton, Addit. Manuf., 18 (2017), 5873.
123. A. M. Driessen, Overhang constraint in topology optimisation for additive manufacturing: A density gradient based approach, Master's thesis, Delft University of Technology, 2016.
124. M. Langelaar, Combined optimization of part topology, support structure layout and build orientation for additive manufacturing, Struct. Multidiscip. Optim., 57 (2018), 19852004.
125. J. K. Guest, J. H. Prévost, T. Belytschko, Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng., 61 (2004), 238254.
126. J. K. Guest, Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim., 37 (2009), 463473.
127. J. K. Guest, Topology optimization with multiple phase projection, Comput. Methods Appl. Mech. Eng., 199 (2009), 123135.
128. W. S. Zhang, W. L. Zhong, X. Guo, An explicit length scale control approach in SIMPbased topology optimization, Comput. Methods Appl. Mech. Eng., 282 (2014), 7186.
129. M. D. Zhou, B. S. Lazarov, F. W. Wang, O. Sigmund, Minimum length scale in topology optimization by geometric constraints, Comput. Methods Appl. Mech. Eng., 293 (2015), 266282.
130. W. S. Zhang, D. Li, J. Zhang, X. Guo, Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Eng., 311 (2016), 327355.
131. G. Allaire, F. Jouve, G. Michailidis, Thickness control in structural optimization via a level set method, Struct. Multidiscip. Optim., 53 (2016), 13491382.
132. L. Hägg, E. Wadbro, On minimum length scale control in density based topology optimization, Struct. Multidiscip. Optim., 58 (2018), 10151032.
133. X. P. Qian, Undercut and overhang angle control in topology optimization: A density gradient based integral approach, Int. J. Numer. Methods Eng., 111 (2017), 247272.
134. S. R. Mohan, S. Simhambhatla, Adopting feature resolution and material distribution constraints into topology optimisation of additive manufacturing components, Virtual Phys. Prototyping, 14 (2019), 7991.
135. J. K. Liu, Piecewise length scale control for topology optimization with an irregular design domain, Comput. Methods Appl. Mech. Eng., 351 (2019), 744765.
136. J. K. Liu, Y. F. Zheng, R. Ahmad, J. Y. Tang, Y. S. Ma, Minimum length scale constraints in multiscale topology optimisation for additive manufacturing, Virtual Phys. Prototyping, 14 (2019) 229241.
137. S. T. Liu, Q. H. Li, W. J. Chen, L. Y. Tong, G. D. Cheng, An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures, Front. Mech. Eng., 10 (2015), 126137.
138. Q. H. Li, W. J. Chen, S. T. Liu, H. R. Fan, Topology optimization design of cast parts based on virtual temperature method, Comput. Aided Des., 94 (2018), 2840.
139. L. Zhou, W. H. Zhang, Topology optimization method with elimination of enclosed voids, Struct. Multidiscip. Optim., 60 (2019), 117136.
140. Y. L. Xiong, S. Yao, Z. L. Zhao, Y. M. Xie, A new approach to eliminating enclosed voids in topology optimization for additive manufacturing, Addit. Manuf., 32 (2020), 101006.
141. K. Suresh, A. Ramani, A. Kaushik, An adaptive weighting strategy for multiload topology optimization, in: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA, 2012. Available from: https://asmedigitalcollection.asme.org/IDETCCIE/proceedingsabstract/IDETCCIE2012/45011/1295/254817.
142. H. Li, L. Gao, P. G. Li, Topology optimization of structures under multiple loading cases with a new compliancevolume product, Eng. Optim., 46 (2014), 725744.
143. M. Baumers, L. Beltrametti, A. Gasparre, R. Hague, Informing additive manufacturing technology adoption: Total cost and the impact of capacity utilisation, Int. J. Prod. Res., 55 (2017), 69576970.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)