[1]
|
W. J. Yan, D. H. Chen, L. Liu, Research progress of hyperspectral image classification, Opt. Precis. Eng., 27 (2019), 680-693.
|
[2]
|
S. Y. Chen, H. Z. Lin, X. Zhao, G. Wang, Deep learning-based classification of hyperspectral data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7 (2014), 2094-2107.
|
[3]
|
F. W. Fu, B. W. Zou, Review of remote sensing image classification based on deep learning, Appl. Res. Comput., 35 (2018), 3521-3525.
|
[4]
|
J. Zhao, Y. Zhong, H. Shu, L. P. Zhang, High-resolution image classification integrating spectral-spatial-location cues by conditional random fields, IEEE. Trans. Image Process. Publ. IEEE Signal Process. Soc., 25 (2016), 4033-4045.
|
[5]
|
A. B. Salberg, Detection of seals in remote sensing images using features extracted from deep convolutional neural network, Geosci. Remote Sens. Symp. IEEE, (2015), 1893-1896.
|
[6]
|
C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 3 (1995), 273-297.
|
[7]
|
D. C. Feng, G. Chen, W. Y. Du, X. Y. Wu, K. L. Xiao, Remote sensing image classification based on minimum distance method, J. Beihua. Inst. Aerosp. Technol., 22 (2012), 1-3.
|
[8]
|
A. Ahmad, S. Hashmi, K-Harmonic means type clustering algorithm for mixed datasets, Appl. Soft Comput., (2016), 39-49.
|
[9]
|
Y. Zhang, H. T. Yang, C. H. Yuan, A survey of remote sensing image classification methods, J. Weapon Equip. Eng., 39 (2018), 108-112.
|
[10]
|
M. Volpi, D. Tuia, Dense semantic labeling of subdecimeter resolution images with convolutional neural networks, IEEE Trans. Geosci. Remote Sens., (2017), 1-13.
|
[11]
|
G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Sci., 313 (2006), 504-507.
|
[12]
|
W. Y. Pang, L. M. Sun, H. X. Jiang, L. X. Li, Convolution in convolution for network in network, IEEE Trans. Neural Networks. Learn. Syst., 29 (2018), 1587-1597.
|
[13]
|
A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf: An astounding baseline for recognition, Comput. Vision Pattern Recognit. Workshops. IEEE, (2014), 512-519.
|
[14]
|
J. P. Zhao, W. W. Guo, S. Y. Cui, Z. H. Zhang, Convolutional neural network for SAR image classification at patch level, Geosci. Remote Sens. Symp. IEEE, (2016), 945-948.
|
[15]
|
H. B. Lyu, H. Lu, L. C. Mou, Learning a transferable change rule from a recurrent neural network for land cover change detection, Remote Sens., 8 (2016).
|
[16]
|
N. Kussul, M. Lavreniuk, S. V. Skakun, A. Y. Shelestov, Deep learning classification of land cover and crop types using remote sensing data, IEEE Geosci. Remote Sens. Lett., 14(2017), 778-782.
|
[17]
|
R. Marc, K. Marco, Multi-temporal land cover classification with sequential recurrent encoders, ISPRS Int. J. Geo-Inf., 7 (2018).
|
[18]
|
Y. Liu, Z. S. Liao, Multiple kernel learning with the generalized error bound of support vector machine, J. Wuhan Univ. (Nat. Sci. Ed.), 58 (2012), 149-156.
|
[19]
|
Q. J. Zhang, X. J. Zhang. Z. Zhao, Y. J. Wang, Classification of polarimetric SAR images based on multiscale segmentation and radial basis function neural network, Geomat. Spat. Inf. Technol., (2019), 67-71.
|
[20]
|
M. Zhou, Dimension reduction and classification of hyperspectral remote sensing image based on RBF neural network, Territ. Nat. Resour. Study, (2016), 14-16.
|
[21]
|
P. V. Arun, K. M. Buddhiraju, A. Porwal, CNN based sub-pixel mapping for hyperspectral images, Neurocomput., 311 (2018), 51-64.
|
[22]
|
A. Krizhevsky, I. Sutskever, G. Hinton, Image net classification with deep convolutional neural networks, NIPS, 60 (2017), 84-90.
|
[23]
|
C. Szegedy, V. Vanhoucke, S. Loffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, IEEE Conf. Comput. Vision Pattern Recognit., 2016.
|
[24]
|
Krizhevsky, Alex, Sutskever, Ilya, Hinton, E. Geoffrey, Image net classification with deep convolutional neural networks, Commun. ACM, 60 (2012), 84-90.
|
[25]
|
Q. Z. Gong, P. Zhong, Y. Yu, D. W. Hu, Diversity-promoting deep structural metric learning for remote sensing scene classification, IEEE Trans. Geosci. Remote Sens., (2017), 1-20.
|
[26]
|
X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, J. Mach. Learn. Res., 2011.
|
[27]
|
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., (2014), 1929-1958.
|