Citation: Huan Dai, Yuying Liu, Junjie Wei. Stability analysis and Hopf bifurcation in a diffusive epidemic model with two delays[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4127-4146. doi: 10.3934/mbe.2020229
[1] | W. Kermack, A. Mckendrick, Contributions to the mathematical theory of epidemics. II. The problem of endemicity, Bull. Math. Biol., 53 (1991), 57-87. |
[2] | H. Smith, Subharmonic bifurcation in an S-I-R epidemic model, J. Math. Biol., 17 (1983), 163-177. |
[3] | E. Beretta, Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250-260. |
[4] | H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653. |
[5] | M. Delasen, P. Agarwal, A. Ibeas, S. Alonso-Quesada, On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls, Adv. Differ. Equations, 2010 (2010), 1-42. |
[6] | V. Capasso, S. Paverifontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, SIAM J. Appl. Math., 27 (1979), 121-132. |
[7] | M. Fan, M. Li, K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199-208. |
[8] | X. Mi, Global dynamics of an SEIR epidemic model with vertical transmission, J. Shanxi Normal Univ., 62 (2013), 58-69. |
[9] | W. Wang, S. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2015), 775-793. |
[10] | Y. Zhou, Z. Ma, F. Brauer, A discrete epidemic model for SARS transmission and control in China, Math. Comput. Modell., 40 (2004), 1491-1506. |
[11] | V. Capasso, R. Wilson, Analysis of a reaction-diffusion system modeling man-environment-man epidemics, SIAM J. Appl. Math., 57 (1997), 327-346. |
[12] | V. Capasso, K. Kunisch, A reaction-diffusion system arising in modelling man-environment diseases, Q. Appl. Math., 46 (1988), 431-450. |
[13] | T. Zhang, J. Liu, Z. Teng, Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays, Appl. Math. Comput., 214 (2009), 624-631. |
[14] | K. Wang, Z. Teng, X. Zhang, Dynamical behaviors of an Echinococcosis epidemic model with distributed delays, Math. Biosci. Eng., 14 (2017), 1425-1445. |
[15] | T. Zhao, Z. Zhang, R. Upadhyay, Delay-induced Hopf bifurcation of an SVEIR computer virus model with nonlinear incidence rate, Adv. Differ. Equations, 2018 (2018), 256. |
[16] | J. Zhang, Z. Jin, The analysis of epidemic network model with infectious force in latent and infected period, Discrete Dyn. Nat. Soc., 2010 (2010), 1-12. |
[17] | Q. Khan, E. Krishnan, An epidemic model with a time delay in transmission, Appl. Math., 48 (2003), 193-203. |
[18] | J. Wei, J. Zhou, W. Chen, Z. Zhen, L. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure Appl. Anal., 19 (2020), 2853-2886. |
[19] | Z. Guo, Y. Li, Z. Feng, Exponential stability of traveling waves in a nonlocal dispersal epidemic model with delay, J. Comput. Appl. Math., 344 (2018), 47-72. |
[20] | M. Delasen, On some structures of stabilizing control laws for linear and time-invariant systems with bounded point delays and unmeasurable states, Int. J. Control, 59 (1994), 529-541. |
[21] | R. M. Nguimdo, Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays, Phys. Rev. E, 97 (2018), 032211. |
[22] | C. Shen, Y. Li, X. Zhu, W. Duan, Improved stability criteria for linear systems with two additive time-varying delays via a novel Lyapunov functional, J. Comput. Appl. Math., 363 (2020), 312- 324. |
[23] | Y. Du, B. Niu, J. Wei, Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013101. |
[24] | S. Wu, C. Hsu, Existence of entire solutions for delayed monostable epidemic models, Trans.Am. Math. Soc., 368 (2016), 6033-6062. |
[25] | X. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 1117-1128. |
[26] | D. Xu, X. Zhao, Bistable waves in an epidemic model, J. Dyn. Differ. Equations, 16 (2004), 679-707. |
[27] | C. Hsu, T. Yang, Z. Yu, Existence and exponential stability of traveling waves for delayed reactiondiffusion systems, Nonlinearity, 31 (2018), 838-863. |
[28] | S. Marialisa, A. Di Stefano, L. Pietro, A. La Corte, The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks, Sci. Rep., 6 (2016), 37105. |
[29] | L. Zuo, M. Liu, J. Wang, The impact of awareness programs with recruitment and delay on the spread of an epidemic, Math. Probl. Eng., 2015 (2015), 1-10. |
[30] | Y. Qin, X. Zhong, H. Jiang, Y. Ye, An environment aware epidemic spreading model and immune strategy in complex networks, Appl. Math. Comput., 261 (2015), 206-215. |
[31] | S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin., Discrete Impulsive Syst. Ser. A: Math. Anal., 10 (2003), 863-874. |
[32] | X. Wei, J. Wei, The effect of delayed feedback on the dynamics of an autocatalysis reactiondiffusion system, Nonlinear Anal.: Modell. Control, 23 (2018), 749-770. |
[33] | Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21. |
[34] | J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996. |
[35] | J. Zhao, J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Anal.: Real World Appl., 22 (2015), 66-83. |
[36] | B. Hassard, N. Kazarinoff, Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University-Verlag, Cambridge, 1981. |