Citation: Ruiqing Shi, Jianing Ren, Cuihong Wang. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3836-3868. doi: 10.3934/mbe.2020214
[1] | T. Saha, M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interactions, Nonlinear Anal. Real. World Appl., 10 (2009), 314-332. |
[2] | O. A. Chichigina, A. A. Dubkov, D. Valenti, B. Spagnolo, Stability in a system subject to noise with regulated periodicity, Phys. Rev. E, 84 (2011), 021134. |
[3] | A. L. Barbera, B. Spagnolo, Spatio-temporal patterns in population dynamics, Phys. A, 314 (2002), 120-124. |
[4] | D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino, B. Spagnolo, Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy), Ecol. Model., 213 (2008), 449-462. |
[5] | H. Zhang, T. Zhang, The stationary distribution of a microorganism flocculation model with stochastic perturbation, Appl. Math. Lett., 103 (2020), 106217. |
[6] | T. Zhang, N. Gao, T. Wang, H. Liu, Z. Jiang, Global dynamics of a model for treating microorganisms in sewage by periodically adding microbial flocculants, Math. Biosci. Eng., 17 (2020), 179-201. |
[7] | M. Chen, M. Fan, R. Liu, X. Wang, X. Yuan, H. Zhu, The dynamics of temperature and light on the growth of phytoplankton, J. Theor. Biol., 385 (2015), 8-19. |
[8] | Y. Sekerci, S. Petrovskii, Mathematical modelling of plankton-oxygen dynamics under the climate change, B Math. Biol., 77 (2015), 2325-2353. |
[9] | J. Zhao, J. Wei, Stability and bifurcation in a two harmful phytoplankton-zooplankton system, Chaos Soliton. Fract., 39 (2009), 1395-1409. |
[10] | S. Abdallah, Stability and persistence in plankton models with distributed delays, Chaos Soliton. Fract., 17 (2003), 879-884. |
[11] | R. R. Sarkar, B. Mukhopadhyay, R. Bhattacharyya, S. Banerjee, Time lags can control algal bloom in two harmful phytoplankton-zooplankton system, Appl. Math. Comput., 186 (2007), 445-459. |
[12] | G. Denaro, D. Valenti, A. L. Cognata, B. Spagnolo, A. Bonanno, G. Basilone, et al., Spatiotemporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: development of a stochastic model for picophytoplankton dynamics, Ecol. Complex., 13 (2013), 21-34. |
[13] | G. Denaro, D. Valenti, B. Spagnolo, G. Basilone, S. Mazzola, S. W. Zgozi, et al., Dynamics of two picophytoplankton groups in mediterranean sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model, PLoS One, 8 (2013), e66765. |
[14] | D. Huang, H. Wang, J. Feng, Z. Zhu, Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, Chaos Soliton. Fract., 27 (2006), 1072-1079. |
[15] | J. Chattopadhyay, R. R. Sarkar, S. Pal, Mathematical modelling of harmful algal blooms supported by experimental findings, Ecol. Complex., 1 (2004), 225-235. |
[16] | M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 138 (2015), 8-18. |
[17] | D. Straile, Meteorological forcing of plankton dynamics in a large and deep continental European lake, Oecologia, 122 (2000), 44-50. |
[18] | R. W. Black, L. B. Slobodkin, What is cyclomorphosis? Freshwater Biol., 18 (1987), 373-378. |
[19] | Y. He, Z. Li, Epigenetic environmental memories in plants: Establishment, maintenance, and reprogramming, Trends Genet., 34 (2018), 1-11. doi: 10.1016/j.tig.2017.10.006 |
[20] | S. I. Dodson, T. A. Crowl, B. L. Peckarsky, L. B. Kats, A. P. Covich, J. M. Culp, Non-visual communication in freshwater benthos: an overview, J. N. Am. Benthol. Soc., 13 (1994), 268-282. |
[21] | D. P. Chivers, R. J. F. Smith, Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus, Ecoscience, 5 (1998), 338-352. |
[22] | C. Huang, J. Cao, M. Xiao, A. Alsaedi, F. E. Alsaadi, Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders, Appl. Math. Comput., 293 (2017), 293-310. |
[23] | E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542-553. |
[24] | F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional-order delayed predator-prey systems with Holling type-II functional response, Nonlinear Dynam., 80 (2015), 777-789. |
[25] | V. E. Tarasov, V. V. Tarasova, Macroeconomic models with long dynamic memory: fractional calculus approach, Appl. Math. Comput., 338 (2018), 466-486. |
[26] | A. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, H. Khan, Stability and numerical simulation of a fractional order plant-nectar-pollinator model, Alex. Eng. J., 59 (2019), 49-59. |
[27] | C. I. Muresan, C. Ionescu, S. Folea, R. D. Keyser, Fractional order control of unstable processes: the magnetic levitation study case, Nonlinear Dynam., 80 (2014), 1761-1772. |
[28] | M. D. Ortigueira, Fractional calculus for scientists and engineers, Springer Netherlands, Berlin, 2011. |
[29] | D. Copot, R. D. Keyser, E. Derom, M. Ortigueira, C. M. Ionescu, Reducing bias in fractional order impedance estimation for lung function evaluation, Biomed. Signal Process, 39 (2018), 74-80. |
[30] | G. S. F. Frederico, D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam., 53 (2008), 215-222. |
[31] | R. L. Magin, O. Abdullah, D. Baleanu, X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 190 (2008), 255-270. |
[32] | E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations, Appl. Math. Model., 36 (2012), 4931-4943. |
[33] | M. S. Asl, M. Javidi, An improved PC scheme for nonlinear fractional differential equations: Error and stability analysis, J. Comput. Appl. Math., 324 (2017), 101-117. |
[34] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, Calif, USA, 1999. |
[35] | S. Gakkhar, A. Singh, Effects of delay and seasonality on toxin producing phytoplanktonzooplankton system, Int. J. Biomath., 5 (2012), 1-21. |
[36] | N. Juneja, K. Agnihotri, H. Kaur, Effect of delay on globally stable prey-predator system, Chaos Soliton. Fract., 111 (2018), 146-156. |
[37] | T. Zhang, J. Liu, Z. Teng, Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure, Nonlinear Anal. Real. World Appl., 11 (2010), 293-306. |
[38] | Z. Wang, Y. Xie, J. Lu, Y. Li, Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition, Appl. Math. Comput., 347 (2019), 360-369. |
[39] | Z. Wang, X. Wang, Y. Li, X. Huang, Stability and Hopf bifurcation of fractional-order complexvalued single neuron model with time delay, Int. J. Bifurcat. Chaos, 27 (2017), 1-13. |
[40] | M. S. Asl, M. Javidi, Novel algorithms to estimate nonlinear FDEs: applied to fractional order nutrient-phytoplankton-zooplankton system, J. Comput. Appl. Math., 339 (2018), 193-207. |
[41] | Z. Chen, Z. Tian, S. Zhang, C. Wei, The stationary distribution and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton under regime switching, Phys. A, 537 (2020), 122728. |
[42] | A. Barreiro, C. Guisande, I. Maneiro, A. R. Vergara, I. Riveiro, P. Iglesias, Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity, Acta Oecol., 32 (2007), 279-290. |
[43] | I. Petras, Fractional-Order nonlinear systems: Modeling, analysis and simulation, HEP/Springer, London, 2011. |
[44] | E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys. Lett. A, 358 (2006), 1-4. |
[45] | B. Tao, M. Xiao, Q. Sun, J. Cao, Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model, Neurocomputing, 275 (2017), 677-686. |
[46] | S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Fract. Calc. Appl. Anal., 1 (2011), 1-9. |
[47] | C. Guisande, M. Frangopulos, I. Maneiro, A. R. Vergara, I. Riveiro, Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorous limitation, Mar. Ecol. Prog. Ser., 225 (2002), 169-176. |
[48] | N. Turriff, J. A. Runge, A. D. Cembella, Toxin accumulation and feeding behaviour of the planktonic copepod Calanus jinmarchicus exposed to the red-tide dinoflagellate Alexandrium excavatum, Mar. Biol., 123 (1995), 55-64. |
[49] | M. Schultz, T. Kiorboe, Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates, J. Plankton Res., 31 (2009), 553-561 |