Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy

1 Department of Exact and Applied Sciences, GI2B Research Group, Instituto Tecnologico Metropolitano ITM, CL 73 No. 76 A 354, Medellin, Colombia
2 AMYSOD Lab –Parque i, CM&P Research Group, Instituto Tecnologico Metropolitano ITM, CL 73 No. 76 A 354, Medellin, Colombia
3 Technological Institute of Informatics, Universitat Politecnica de Valencia, Alcoi Campus, 03801 Alcoi, Spain

Special Issues: Algorithm Optimization for Big Data Applications in Computational Biology

Muscle fatigue is an important field of study in sports medicine and occupational health. Several studies in the literature have proposed methods for predicting muscle fatigue in isometric con-tractions using three states of muscular fatigue: Non-Fatigue, Transition-to-Fatigue, and Fatigue. For this, several features in time, spectral and time-frequency domains have been used, with good performance results; however, when they are applied to dynamic contractions the performance decreases. In this paper, we propose an approach for analyzing muscle fatigue during dynamic contractions based on time and spectral domain features, Permutation Entropy (PE) and biomechanical features. We established a protocol for fatiguing the deltoid muscle and acquiring surface electromiography (sEMG) and biomechanical signals. Subsequently, we segmented the sEMG and biomechanical signals of every contraction. In order to label the contraction, we computed some features from biomechanical signals and evaluated their correlation with fatigue progression, and the most correlated variables were used to label the contraction using hierarchical clustering with Ward’s linkage. Finally, we analyzed the discriminant capacity of sEMG features using ANOVA and ROC analysis. Our results show that the biomechanical features obtained from angle and angular velocity are related to fatigue progression, the analysis of sEMG signals shows that PE could distinguish Non-Fatigue, Transition-to-Fatigue and Fatigue more effectively than classical sEMG features of muscle fatigue such as Median Frequency.
  Article Metrics

Keywords Muscle fatigue; unsupervised learning; biomechanics; Hierarchical clustering; sEMG; Permutation Entropy

Citation: J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau. Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy. Mathematical Biosciences and Engineering, 2020, 17(3): 2592-2615. doi: 10.3934/mbe.2020142


  • 1. S. C. Gandevia, Spinal and supraspinal factors in human muscle fatigue, Physiol. Rev., 81 (2001), 1725-1789.
  • 2. A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, C. Limsakul, The usefulness of mean and median frequencies in electromyography analysis, in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, IntechOpen Limited, London, 2012, 195-220.
  • 3. A. Ascensão, J. Magalhães, J. Oliveira, J. Duarte, J. Soares, Fisiologia da fadiga muscular. Delimitação conceptual, modelos de estudo e mecanismos de fadiga de origem central e periférica, Rev. Por. de Ciências do Desp., 3 (2003), 108-123.
  • 4. S. D. Mair, A. V. Seaber, R. R. Glisson, W. E. Garrett, The role of fatigue in susceptibility to acute muscle strain injury, Am. J. Sports Med., 24 (1996), 137-143.
  • 5. M. Corchuelo, M. Soler, L. Lozano, Informe ejecutivo de la segunda Encuesta nacional de condiciones de seguridad y salud en el trabajo en el sistema general de Riesgos Laborales de Colombia, Ministerio de Trabajo, Republica de Colombia, 2013, 1-56.
  • 6. S. P. Arjunan, D. K. Kumar, G. Naik, Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue, Biomed. Res. Int., 2014 (2014), 1-6.
  • 7. C. Rocha, B. S. Geres, H. U. Kuriki, R. D. Faria, N. Filho, Análise da reprodutibilidade de parâmetros no domínio da frequência do sinal EMG utilizados na caracterização da fadiga muscular localizada Materiais e Métodos, Motriz-revista de Ed. Fís., 18 (2012), 456-464.
  • 8. F. Sepulveda, M. R. Al-mulla, M. Colley, sEMG techniques to detect and predict localised muscle fatigue, in EMG methods for evaluating muscle and nerve function, IntechOpen Limited, London, 2012, 157-186.
  • 9. M. González-Izal, A. Malanda, E. Gorostiaga, M. Izquierdo, Electromyographic models to assess muscle fatigue, J. Electromyogr. Kinesiol., 22 (2012), 501-512.
  • 10. D. R. Bueno, J. M. Lizano, L. Montano, Muscular fatigue detection using sEMG in dynamic contractions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2015), 2015, 494-497.
  • 11. R. S. Navaneethakrishna, Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2014), 2014, 4627-4630.
  • 12. M. Tian, Y. Ozturk, S. Sun, Y. Su, Measurement of upper limb muscle fatigue using deep belief networks, J. Mech. Med. Biol., 16 (2016) 1-18.
  • 13. N. A. Kamaruddin, P. I. Khalid, A. Z. Shaameri, The use of surface electromyography in muscle fatigue assessments: A review, Jurnal Teknologi, 74 (2015), 1-5.
  • 14. D. R. Bueno, J. M. Lizano, L. Montano, Muscular fatigue detection using sEMG in dynamic contractions, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2015), 2015, 494-497.
  • 15. H. J. Hwang, W. H. Chung, J. H. Song, J. K. Lim, H. S. Kim, Prediction of biceps muscle fatigue and force using electromyography signal analysis for repeated isokinetic dumbbell curl exercise, J. Mech. Sci. Technol., 30 (2016), 5329-5336.
  • 16. S. Thongpanja, A. Phinyomark, P. Phukpattaranont, C. Limsakul, A feasibility study of fatigue and muscle contraction indices based on EMG time-dependent spectral analysis, Proced. Eng., 32 (2012), 239-245.
  • 17. M. Vitor-Costa, H. Bortolotti, T. Camala, R. da Silva, T. Ahrao, A. de Moraes, et al., EMG spectral analysis of incremental exercise in cyclists and non-cyclists using Fourier and Wavelet transforms, Rev. Bras. Cineantropom. Desempenho, 14 (2012), 660-670.
  • 18. S. K. Chowdhury, A. D. Nimbarte, M. Jaridi, R. C. Creese, Discrete Wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles, J. Electromyogr. Kinesiol., 23 (2013), 995-1003.
  • 19. B. M. Idrees, O. Farooq, Estimation of Muscle Fatigue Using Wavelet Decomposition, in Fifth International Conference on Digital Information Processing and Communications (ICDIPC 2015), 2015, 267-271.
  • 20. M. Sarillee, M. Hariharan, M. N. Anas, M. I. Omar, M. N. Aishah, Y. Ck, et al., Classification of muscle fatigue condition using multi-sensors, in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2015, 27-29.
  • 21. D. R. Rogers, D. T. MacIsaac, A comparison of EMG-based muscle fatigue assessments during dynamic contractions, J. Electromyogr. Kinesiol., 23 (2013), 1004-1011.
  • 22. D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Picó, B. Vargas, Patterns with equal values in Permutation Entropy: Do they really matter for biosignal classification?, Complexity, 2018 (2018), 1-16.
  • 23. S. A. Rawashdeh, D. A. Rafeldt, T. L. Uhl, J. E. Lumpp, Wearable motion capture unit for shoulder injury prevention, in 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2015, 1-6.
  • 24. M. Brzycki, Strength testing: Predicting a one-rep max from repetitions to fatigue, J. Phys. Educ. Recreat. Dance, 64 (1993), 88-90.
  • 25. S. Solnik, P. Rider, K. Steinweg, P. Devita, T. Hortobgyi, Teager-Kaiser energy operator signal conditioning improves EMG onset detection, Eur. J. Appl. Physiol., 110 (2010), 489-498.
  • 26. G. Staude, Onset detection in surface electromyographic signals: A systematic comparison of methods, EURASIP J. Adv. Sig. Pr., 2001 (2001), 67-81.
  • 27. G. H. Staude, Precise onset detection of human motor responses using a whitening filter and the Log-Likelihood-Ratio Test, IEEE Trans. Biomed. Eng., 48 (2001), 1292-1305.
  • 28. G. Staude, W. Wolf, Objective motor response onset detection in surface myoelectric signals, Med. Eng. Phys., 21 (1999), 449-467.
  • 29. P. Bhat, A. Gupta, A novel approach to detect localized muscle fatigue during isometric exercises, in 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2016, 224-229.
  • 30. F. Mohamed, Al-Mulla, M. Colley, An autonomous wearable system for predicting and detecting localised muscle fatigue, Sensors, 11 (2011), 1542-1557.
  • 31. B. Everitt, S. Landau, M. Leese, D. Stahl, Hierarchical clustering, in Cluster Analysis, 5th edition, 2011, 71-110.
  • 32. T. Strauss, M. J. Von Maltitz, Generalising Ward's method for use with Manhattan distances, PLoS ONE, 12 (2017), 1-21.
  • 33. C. Bandt, B. Pompe, Permutation Entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002).
  • 34. D. Cuesta-Frau, J. P. Murillo-Escobar, D. A. Orrego, E. Delgado-Trejos, Embedded dimension and time series length. Practical influence on permutation entropy and its applications, Entropy, 21 (2019), 1-25.
  • 35. M. Riedl, A. Müller, N. Wessel, Practical considerations of permutation entropy: A tutorial review, Eur. Phys. J., 222 (2013), 249-262.
  • 36. F. N. Jamaluddin, S. A. Ahmad, S. B. M. Noor, W. Z. W. Hassan, A. Yaacob, Y. Adam, Performance of DWT and SWT in muscle fatigue Detection, in 2015 IEEE Student Symposium in Biomedical Engineering and Sciences (ISSBES), Shah Alam, Malaysia, 2015, 50-53.
  • 37. K. B. Smale, M. S. Shourijeh, D. L. Benoit, Use of muscle synergies and Wavelet transforms to identify fatigue during squatting, J. Electromyogr. Kinesiol., 28 (2016), 158-166.
  • 38. L. Kahl, U. G. Hofmann, Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals, Med. Eng. Phys., 38 (2016), 1260-1269.
  • 39. T. W. Beck, X. Ye, N. P. Wages, Local muscle endurance is associated with fatigue-based changes in electromyographic spectral properties, but not with conduction velocity, J. Electromyogr. Kinesiol., 25 (2015), 451-456.
  • 40. R. B. Graham, M. P. Wachowiak, B. J. Gurd, The assessment of muscular effort, fatigue, and physiological adaptation using EMG and wavelet analysis, PLoS ONE, 10 (2015), 1-13.
  • 41. E. F. Shair, T. N. S. T. Zawawi, A. R. Abdullah, N. H. Shamsudin, sEMG Signals analysis using time-frequency distribution for symmetric and asymmetric lifting, in 2015 International Symposium on Technology Management and Emerging Technologies (ISTMET), 2015, 233-237.
  • 42. M. Asefi, S. Moghimi, H. Kalani, A. Moghimi, Dynamic modeling of sEMG-force relation in the presence of muscle fatigue during isometric contractions, Biomed. Signal Proc. Control, 28 (2016), 41-49.
  • 43. A. Samani, C. Pontonnier, G. Dumont, P. Madeleine, Shoulder kinematics and spatial pattern of Trapezius electromyographic activity in real and virtual environments, PLoS ONE, 10 (2015), 1-18.
  • 44. P. Bonato, P. Boissy, U. Della Croce, S. H. Roy, Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task, IEEE Tran. on Neu. Sys. and Rehab. Eng., 10 (2002), 38-47.
  • 45. S. Gafner, V. Hoevel, I. M. Punt, S. Schmid, L. Allet, Hip-abductor fatigue influences sagittal plane ankle kinematics and shank muscle activity during a single-leg forward jump, J. Electromyogr. Kinesiol., 43 (2018), 75-81.
  • 46. E. Coventry, K. M. O. Connor, B. A. Hart, J. E. Earl, K. T. Ebersole, The effect of lower extremity fatigue on shock attenuation during single-leg landing, Clin. Biomech., 21 (2006), 1090-1097.
  • 47. J. Augustsson, R. Thomeé, C. Lindén, M. Folkesson, R. Tranberg, J. Karlsson, Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis, Scand. J. Med. Sci. Sports., 16 (2006), 111-120.
  • 48. J. L. R. Jayalath, N. Weerakkody, R. Bini, Effects of fatigue on ankle biomechanics during jumps: A systematic review, J. Electromyogr. Kinesiol., 42 (2018), 81-91.
  • 49. K. F. Orishimo, I. J. Kremenic, Effect of Fatigue on Single-Leg Hop Landing Biomechanics, J. Appl. Biomech., 22 (2006), 245-254.
  • 50. C. M. Davidson, G. De Vito, M. M. Lowery, Effect of oral glucose supplementation on surface EMG during fatiguing dynamic exercise, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, 3498-3502.
  • 51. S. Zhang, A novel portable one lead ECG monitor with low-cost and long-time recording based on NUC501, in 2010 Chinese Control and Decision Conference, 2010, 276-279
  • 52. D. Sun, E. Koutsos, P. Georgiou, Comparison of sEMG bit-stream modulators for cross-correlation based muscle fatigue estimation, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, 838-841.
  • 53. K. S. Urbinati, A. D. Vieira, C. Papcke, R. Pinheiro, P. Nohama and M. Scheeren, Physiological and biomechanical fatigue responses in Karate: A case study, Open Sports Sci. J., 10 (2017), 286-293.
  • 54. G. C. Lessi, R. S. Silva, F. V. Serrão, Comparison of the effects of fatigue on kinematics and muscle activation between men and women after anterior cruciate ligament reconstruction, Phys. Ther. Sport., 31 (2018), 29-34.
  • 55. K. Marri, R. Swaminathan, Classification of muscle fatigue in dynamic contraction using surface electromyography signals and multifractal singularity spectral analysis, J. Dyn. Sys. Meas. Control, 138 (2017), 1-10.
  • 56. N. Makaram, R. Swaminathan, A binary bat approach for identification of fatigue condition from sEMG signals, in International Conference on Swarm, Evolutionary, and Memetic Computing, 2014, 480-489.
  • 57. K. Marri, R. Swaminathan, Classification of muscle fatigue using surface electromyography signals and multifractals, in 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), New Jersey, EEUU, 2015, 669-674.
  • 58. F. Sepulveda, M. Al-Mulla, B. A. Bader, Optimal elbow angle for extracting sEMG signals during fatiguing dynamic contraction, Computers, 4 (2015), 251-264.
  • 59. A. B. Piek, I. Stolz, K. Keller, Algorithmics, possibilities and limits of ordinal pattern based entropies, Entropy, 21 (2019), 1-24.


This article has been cited by

  • 1. Inyeol Yun, Jinpyeo Jeung, Yonghun Song, Yoonyoung Chung, Non-Invasive Quantitative Muscle Fatigue Estimation Based on Correlation Between sEMG Signal and Muscle Mass, IEEE Access, 2020, 8, 191751, 10.1109/ACCESS.2020.3029792

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved