Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Dynamical and optimal control analysis of a seasonal Trypanosoma brucei rhodesiense model

1 Institution of Science and Technology (NM-AIST), School of Computational and Communication Science and Engineering, The Nelson Mandela African, P. O. Box 447, Arusha, Tanzania
2 Department of Mathematics and Statistics, Mbeya University of Science and Technology, College of Science and Technical Education, P. O. Box 131, Mbeya, Tanzania
3 Department of Basic Sciences, Botswana University of Agriculture and Natural Resources Private Bag 0027, Gaborone, Botswana
4 Department of Mathematics, University of Zimbabwe, P. O. Box MP 167, Harare, Zimbabwe

The effects of seasonal variations on the epidemiology of Trypanosoma brucei rhodesiense disease is well documented. In particular, seasonal variations alter vector development rates and behaviour, thereby influencing the transmission dynamics of the disease. In this paper, a mathematical model for Trypanosoma brucei rhodesiense disease that incorporates seasonal effects is presented. Owing to the importance of understanding the effective ways of managing the spread of the disease, the impact of time dependent intervention strategies has been investigated. Two controls representing human awareness campaigns and insecticides use have been incorporated into the model. The main goal of introducing these controls is to minimize the number of infected host population at low implementation costs. Although insecticides usage is associated with adverse effects to the environment, in this study we have observed that by totally neglecting insecticide use, effective disease management may present a formidable challenge. However, if human awareness is combined with low insecticide usage then the disease can be effectively managed.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Trypanosoma brucei rhodesiense; seasonality; stability; optimal control

Citation: Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa. Dynamical and optimal control analysis of a seasonal Trypanosoma brucei rhodesiense model. Mathematical Biosciences and Engineering, 2020, 17(3): 2530-2556. doi: 10.3934/mbe.2020139

References

  • 1. R. Lowe, The impact of global environmental change on vector-borne disease risk: A modelling study, Lancet Planet. Health., 2 (2018), S1.
  • 2. H. J. Nnko, A. Ngonyoka, L. Salekwa, A. B. Estes, P. J. Hudson, P. S. Gwakisa, et al. Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai steppe, Tanzania, J. Vector Ecol., 42 (2017), 24-33.    
  • 3. J. R. Franco, P. P. Simarro, A. Diarra, J. G. Jannin. Epidemiology of human African trypanosomiasis, Clin. Epidemiol., 6 (2014), 257-275.
  • 4. World Health Organization Report, Control and Surveillance of Human African Trypanosomiasis, 2013. Available from: https://apps.who.int/iris/handle/10665/95732.
  • 5. World Health Organization, Human African trypanosomiasis (sleeping sickness): Epidemiological update, Wkly Epidemiol. Rec., 81 (2018), 71-80.
  • 6. S. G. A. Leak, Tsetse vector population dynamics, in Modelling Vector-Borne and Other Parasitic Diseases (eds. J. W. Hansen and B.D. Perry), International Livestock research Institute, (1994), 36.
  • 7. F. L. Berrang, C. Wamboga, A. Kakembo, Trypanosoma brucei rhodesiense sleeping sickness, Uganda, Emerg. Infect. Dis., 18 (2012), 1686-1687.
  • 8. K. Ngongolo, A. B. Estes, P. J. Hudson, P. S. Gwakisa, Influence of seasonal cattle movement on prevalence of trypanosome infections in cattle in the Maasai Steppe, Tanzania, J. Infect. Dis. Epidemiol., 5 (2019), 079.
  • 9. E. G. Kimaro, J. L. Toribio, P. Gwakisa, S. M. Mor, Occurrence of trypanosome infections in cattle in relation to season, livestock movement and management practices of Maasai pastoralists in Northern Tanzania, Vet. Parasitol. Reg. Stud. Reports., 12 (2018), 91-98.
  • 10. S. Aksoy, P. Buscher, M. Lehane, P. Solano, J. Van Den Abbeele, Human African trypanosomiasis control: Achievements and challenges, PLoS Negl. Trop. Dis., 11 (2017), e0005454.
  • 11. P. P. Simarro, G. Cecchi, J. R. Franco, M. Paone, A. Diarra, J. A. Ruiz-Postigo, et al., Estimating and mapping the population at risk of sleeping sickness, PLoS Negl. Trop. Dis., 6 (2012), e1859.
  • 12. P. Büscher, G. Cecchi, V. Jamonneau, G. Priotto, Human African trypanosomiasis, Lancet., 390 (2017), 2397-2409.
  • 13. S. Moore, S. Shrestha, K. W. Tomlinson, H. Vuong, Predicting the effect of climate change on African trypanosomiasis: Integrating epidemiology with parasite and vector biology, J. R. Soc. Interface., 9 (2012), 817-830.
  • 14. S. L. Peck, J. Bouyer, Mathematical modeling, spatial complexity, and critical decisions in tsetse control, J. Econ. Entomol., 105 (2012), 1477-1486.
  • 15. J. W. Hargrove, R. Ouifki, D. Kajunguri, G. A. Vale, S. J. Torr, Modeling the control of trypanosomiasis using trypanocides or insecticide-treated livestock, PLoS Negl. Trop. Dis., 6 (2012), e1615.
  • 16. S. F. Ackley, J. W. Hargrove, A dynamic model for estimating adult female mortality from ovarian dissection data for the tsetse fly Glossina pallidipes Austen sampled in Zimbabwe, PLoS Negl. Trop. Dis., 11 (2017), e0005813.
  • 17. J. S. Lord, J.W. Hargrove JW, S. J. Torr, G. A. Vale, Climate change and African trypanosomiasis vector populations in Zimbabwes Zambezi Valley: A mathematical modelling study, PLoS Med., 15 (2018), e1002675.
  • 18. S. Alderton, E. T. Macleod, N. E. Anderson, G. Palmer, N. Machila, M. Simuunza, et al., An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates, PLoS Negl. Trop. Dis., 12 (2018), e0006188.
  • 19. C. M. Stone, N. Chitnis N, Implications of heterogeneous biting exposure and animal hosts on trypanosomiasis Brucei Gambiense transmission and control, PLoS Comput. Biol., 11 (2015): e1004514.
  • 20. D. J. Rogers, A general model for the African trypanosomiases, Parasitology., 97 (1988), 193-212.
  • 21. K. S. Rock, M. L. Ndeffo-Mbah, S. Castaño, C. Palmer, A. Pandey, K. E. Atkins, et al. Assessing strategies against Gambiense sleeping sickness through mathematical modeling, Clin. Infect. Dis., 66 (2018), S286-S292.
  • 22. A. M. Ndondo, J. M. W. Munganga, J. N. Mwambakana, M. C. Saad-Roy, P. van den Driessche, O. R. Walo. Analysis of a model of Gambiense sleeping sickness in human and cattle, J. Biol. Dyn., 10 (2016), 347-365.
  • 23. J. A. Gilbert, J. Medlock, J. P. Townsend, S. Aksoy, M. L. Ndeffo-Mbah, A. P. Galvani, Determinants of human African trypanosomiasis elimination via paratransgenesis, PLoS Negl. Trop. Dis., 10 (2016), e0004465.
  • 24. K. S. Rock, S, J. Torr, C. Lumbala, M. J. Keeling, Predicting the impact of intervention strategies for sleeping sickness in two high-endemicity health zones of the Democratic Republic of Congo, PLoS Negl. Trop. Dis., 11 (2017), e0005162.
  • 25. K. S. Rock, S, J. Torr, C. Lumbala, M. J Keeling, Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo, Parasit. Vectors., 8 (2015), 532.
  • 26. K. S. Rock, C. M. Stone, I. M. Hastings, M. J. Keeling, S. J. Torr, N. Chitnis, Mathematical models of human African trypanosomiasis epidemiology, Adv. Parasitol., 87 (2015), 53-133.
  • 27. T. Madsen, D. I. Wallace, N. Zupan, Seasonal fluctuations in tsetse fly populations and human African trypanosomiasis: A mathematical model, in BiIOMAT 2012: International Symposium on Mathematical and Computational Biology (ed. R. P. Mondaini), World Scientific Publishing Company, Singapore, (2013), 56-69.
  • 28. H. Helikumi, M. Kgosimore, D. Kuznetsov, S. Mushayabasa S, Backward bifurcation and optimal control analysis of a Trypanosoma Brucei Rhodesiense model, Mathematics., 7 (2019), 971.
  • 29. A. R. Cossins, K. Blower, Temperature biology of animals, New York, Chapman and Hall, 1987.
  • 30. N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24-45.
  • 31. N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
  • 32. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
  • 33. L. S. Pontryagin, V. T. Boltyanskii, R. V. Gamkrelidze, E. F. Mishcheuko, The mathematical theory of optimal processes, Wiley, New Jersey, 1962.
  • 34. S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, London, 2007.
  • 35. W. Wang, X. Q Zhao, Threshold dynamics for compartment epidemic models in periodic environments, J. Dyn. Differ. Equ., 20 (2008), 699-717.
  • 36. D. Posny, J. Wang, Computing basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473-490.
  • 37. W. D. Wang, X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112.
  • 38. X. Q. Zhao, Dynamical System in Population Biology, Springer-Verlag, New York, 2003.
  • 39. X. Q. Zhao, Dynamical Systems in Population Biology, Springer: New York, 2003.
  • 40. W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verag, New York, 1975.

 

This article has been cited by

  • 1. Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa, A fractional-order Trypanosoma brucei rhodesiense model with vector saturation and temperature dependent parameters, Advances in Difference Equations, 2020, 2020, 1, 10.1186/s13662-020-02745-3

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved