Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy

1 Department of Mathematics, College of Science, Yonsei University, Seoul, Korea
2 Département de mathématiques et de statistique, Université de Montréal, Montréal, Canada
3 School of Mathematics and Statistics, University of Sydney, Sydney, Australia
4 Department of Computer Science & Engineering, Yonsei University, Seoul, Korea

#,ΦThese authors contributed equally to this work.

Special Issues: Mathematical modeling of tumor heterogeneity

Oncolytic virotherapy is a promising cancer treatment that harnesses the power of viruses. Through genetic engineering, these viruses are cultivated to infect and destroy cancer cells. While this therapy has shown success in a range of clinical trials, an open problem in the field is to determine more effective perturbations of these viruses. In this work, we use a controlled therapy approach to determine the optimal treatment protocol for a delayed infection from an immune-evading, coated virus. We derive a system of partial differential equations to model the interaction between a growing tumour and this coated oncolytic virus. Using this system, we show that viruses with inhibited viral clearance and infectivity are more effective than uncoated viruses. We then consider a hierarchical level of coating that degrades over time and determine a nontrivial initial distribution of coating levels needed to produce the lowest tumour volume. Interestingly, we find that a bimodal mixture of thickly coated and thinly coated virus is necessary to achieve a minimum tumour size. Throughout this article we also consider the effects of immune clearance of the virus. We show how different immune responses instigate significantly different treatment outcomes.
  Article Metrics

Keywords virus; oncolytic virotherapy; cancer; optimal control; partial differential equations

Citation: Taeyong Lee, Adrianne L. Jenner, Peter S. Kim, Jeehyun Lee. Application of control theory in a delayed-infection and immune-evading oncolytic virotherapy. Mathematical Biosciences and Engineering, 2020, 17(3): 2361-2383. doi: 10.3934/mbe.2020126


  • 1. L.-Q. Fu, S. Wang, M.-H. Cai, X.-J. Wang, J.-Y. Chen, X.-M. Tong, et al., Recent advances in oncolytic virus-based cancer therapy, Virus Res., (2019), 197675.
  • 2. I. R. Eissa, I. Bustos-Villalobos, T. Ichinose, S. Matsumura, Y. Naoe, N. Miyajima, et al., The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers, Cancers, 10 (2018), 356.
  • 3. J. Raja, J. M. Ludwig, S. N. Gettinger, K. A. Schalper, H. S. Kim. Oncolytic virus immunotherapy: future prospects for oncology, J. Immunother. Cancer, 6 (2018), 140.
  • 4. R. Yokoda, B. M. Nagalo, B. Vernon, R. Oklu, H. Albadawi, T. T. DeLeon, et al., Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect, Oncolytic Virotherapy, 6 (2017), 39.
  • 5. J. W. Choi, E. Kang, O. J. Kwon, T. J. Yun, H. K. Park, P. H. Kim, et al., Local sustained delivery of oncolytic adenovirus with injectable alginate gel for cancer virotherapy, Gene Ther., 20 (2013), 880.
  • 6. M. A Croyle, N. Chirmule, Y. Zhang, J. M. Wilson. "stealth" adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung, J. Virol., 75 (2001), 4792-4801.
  • 7. B.-K. Jung, E. Oh, J. Hong, Y. Lee, K. D. Park, C.-O. Yun, A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response, Biomater., 147 (2017), 26-38.
  • 8. S.-H. Jung, J.-W. Choi, C.-O. Yun, J. Y. Yhee, R. Price, S. H. Kim, et al., Sustained local delivery of oncolytic short hairpin rna adenoviruses for treatment of head and neck cancer, J Gene Med., 16 (2014), 143-152.
  • 9. E. Oh, J. Oh, J. Hong, Y. Chung, Y. Lee, K. Park, et al., Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus coexpressing IL-12 and GM-CSF for cancer immunotherapy, J. Control. Release, 259 (2017), 115-127.
  • 10. J. P. Smith, S. Kanekal, M. B. Patawaran, J. Y. Chen, R. E. Jones, E. K. Orenberg, et al., Drug retention and distribution after intratumoral chemotherapy with fluorouracil/epinephrine injectable gel in human pancreatic cancer xenografts, Cancer Chemoth. Pharm., 44 (1999), 267-274.
  • 11. S. J. Wade, A. Zuzic, J. Foroughi, S. Talebian, M. Aghmesheh, S. E. Moulton, et al., Preparation and in vitro assessment of wet-spun gemcitabine-loaded polymeric fibers: Towards localized drug delivery for the treatment of pancreatic cancer, Pancreatology, 17 (2017), 795-804.
  • 12. M. Riley, W. Vermerris, Recent advances in nanomaterials for gene delivery-a review, Nanomaterials, 7 (2017), 94.
  • 13. J. W. Choi, S. J. Jung, D. Kasala, J. K. Hwang, J. Hu, Y. H. Bae, et al., ph-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis, J. Control. Release, 205 (2015), 134-143.
  • 14. S. Tseng, I. M. Kempson, K. Huang, H. Li, Y. Fa, Y. Ho, et al., Targeting tumor microenvironment by bioreduction-activated nanoparticles for light-triggered virotherapy, ACS Nano, 12 (2018), 9894-9902.
  • 15. A. L. Jenner, F. Frascoli, A. C. F. Coster, P. S. Kim, Enhancing oncolytic virotherapy: Observations from a voronoi cell-based model, J. Theor. Biol., (2019), 110052.
  • 16. A. L. Jenner, P. S. Kim, F. Frascoli, Oncolytic virotherapy for tumours following a gompertz growth law, J. Theor. Biol., 480 (2019), 129-140.
  • 17. J. Malinzi, R. Ouifki, A. Eladdadi, D. Torres, K. A. White, Enhancement of chemotherapy using oncolytic virotherapy: mathematical and optimal control analysis, arXiv preprint arXiv:1807.04329, 2018.
  • 18. E. Ratajczyk, U. Ledzewicz, H. Schättler, Optimal control for a mathematical model of glioma treatment with oncolytic therapy and tnf-α inhibitors, J. Optimiz. Theory App., 176 (2018), 456-477.
  • 19. M. I. Titze, J. Frank, M. Ehrhardt, S. Smola, N. Graf, T. Lehr, A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth, Eur. J. Pharm. Sci., 97 (2017), 38-46.
  • 20. T. Cassidy, M. Craig, Determinants of combination gm-csf immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization, PLoS Comput. Biol., 15 (2019), e1007495.
  • 21. A. Friedman, X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PloS One, 13 (2018), e0192449.
  • 22. W. Mok, T. Stylianopoulos, Y. Boucher, R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.
  • 23. L. R. Paiva, C. Binny, S. C. Ferreira, M. L. Martins, A multiscale mathematical model for oncolytic virotherapy, Cancer Res., 69 (2009), 1205-1211.
  • 24. L. G. De Pillis, A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Comput. Math. Methods Med., 3 (2001), 79-100.
  • 25. R. Zurakowski, D. Wodarz, Model-driven approaches for in vitro combination therapy using onyx-015 replicating oncolytic adenovirus, J. Theor. Biol., 245 (2007), 1-8.
  • 26. G. Khan, W. Ahmed, P. S. Philip, M. H. Ali, A. Adem, Healthy rabbits are susceptible to EpsteinBarr virus infection and infected cells proliferate in immunosuppressed animals, Virol. J., 12 (2015), 28.
  • 27. Z. Z. Wang, Z. M. Guo, H. Smith, A mathematical model of oncolytic virotherapy with time delay, Math. Biosci. Eng., 16 (2019), 1836-1860.
  • 28. E. Basner-Tschakarjan, F. Mingozzi, Cell-mediated immunity to AAV vectors, evolving concepts and potential solutions, Front. Immun., 5 (2014), 350.
  • 29. R. H. Byrd, M. E. Hribar, J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9 (1999), 877-900.
  • 30. A. L. Jenner, C.-O. Yun, P. S. Kim, A. C. F. Coster, Mathematical modelling of the interaction between cancer cells and an oncolytic virus: insights into the effects of treatment protocols, Bull. Math. Biol., 80 (2018), 1615-1629.
  • 31. P. Kim, J. Sohn, J. Choi, Y. Jung, S. Kim, S. Haam, et al., Active targeting and safety profile of peg-modified adenovirus conjugated with herceptin, Biomater., 32 (2011), 2314-2326.
  • 32. K. Murphy, C. Weaver, Janeway's immunobiology, Garland Science, 2016.


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved