
Mathematical Biosciences and Engineering, 2020, 17(2): 18551888. doi: 10.3934/mbe.2020098
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The impact of maturation time distributions on the structure and growth of cellular populations
1 3404 Bakr Bin Mobashar Street, Taiba Box 8036, Jeddah 23833, KSA
2 Department of Computer Science, Middle Tennessee State University, MTSU Box 48, Murfreesboro, TN 37132, USA
3 Department of Mathematical Sciences, Middle Tennessee State University, MTSU Box 34, Murfreesboro, TN 37132, USA
Received: , Accepted: , Published:
Special Issues: Modeling, analysis and computation in Mathematical Biology
References
1. P. Gabriel, S. P. Garbett, V. Quaranta, D. R. Tyson, G. F. Webb, The contribution of age structure to cell population responses to targeted therapeutics, J. Theor. Biol., 311 (2012), 1927.
2. S. S. Hamed, R. M. Straubinger, W. J. Jusko, Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells, Cancer Chemother Pharmacol, 72 (2013), 553563.
3. X. Miao, G. Koch, S. AitOudhia, R. M. Straubinger, W. J. Jusko, Pharmacodynamic modeling of cell cycle effects for gemcitabine and trabected in combinations in pancreatic cancer cells, Front. Pharmacol., 7 (2016), 421.
4. J. A. Alberts Bruce, Molecular Biology of the Cell: a Problems Approach, 4th edition, Garland Science, New York, NY, 2002.
5. E. S. Wenzel, A. T. Singh, Cellcycle checkpoints and aneuploidy on the path to cancer, In Vivo, 32 (2018), 15.
6. A. Zetterberg, O. Larsson, K. G. Wiman, What is the restriction point?, Curr. Opin. Cell Biol., 7 (1995), 835842.
7. C. Schwarz, A. Johnson, M. K. oivomägi, E. Zatulovskiy, C. J. Kravitz, A. Doncic, et al., A precise Cdk activity threshold determines passage through the restriction point, Mol. Cell, 69 (2018), 253264.
8. A. Zilman, V. Ganusov, A. Perelson, Stochastic models of lymphocyte proliferation and death, PLoS One, 5 (2010), e12775.
9. A. V. Gett, P. D. Hodgkin, A cellular calculus for signal integration by T cells, Nature, 1 (2000), 239244.
10. K. Léon, J. Faro, J. Caneiro, A general mathematical framework to model generation structure in a population of asynchronously dividing cells, J. Theor. Biol., 229 (2004), 455476.
11. R. Callard, P. Hodgkin, Modeling T and Bcell growth and differentiation, Immunol. Rev., 216 (2007), 119129.
12. J. A. Smith, L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 12631267.
13. A. Golubev, Exponentially modified Gaussian (EMG) relevance to distributions related to cell proliferation and differentiation, J. Theor. Biol., 262 (2010), 257266.
14. A. Golubev, Genes at work in random bouts, BioEssays, 34 (2012), 311319.
15. A. Golubev, Applications and implications of the exponentially modified gamma distribution as a model for time variabilities related to cell proliferation and gene expression, J. Theor. Biol., 393 (2016), 203217.
16. S. J. Cain, P. C. Chau, Transition probability cell cycle model part Ibalanced growth, J. Theor. Biol., 185 (1997), 5567.
17. S. Svetina, B. Žekš, Transition probability model of the cell cycle exhibiting the agedistribution for cells in the indeterministic state of the cell cycle, in Biomathematics and Cell Kinetics (eds. A. J. Valleron and P. D. M. MacDonald), Elsevier/NorthHolland Biomedical Press, New York, 1978, 7182.
18. S. Cooper, The continuum model: statistical implications, J. Theor. Biol., 94 (1982), 783800.
19. S. Banerjee, K. Lo, M. K. Daddysman, A. Selewa, T. Kuntz, A. R. Dinner, et al., Biphasic growth dynamics during Caulobacter crescentus division, bioRxiv, (2017), 047589.
20. Z. W. Jones, R. Leander, V. Quaranta, L. A. Harris, D. R. Tyson, A driftdiffusion checkpoint model predicts a highly variable and growthfactorsensitive portion of the cell cycle g1 phase, PLOS ONE, 13 (2018), 120.
21. J. Folks, R. S. Chikara, The inverse Gaussian distribution and its statistical applicationa review, J. R. Statist. Soc. B, 40 (1978), 263289.
22. O. Angulo, J. LópezMarcos, Numerical integration of nonlinear sizestructured population equations, Ecol. Model., 133 (2000), 314.
23. S. C. Tate, S. Cai, R. T. Ajamie, T. Burke, R. P. Beckmann, E. M. Chan, et al., Semimechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclindependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts, Clin. Cancer Res., 20 (2014), 37633774.
24. R. R. Goldberg, Methods of Real Analysis, John Wiley & Sons, Hoboken, NJ, 1976.
25. K. Ito, F. Kappel, G. Peichel, A fully discretized approximation scheme for sizestructured population models, SIAM J. Numer. Anal., 28 (1991), 923954.
26. C. C. Pugh, Undergraduate texts in mathematics, in Real Mathematical Analysis (eds. S. Axler, F. Gehring and K. Ribet), vol. 19, Springer International Publishing, New York, NY, 2003.
27. Wikipedia, Leibniz integral rule, 2019. Available from: https://en.wikipedia.org/wiki/Leibniz_integral_rule.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)