Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Cluster validity indices for mixture hazards regression models

1 Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan
2 Department of Applied Statistics, National Taichung University of Science and Technology, Taichung, Taiwan

Special Issues: Applied Soft Computing

In the analysis of survival data, the problems of competing risks arise frequently in medical applications where individuals fail from multiple causes. Semiparametric mixture regression models have become a prominent approach in competing risks analysis due to their flexibility and easy interpretation of resultant estimates. The literature presents several semiparametric methods on the estimations for mixture Cox proportional hazards models, but fewer works appear on the determination of the number of model components and the estimation of baseline hazard functions using kernel approaches. These two issues are important because both incorrect number of components and inappropriate baseline functions can lead to insufficient estimates of mixture Cox hazard models. This research thus proposes four validity indices to select the optimal number of model components based on the posterior probabilities and residuals resulting from the application of an EM-based algorithm on a mixture Cox regression model. We also introduce a kernel approach to produce a smooth estimate of the baseline hazard function in a mixture model. The effectiveness and the preference of the proposed cluster indices are demonstrated through a simulation study. An analysis on a prostate cancer dataset illustrates the practical use of the proposed method.
  Figure/Table
  Supplementary
  Article Metrics

Keywords mixture regression model; Cox proportional hazards model; EM-algorithm; kernel estimator; validity indices

Citation: Yi-Wen Chang, Kang-Ping Lu, Shao-Tung Chang. Cluster validity indices for mixture hazards regression models. Mathematical Biosciences and Engineering, 2020, 17(2): 1616-1636. doi: 10.3934/mbe.2020085

References

  • 1. D. R. Cox, Regression models and life-tables with discussion, J. R. Stat. Soc. Ser. B-Stat. Methodol., 34 (1972), 187-220.
  • 2. G. Escarela, and R. Bowater, Fitting a semi-parametric mixture model for competing risks in survival data, Commun. Stat.-Theory Methods, 37 (2008), 277-293.
  • 3. S. C. Cheng, J. P. Fine, and L. J. Wei, Prediction of cumulative incidence function under the proportional hazards model, Biometrics 54 (1998), 219-228.
  • 4. G. J. McLachlan and D. Peel, Finite mixture models, Wiley Series in Probability and Statistics: Applied Probability and Statistics, Wiley-Interscience, New York, 2000.
  • 5. S. K. Ng and G. J. McLachlan, An EM-based semi-parametric mixture model approach to the regression analysis of competing risks data, Stat. Med., 22 (2003), 1097-1111.
  • 6. I. S. Chang, C. A. Hsiung, C. C. Wen and W. C. Yang, Non-parametric maximum likelihood estimation in a semiparametric mixture model for competing risks data, Scand. J. Stat., 34 (2007), 870-895.
  • 7. W. Lu and L. Peng, Semiparametric analysis of mixture regression models with competing risks data, Lifetime Data Anal., 14 (2008), 231-252.
  • 8. S. Choi and X. Huang, Maximum likelihood estimation of semiparametric mixture component models for competing risks data, Biometrics, 70 (2014), 588-598.
  • 9. A. K. Jain and R. C. Dubes, Algorithms for clustering data, Prentice-Hall, Englewood Cliffs, NJ, 1988.
  • 10. Y. G. Tang, F. C. Sun and Z. Q. Sun, Improved validation index for fuzzy clustering, in American Control Conference, June 8-10, 2005. Portland, OR, USA, (2005), 1120-1125.
  • 11. W. Wang and Y. Zhang, On fuzzy cluster validity indices, Fuzzy Sets Syst., 158 (2007), 2095-2117.
  • 12. K. L. Wu, M. S. Yang and J. N. Hsieh, Robust cluster validity indexes, Pattern Recognit., 42 (2009), 2541-2550.
  • 13. K. L. Zhou, S. Ding, C. Fu and S. L. Yang, Comparison and weighted summation type of fuzzy cluster validity indices, Int. J. Comput. Commun. Control, 9 (2014), 370-378.
  • 14. J. M. Henson, S. P. Reise and K. H. Kim, Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics, Struct. Equ. Modeling, 14 (2007), 202-226.
  • 15. J. R. Busemeyer, J. Wang, J. T. Townsend and A. Eidels, The Oxford Handbook of Computational and Mathematical Psychology. Oxford University Press 2015.
  • 16. R. Bender, T. Augustin and M. Blettner, Generating survival times to simulate Cox proportional hazards models, Stat. Med., 24 (2005), 1713-1723.
  • 17. P. Royston, Estimating a smooth baseline hazard function for the Cox model. Technical Report No. 314. University College London, London 2011. Available from: https://www.semanticscholar.org/paper/Estimating-a-smooth-baseline-hazard-function-for-Royston/2f329b48f674a74253eb428b71ff237365fd4051.
  • 18. A. Guilloux, S. Lemler and M. L. Taupin, Adaptive kernel estimation of the baseline function in the Cox model with high-dimensional covariates, J. Multivar. Anal., 148 (2016) 141-159.
  • 19. M. Zhou, Empirical likelihood method in survival analysis, CRC Press 2016
  • 20. I. Horova, J. Kolacek, and J. Zelinka, Kernel smoothing in Matlab theory and practice of kernel smoothing, World Scientific Publishing, 2012.
  • 21. P. N. Patil, Bandwidth choice for nonparametric hazard rate estimation, J. Stat. Plan. Infer., 35 (1993), 15-30.
  • 22. J. C. Bezdek, Numerical taxonomy with fuzzy sets, J. Math. Biol., 7 (1974), 57-71.
  • 23. R. N. Dave, Validating fuzzy partition obtained through c-shells clustering, Pattern Recognit. Lett., 17 (1996), 613-623.
  • 24. J. C. Bezdek, Cluster validity with fuzzy sets, Journal of Cybernetics, 3 (1974), 58-73. DOI: 10.1080/01969727308546047.
  • 25. J. C. Dunn, Indices of partition fuzziness and the detection of clusters in large data sets, in Fuzzy Automata and Decision Processes, (ed. M.M. Gupta, Elsevier), NY, 1977.
  • 26. D. P. Byar and S. B. Green, The choice of treatment for cancer patients based on covariate information: application to prostate cancer, Bull. Cancer, 67 (1980), 477-490.
  • 27. D. F. Andrews and A. M. Herzberg, Data: a collection of problems from many fields for the student and research worker, Springer-Verlag, New York, (1985), 261-274.
  • 28. R. Kay, Treatment effects in competing-risks analysis of prostate cancer data, Biometrics, 42 (1986), 203-211.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved